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Models Covered in This Course

• Currently there are two models included in BMDS that can 

incorporate time in the modeling scheme

• The toxicodiffusion model is used for time-course or repeated response data 

where a particular effect has been measured at multiple time-points

• The ten Berge concentration × time (C ×T) model is primarily used in the 

context of acute inhalation studies where groups of animals are exposed to multiple 

concentrations of a chemical for varying durations of exposure.

• Currently, there is a cancer model that incorporates time that is 

covered in the Cancer Training Module

• This model, the Multistage-Weibull time-to-tumor model, is run outside of BMDS 

program but is available from the BMDS website:  

http://epa.gov/ncea/bmds/dwnldu.html#msw
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Repeated Response Data –The 

Toxicodiffusion Model

4



Repeated Response Data

• Repeated response measures, or time-course data, can be used to 

characterize toxicity responses that vary according to dose and time

• Neurotoxicity tests, such as functional observational batteries (FOBs), 

often generate repeated response data

• Repeated response data is different from concentration × time (C × t) 

data

• C × t data involves animals exposed to a chemical at a particular dose for a certain 

duration of time

• Repeated measure data involves animals exposed to a chemical once and where 

responses are measured at multiple time points before, during, or following that 

exposure
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Traditional Analysis of Time-
Course Data

• Historically, analysis of FOB or other repeated-response data has been 

conducted using Analysis of Variance (ANOVA) methods

• ANOVA is effective at detecting dose- and time-related changes in responses

• However, they cannot describe the magnitude or underlying shape of the dose-

response curve along the recorded time-course

• In order to describe the dose-response characteristics, one option 

would be to model independent time points separately, but this type 

of analysis is unsatisfactory for 3 reason:

• It would be limited to the experimental time points

• The time trend of the dose-effects would not be fully utilized

• It might not reflect the magnitude of toxic effects at the most sensitive time point

• For these reasons Zhu et al. (2005a,b) developed the toxicodiffusion 

model 6



Toxicodiffusion Model Form

• The equation for the toxicodiffusion model is given as:

𝜂 𝑑, 𝑡 = 𝐴 𝑡 + 𝑓 𝑑, 𝑡 , where 𝑓 𝑑, 𝑡 =
𝐵∗𝑡∗𝑑∗𝑒𝑥𝑝 −𝑘∗𝑡

1+𝐶∗𝑡∗𝑑∗𝑒𝑥𝑝 −𝑘∗𝑡

• When first order kinetics are applicable, the parameter k can be interpreted as the 

elimination coefficient

• 𝐴 𝑡 represents the time-course that is predicted in the absence of exposure

• Constant:  𝐴 𝑡 = 𝐴0
• Linear: 𝐴 𝑡 = 𝐴0 + 𝐴1𝑡

• 2nd degree polynomial:  𝐴 𝑡 = 𝐴0 + 𝐴1𝑡 + 𝐴2𝑡
2

• The toxicodiffusion model is particularly well-suited for describing dose-time-

response relationships of transient dose effects

• 𝑓 𝑑, 𝑡 starts at a value of 0 when 𝑡 = 0, increases with time and reaches peak effect 
𝐵𝑑

𝐶𝑑+𝑘∗𝑒
at 𝑡 =

1

𝑘
, and eventually returns to 0 with sufficiently large time
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Repeated Response Data

• For the purposes of modeling repeated response data in BMDS, the 

data must be structured as follows:

• The response variable measured on a continuous scale

• A single exposure (or exposure interval) and several (4-5) doses

• The time component is coded between 0 (beginning) and the maximum 

positive value (last time point for which data is available).  

• The outcome is measured repeatedly over time on each study subject, and 

the time of observation is given.  It is not necessary for each subject to have 

the same time points

• Individual animal data and multiple subjects per dose group are required

• Dose effects are observed at more than one dose level, and differences in 

dose effect are seen at some time points
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Repeated Response Datafile 
Format
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Toxicodiffusion Model in BMDS

• Unlike other models in BMDS, the toxicodiffusion model requires that 

users install the R Statistical software package (version 2.6.2 or 

higher) 

• The toxicodiffusion model also is the only model in BMDS currently 

that uses the “hybrid approach” to calculate a BMD for continuous 

data based on dichotomized risk, requiring two user-selected 

parameters: 

• The benchmark response (BMR) – expressed as either added or extra risk (e.g., 10% 

extra risk)

• The background rate (i.e., probability) of an adverse response in the control group
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The Hybrid Approach –
Selecting the BMR

• As with dichotomous models, EPA recommends the use of extra risk 

as this accounts for the presence of background responses

• 10% extra risk would be expressed as:

0.10 = 𝑃 𝐵𝑀𝐷𝛾, 𝑡 − 𝑃 0, 𝑡 /(1 − 𝑃 0, 𝑡 ]

If 𝑃 0, 𝑡 = 0.01 (i.e., there is a 1% probability of adversity in the control group at 

time t), then 

𝑃 𝐵𝑀𝐷𝛾 , 𝑡 = 0.10 ∗ 1 − 𝑃 0, 𝑡 + 𝑃 0, 𝑡 = 0.1 ∗ 0.99 + 0.01 = 0.109

• Therefore, we are interested in the dose that results in 10.9% of 

subjects exhibiting an adverse response
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The Hybrid Approach –
Selecting the Background Rate

• Next, the background rate of adverse response in the control group 

must be selected, in this example, we’ve chosen 1%

• AT EACH TESTING TIME POINT, the model calculates the cut-off 

values in the control group distribution that correspond to the 

background rate
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The Hybrid Approach –
Selecting the Background Rate

