# Starting Soon: PFAS Roundtable Session 3

- Download slides for today
  - CLU-IN training page at: <u>https://clu-in.org/conf/itrc/PFAS-</u> <u>Round3/</u> under "Download Training Materials"
- Using Adobe Connect
  - Related Links (on right) Select name of link, then click "Browse To"
  - Full Screen button near top of page

#### Audio Troubleshooting Hints

- Turn up the volume on your speakers
- Turn on the volume in Adobe Connect (if the speaker symbol is white, click on it so it turns green)



- Turn up the speaker volume in Adobe Connect by clicking "adjust speaker volume"
- If you use headphones or a separate speaker, select the correct speaker in Adobe Connect by clicking "Select Speaker"
- Disconnect from VPN
- For continued audio issues, request a call-in number via the Q&A pod



Session 3: Treatment Technologies; AFFF https://pfas-1.itrcweb.org



Advancing Environmental Solutions

# ITRC PFAS Team

#### **ROUNDTABLE WEBINAR SESSION 3:**

Treatment Technologies Aqueous Film Forming Foam (AFFF)

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>) Hosted by: US EPA Clean Up Information Network (<u>www.cluin.org</u>)







### PFAS Roundtable Webinar

- Introduction
- ► ITRC PFAS Resources
  - Find everything online at: <u>https://pfas-1.itrcweb.org</u>
- Roundtable format
- Roundtable Q&A

#### Thank you for joining this ITRC PFAS Roundtable!



# ITRC – Shaping the Future of Regulatory Acceptance





▶ Network - All 50 states, PR, DC







DOE

- ITRC Industry Affiliates Program
- Academia
- Community Stakeholders

Disclaimer

- https://pfas-1.itrcweb.org/aboutitrc/#disclaimer
- Partially funded by the US government
  - ► ITRC nor US government warranty material
  - ► ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>

Itrcweb







linkedin.com/ company/itrc



https://www.itrcweb.org/

## PFAS Technical and Regulatory Guidance

#### ► Web document (April 2020, editorial revisions September 2020)

| What are PFAS?                                                                                                                                                      | How do they<br>behave in the<br>environment?                                                                                                  | Why are we<br>concerned about<br>PFAS?                                                                                                                  | How do we<br>evaluate PFAS in<br>the environment?                                                                | How do we remediate PFAS?                                         | What are the major<br>concerns and how<br>do we share what<br>we know?           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>Introduction</li> <li>History and use</li> <li>Naming<br/>conventions</li> <li>PFAS releases to<br/>the environment</li> <li>Firefighting foams</li> </ul> | <ul> <li>Physical and<br/>chemical<br/>properties</li> <li>Fate and transport<br/>processes</li> <li>Media-specific<br/>occurrence</li> </ul> | <ul> <li>Human and<br/>ecological health<br/>effects</li> <li>Site risk<br/>assessment</li> <li>Regulations,<br/>guidance and<br/>advisories</li> </ul> | <ul> <li>Site<br/>characterization</li> <li>Sampling and<br/>analytical methods</li> <li>Case studies</li> </ul> | <ul><li>Treatment<br/>technologies</li><li>Case studies</li></ul> | <ul> <li>Stakeholder<br/>perspectives</li> <li>Risk<br/>communication</li> </ul> |

- ▶ 11 Fact Sheets (2017/2018, August 2020)
- ► Ten video training modules published on YouTube (April 2020)

Risk Communication Toolkit (published June 2020) <u>https://rct-1.itrcweb.org</u>



ITRC. 2020. PFAS Technical and Regulatory Guidance Document and Fact Sheets PFAS-1. Washington, D.C.. <u>https://pfas-1.itrcweb.org/</u>.

## Document Information: External files

Twelve external files for additional detailed information

- PFAS Water and Soil Values updated regularly, includes US and some International values
- Basis for PFOA and PFOS drinking water values in the US
- Physical and chemical properties
- Bioconcentration factors tables

- Ecological toxicity data summary
- Toxicological effects in mammalian species for some PFAS
- Analytical methods
- Treatment technologies
- Water treatment case studies operation summaries
- Social Factors vision board



## Session 3 - Topics

# Treatment Technologies

#### ► AFFF

#### Past sessions

- Recordings available on Clu-In
- Q&A digests available on itrcweb.org





## Housekeeping

- Session time is 2 hours
- Participants are on mute
- This event is being recorded
- Download slides for today at the CLU-IN training page <u>https://clu-in.org/conf/itrc/PFAS-Round3/</u> Under "Download Training Materials"
- Need confirmation of your participation today?
  - Fill out the online feedback form and check box for confirmation email and certificate



Copyright 2020 Interstate Technology & Regulatory Council, 1250 H Street, NW Suite 850 | Washington, DC 20005

Technical Difficulties?

Request support through the Q&A Pod

### Roundtable Format

- ► The moderator will read questions for a response by the panelist(s)
- Questions are selected from those submitted with:
  - participant registration
  - ► prior PFAS training classes
  - PFAS team members
- ► Today you may submit additional questions by typing in the Q&A pod
- ▶ It may not be possible to answer all questions during the live webinar
- A Q&A digest with references to the PFAS Technical and Regulatory Guidance Document will be made available







Cliff Shierk, MN PCA



Kate Emma Schlosser, NH Dept. of Environmental Services



Richard Spiese, VT DEC



Shalene Thomas, Wood



Michelle Crimi, Clarkson Univ.



Jennifer Field, Oregon State



Bill DiGuiseppi, Jacobs



# Session 3 Panelists



# Treatment TechnologiesAFFF

#### https://pfas-1.itrcweb.org





# Treatment Technologies <a href="https://pfas-1.itrcweb.org">https://pfas-1.itrcweb.org</a>



### Document Information: Treatment Technologies



peer-reviewed literature

may not have been documented in peer-reviewed literature

field demonstrated



PFAS-1, Section 12.1 Treatment Technologies Overview

### Liquids Treatment - Field-Implemented Technologies

| Developing               | Description                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbon<br>Sorption       | Carbon sorption is a physical and chemical process by which one substance becomes attached to another. Regulated PFAS sorb well to carbon; some unregulated ones do not. Reactivation or disposal is needed for spent carbon.              |
| lon Exchange<br>Sorption | Ion exchange media can be more effective sorbents for PFAS than carbon per unit volume of sorptive media. Some IX resins can be regenerated on site. Single use resins must be incinerated or disposed.                                    |
| Membrane<br>Filtration   | Membrane Filtration, including <b>reverse osmosis</b> , uses a partially permeable membrane to remove ions, such as PFAS. Can be effective but can have high energy usage. Reject water (10-20% flow) needs further treatment or disposal. |
| Deep Well<br>Injection   | Injection of liquid wastes in on-site or off-site deep Class I wells can be considered for PFAS.                                                                                                                                           |



#### Water Treatment for PFAS

#### GAC



#### Anion Exchange Resin



#### **Reverse** Osmosis



Photo used with permission, Dora Chiang, CDM Smith

Photo used with permission, Dora Chiang, CDM Smith

Photo used with permission, Bill DiGuiseppi, Jacobs



PFAS-1, Section 12.2 Field-Implemented Liquids Treatment Technologies

# Liquids Treatment - Limited Application Technologies

| Developing                          | Description                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Developing                          | Description                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Novel Sorbents                      | Colloidal activated carbon, polymers, clays, and biochar have been applied for liquids treatment in limited applications.                                                                                                                                       |  |  |  |  |  |  |
| Coagulation/<br>Flocculation        | Coagulation/flocculation is addition of polymers that clump small, destabilized particles together into larger aggregates to settle out from the water. Best for high concentration PFAS. Requires large settling tanks or ponds.                               |  |  |  |  |  |  |
| Redox<br>Manipulation               | Involves adding chemical reagents either aboveground or into the subsurface to destroy organic contaminants through oxidative or reductive chemistry. The mechanisms involving multiple species of free radicals or solvated electrons are not well understood. |  |  |  |  |  |  |
| Physico-<br>chemical<br>Destruction | Oxidation or reduction through electrochemical, sonochemical, non-thermal plasma, doped ZVI, alkaline metals, and electron-beam technologies have been demonstrated at the bench scale.                                                                         |  |  |  |  |  |  |
| Foam<br>Fractionation               | Separation of PFAS from liquids by bubbling air, or ozone + air, has been demonstrated at full-scale in limited applications.                                                                                                                                   |  |  |  |  |  |  |
|                                     | PFAS-1, Section 12.5 Limited Application Liquids Treatment                                                                                                                                                                                                      |  |  |  |  |  |  |

Technologies

### Liquid Technologies Table

| Remediation<br>Technology<br>Group | Remediation Technology<br>Document Sections<br>included | What PFAS<br>Demonstrated<br>On?<br>What<br>Concentrations/Re<br>moval Reported?                                                                                         | Strengths (Includes<br>Co-Contaminants,<br>Sustainability,<br>Scalability)                                                                                                                                                                     | Challenges/Limitations (Includes<br>Co-Contaminants, Sustainability,<br>Scalability)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Waste<br>Management/Life<br>Cycle                                                                   | Future Data Needs                                                                                                                                                                                                                           | PFAS<br>Demonstration<br>Maturity (Lab,<br>Field Pilot, Full-<br>Scale,<br>Commercialized) | References                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sorption</b><br>(Separation)    | 12.2.1.1<br>Granular activated<br>carbon (GAC)          | Demonstrated<br>for all PFAS<br>tested to date at<br>parts per trillion<br>to parts per<br>billion<br>concentrations<br>for aboveground<br>activated carbon<br>treatment | Treats all tested<br>PFAS to date with<br>high removals prior<br>to breakthrough.<br>Design flexibility to<br>increase removal.<br>Simple to operate.<br>Multiple vendors.<br>Off-site<br>reactivation/regener<br>ation available for<br>PFAS. | Possible faster breakthrough<br>times for shorter chain versus<br>longer chain PFAS under certain<br>influent and other conditions.<br>Becomes less economical at<br>higher influent concentrations<br>(for example, >10–100 ppb).<br>Competitive adsorption w/ other<br>species. Precursors and other<br>PFAS not analyzed for can<br>increase GAC loading and<br>accelerate changeout<br>frequencies. No destruction of<br>PFAS, unless it is reactivated or<br>incinerated at high temperature<br>(>1,100°C).<br><b>Pretreatment may be</b><br><b>necessary</b> . | Spent activated carbon<br>must be removed for<br>offsite disposal, or<br>reactivation/regeneration. | More comprehensive<br>shorter chain<br>adsorption capacity<br>data. Competition<br>with other<br>contaminants and<br>aqueous species.<br>Regulation of<br>individual PFAS in<br>addition to PFOA and<br>PFOS. Impact on<br>PFAS precursors. | FI                                                                                         | (Dickenson and<br>Higgins 2016;<br>Brewer 2017;<br>Cummings et al.<br>2015; Appleman<br>et al. 2013; Szabo<br>et al. 2017;<br>Burdick et al.<br>2016; Woodard,<br>Berry, and<br>Newman 2017;<br>Hohenstein 2016;<br>Xiao et al. 2017;<br>AWWA 2016;<br>Mimna 2017;<br>McNamara et al.<br>2018; Westreich<br>et al. 2018; Liu,<br>Werner, and<br>Bellona 2019) |

#### Updates coming in 2021



PFAS-1, Table 12-1 Liquid Technologies Table

### Solids Treatment - Field-Implemented Technologies

| Developing                        | Description                                                                                                                                                                                                                                          |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sorption and<br>Stabilization     | Stabilization involves mixing waste with binding agents like clays, or other proprietary blends to make them less likely to be released into the environment. Questions remain about permanence. Soil (and liability) remains on site in perpetuity. |
| Excavation<br>and Disposal        | Excavation and transport offsite to a permitted landfill. Landfills starting to refuse<br>PFAS wastes. Liability is potentially transferred to landfill. Future regulatory changes<br>(e.g., hazardous substance) may affect options for disposal.   |
| Excavation<br>and<br>Incineration | Incineration is the process of heating PFAS soils to temperatures high enough to destroy contaminants (>1,100 C). Limited facilities available that are permitted for PFAS. Complete destruction not well documented yet.                            |



### **Solids Treatment** - Limited Application Technologies

| Developing                           | Description                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal<br>Desorption                | Thermal desorption utilizes heat to increase the volatility of contaminants such<br>that they can be removed (separated) from the solid matrix (typically soil, sludge<br>or filter cake). Demonstrated in field; offers potential for on-site destruction.                                                                                                                     |
| Size<br>Segregation/<br>Soil Washing | Size segregation can be as simple as dry sieving to separate coarse materials,<br>which does not typically sorb PFAS, from fine material (e.g., clays and organics)<br>which do sorb PFAS. Soil washing is a more involved process through rinsing,<br>chemical separation, etc. Soil washing requires treatment of multiple waste<br>streams to address "end of life" pathway. |





#### AFFF

#### https://pfas-1.itrcweb.org



# Classes of Firefighting Foams

#### CLASS A FOAMS- Developed in the 1980s for fighting wildfires and used structure fires.

► Do not contain PFAS

CLASS B Foams- Used to fight fires involving flammable, combustible liquids and gases; petroleum greases, tars, oils and gasoline; and solvents and alcohols Several Class B foams contain PFAS

AFFF are the primary Class B foam that contain fluorosurfactants



#### Types of Class B foams





PFAS-1, Figure 3-2. Types of Class B Foams Source: S. Thomas, Wood plc, used with permission

## Typical Composition of AFFF

AFFF products contain other surfactants, solvents, additives

- ► 3% AFFF concentrate contains:
  - ▶ More than 60% water/diluent
  - ▶ Up to 20% is solvents

As much as 18% is surfactants of which less than 2% is fluorosurfactants.





PFAS-1, Figure 3-3. Typical composition of 3% AFFF concentrate. Source: S. Thomas, Wood plc, adapted from Kempisty, Xing and Racz 2018

#### Life Cycle Considerations for AFFF





PFAS-1, Figure 3-1. Life cycle considerations for AFF S. Thomas, Wood plc, used with permission

# Types: Legacy PFOS AFFF

#### Electrochemical Fluorination (ECF) chemistry

- ► Homologous series (C2-C13)<sup>1</sup>
- ► Branched & linear isomers (30:70)<sup>2</sup>
  - ► If exclude branched isomers, concentrations underestimated (biased low)
- Crude synthesis, many side products

#### ► PFAS composition

- ▶ 89% PFSAs (e.g., PFOS) in 3M AFFF
- ▶ 1.6% PFCAs (e.g., PFOA)
- 9.4% other forms with multiple charged groups zwitterionic (+/-)



Photo courtesy of J. Field Oregon State Univ.

25



Figure courtesy C. Higgins, Colorado School of Mines



### Types: Legacy Fluorotelomer AFFFs<sup>1</sup>

- *Poly*fluorinated forms
- Do not contain PFOS or degrade to PFOS
- None listed on UMCR3 or Method 537 lists
- Precursors with -Sdegrade to fluorotelomer sulfonates and PFCAs<sup>1,2</sup>







<sup>1</sup>Place and Field, 2012. *ES&T* 46: 7120-7127; <sup>2</sup>Weiner et al., 2013. Environ Chem 10:486-493; <sup>3</sup>Harding-Marjanovic et al., 2015. *ES&T* 49:7666-7674 Photo and diagrams used with permission from J. Field, Oregon State Univ.

Chemguard (2002)

## Mechanisms for Release to Environment

- AFFF is applied by mixing concentrate with water
- The foam solution is aerated at the nozzle
- Once released, it can contaminate soil, surface water and groundwater
- Co-contaminants often present



Source: Adapted from figure by J. Hale, Kleinfelder, used with permission. ITRC History and Use fact sheet.



#### CSM for AFFF Application Sites





PFAS-1, Figure 2-17. CSM for fire training areas Figure Adapted from figure by L. Trozzolo, TRC, used with permission **28** 

#### Foam Research and Development

SERDP-ESTCP Research (<u>https://serdp-estcp.org/</u>)

- Novel Fluorine-free Replacement for AFFF NRL (completion August 2018)
- ► Fluorine-free Foam National Foam (completion September 2019)
- Fluorine-free Foams with Oleophobic Surfactants and Additives for Effective Pool Fire Suppression - NRL (completion December 2020)

Additional on-going research efforts are also being done by others globally in government and industry.



### State Regulations and Guidance for AFFF

#### Table 3-1. Representative state AFFF regulatory and legislative activity

| State      | Regulation<br>or Bill | Initial<br>Effective<br>Date | What is<br>Regulated?                  | Specific Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference                                                                    |
|------------|-----------------------|------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| New York   | 6NYCRR<br>Part 597    | March<br>2017                | PFOS,<br>PFOA, and<br>Class B<br>foams | PFOS and PFOA are hazardous substances. Storage and registration<br>requirements for class B foams if those foams contain at least 1% by<br>volume of PFOS and PFOA (acid and salt) and prohibit the release of 1<br>pound or more of each into the environment during use. If a release exceeds<br>the 1-pound threshold, it is considered a hazardous waste spill and must be<br>reported. Clean-up may be required under the state's superfund or<br>brownfields program (NYDEC 2017). New York's Chemical and Bulk Storage<br>regulations may also trigger further registration and storage requirements<br>for foams that contain one of the four PFAS designated as hazardous<br>substances (NY CRR Parts 596-599).                                                                                        | ( <u>NY DEC</u><br><u>2017a</u> ≻)                                           |
| Washington | WAC 296-<br>24-33001  | July<br>2020                 | Class B<br>foams                       | Class B firefighting foams cannot be used or discharged for training<br>purposes, and manufacturers of firefighting personal protective equipment<br>must provide written notification to purchasers if the equipment contains<br>PFAS. Beginning July 1, 2020, manufacturers of class B firefighting foams<br>may no longer manufacture, sell, or distribute for sale PFAS-containing class<br>B firefighting foams except for the following uses: applications where the<br>use of a PFAS-containing firefighting foam is required by federal law,<br>including but not limited to the requirements of 14 CFR 139.317 (such as<br>military and FAA-certfied airports ). Other exceptions include: Petroleum<br>Terminals (as defined in RCW 82.23A.010), Oil Refineries, Chemical Plants<br>(WAC 296-24-33001) | ( <u>Washington</u><br><u>State</u><br><u>Legislature</u><br><u>2018c</u> ►) |
| Virginia   | House Bill<br>2762ER  | January<br>2020              | PFAS-<br>containing<br>AFFF            | Virginia Department of Fire Programs and the Virginia Fire Services Board<br>begin assisting municipal fire departments to transition to fluorine-free<br>foams, where possible. Effective the same date, the bill bans the discharge<br>or use of PFAS-containing AFFF foams for testing or training unless the<br>facility has implemented containment, treatment, and disposal measures to<br>prevent release to the environment.                                                                                                                                                                                                                                                                                                                                                                             | State of<br>Virginia,<br>2019                                                |

#### New Regulatory Programs table coming in 2021





# Treatment TechnologiesAFFF

#### https://pfas-1.itrcweb.org



## PFAS Technical and Regulatory Guidance

#### ► Web document (April 2020, editorial revisions September 2020)

| What are PFAS?                                                                                                                                                      | How do they<br>behave in the<br>environment?                                                                                                  | Why are we<br>concerned about<br>PFAS?                                                                                                                  | How do we<br>evaluate PFAS in<br>the environment?                                                                | How do we remediate PFAS?                                         | What are the major<br>concerns and how<br>do we share what<br>we know?           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>Introduction</li> <li>History and use</li> <li>Naming<br/>conventions</li> <li>PFAS releases to<br/>the environment</li> <li>Firefighting foams</li> </ul> | <ul> <li>Physical and<br/>chemical<br/>properties</li> <li>Fate and transport<br/>processes</li> <li>Media-specific<br/>occurrence</li> </ul> | <ul> <li>Human and<br/>ecological health<br/>effects</li> <li>Site risk<br/>assessment</li> <li>Regulations,<br/>guidance and<br/>advisories</li> </ul> | <ul> <li>Site<br/>characterization</li> <li>Sampling and<br/>analytical methods</li> <li>Case studies</li> </ul> | <ul><li>Treatment<br/>technologies</li><li>Case studies</li></ul> | <ul> <li>Stakeholder<br/>perspectives</li> <li>Risk<br/>communication</li> </ul> |

- ▶ 11 Fact Sheets (2017/2018, August 2020)
- ► Ten video training modules published on YouTube (April 2020)

Risk Communication Toolkit (published June 2020) <u>https://rct-1.itrcweb.org</u>



ITRC. 2020. PFAS Technical and Regulatory Guidance Document and Fact Sheets PFAS-1. Washington, D.C.. <u>https://pfas-1.itrcweb.org/</u>.

#### PFAS Team Schedule – through December 2021

- Continue work on updating technical information and regulatory approaches in this rapidly evolving subject
  - ► Guidance Document Updates
    - ▶ June 2021 and December 2021
    - Periodic small updates and reference additions
  - ▶ Roundtable Webinars, Virtual Workshops, and Outreach



# Thank you for attending!

- Email further questions on today's session to: <a href="mailto:training@itrcweb.org">training@itrcweb.org</a>
- ► Feedback Form:

https://clu-in.org/conf/itrc/PFAS-Round3/feedback.cfm

Please use the Feedback Form to ask questions for future PFAS Roundtables













Itrcweb

**@ITRCWEB** 

#### **Future PFAS Roundtable**

Session 4 (JUNE 10, 2021)

- Human & Ecological Health Effects
- Risk Assessment & Regulations
- Risk Communication
- Stakeholder Perspectives

**ITRC PFAS Team Leaders:** Sandra Goodrow, New Jersey Department of Environmental Protection Kate Emma Schlosser, New Hampshire Department of Environmental Services