• Given a BMR of 10% extra risk AND a background rate of 1% for 

adverse responses in the control group the model will calculate the 

dose that corresponds to a shift in the mean that results in 10.9% of 

the animals falling beyond the control group cut-off values 
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Toxicodiffusion Model –
Calculating the BMD

• In order to profile the BMD (i.e., 𝐵𝑀𝐷𝛾 𝑡 ) with respect to time, a 

sequence of points {𝑡} is chosen and the corresponding {𝐵𝑀𝐷𝛾 𝑡 }

values are calculated

• Given that response rates may vary over time, there may be multiple 

values of {𝐵𝑀𝐷𝛾 𝑡 } that yield responses equal to the BMR at multiple 

time points {𝑡}

• Therefore, the reported BMD is the minimum of these multiple doses, 

i.e., 𝐵𝑀𝐷𝛾 𝑡∗ = 𝑚𝑖𝑛𝑡 {𝐵𝑀𝐷𝛾 𝑡 }
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Toxicodiffusion Model –
Calculating the BMD 
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Toxicodiffusion Model –
Calculating the BMD

16



Toxicodiffusion Model –
Calculating the BMDL

• The toxicodiffusion model uses bootstrap resampling of residuals and 

random effect coefficients to calculate the BMDL

• The residuals and random effect coefficients were originally estimated during 

the original fitting of the model to the data

• The model repeats the sampling procedure a user-specified number of times, 

with each re-sampled residual resulting in a new estimate of model 

parameters, and thus, a new BMD

• This procedure produces a number of BMDs equal to the 

number of sampling repeats

• The percentiles across this sampling of bootstrapped BMDs can be used to calculate 

the BMDL

• The 5th percentile of a sampled set of BMDs would be reported as the 95% lower 

bound on the BMD, i.e., the BMDL
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Toxicodiffusion Model –
Calculating the BMDL

• Because the BMDL calculation uses random re-sampling, the BMDLs 

calculated from repeated modeling runs will differ slightly for the 

same dataset.

• One way to control this difference is to increase the number of 

bootstrap iterations, this will decrease the range of calculated BMDLs
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Running The Toxicodiffusion Model in 

BMDS
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Datafile Structure
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Select Model Type
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Toxicodiffusion Model 
Automatically Selected
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Toxicodiffusion Model –
Column Assignments
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Toxicodiffusion Model –
Plotting Assignments
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Toxicodiffusion Model – Other 
Assignments
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Toxicodiffusion Model – Other 
Assignments
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Toxicodiffusion Model – Other 
Assignments
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Toxicodiffusion Model – Other 
Assignments

28



Toxicodiffusion Model – Other 
Assignments
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Toxicodiffusion Model – Results 
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Toxicodiffusion Model – Results
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Toxicodiffusion Model – Plots 
and Assessing Fit

• Observed trajectory – displays each subject’s responses by connecting 

the observed responses across time

• Useful for determining the trajectory of the control group and how exposure 

changes the trajectory over time
fore.grip vs. time by dose
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Toxicodiffusion Model – Plots 
and Assessing Fit

• Fitted trajectory – displays each subject’s fitted responses by 

connecting the observed responses across time

• Useful for determining whether the predicted responses show trajectories 

resembling the observed trends
Fitted Values of fore.grip vs. time by dose
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Toxicodiffusion Model – Plots 
and Assessing Fit

• Pooled residuals across all dose groups

• Allows the user to check for randomness with respect to the level of response

• The presence of any trend (decreasing, increasing, curved) indicates the 

inappropriateness of the model
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Toxicodiffusion Model – Plots 
and Assessing Fit

• Pooled residuals within dose groups

• Allows the user to check for randomness with respect to the level of response

• The presence of any trend (decreasing, increasing, curved) indicates the 

inappropriateness of the model
Standardized Residuals vs. Fitted Values of fore.grip by dose
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Toxicodiffusion Model – Plots 
and Assessing Fit

• Bootstrap graph – shows the time-profile of the resampled BMDs

• Dark black line – original fit to the data

• Light grey lines – resampled BMDs

• Dark dashed black line – chosen percentile of the resampled BMDs (i.e., BMDL)
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Toxicodiffusion Model –
Assessing Fit Across Models

• In this example,  the observed trajectory in the control group appears 

to decrease over time.

• Therefore, a constant background rate (i.e., 𝐴 𝑡 = 𝐴0) may not be suitable, and the 

linear background rate (i.e., 𝐴 𝑡 = 𝐴0 + 𝐴1𝑡) may be more appropriate

• The AIC and BIC values to assess whether the addition of an extra 

parameter improves model fit.

tAAtA 10)( 
0)( AtA 
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Toxicodiffusion Modeling Exercise
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Toxicodiffusion Modeling 
Exercise

• Open hind_grip_A0.dax

• Model Type: Rptd_Resp_Measures

• Model Name: Toxicodiffusion_beta

• Parameterize the option files as follows and run model:

• Fill in Column Assignments as appropriate

• Time Scale Axis = Log

• Exposure time = 0

• Background degree = 0

• BMR = 5% Extra risk

• Adverse Direction = Lowertail

• Adverse Definition = Background Rate

• Adverse Level = 5%

• Bootstrap Iterations = 1000
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Toxicodiffusion Modeling 
Exercise – Results 

Hind_Grip vs. Time by Dose
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Toxicodiffusion Modeling 
Exercise – Results 
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Toxicodiffusion Modeling 
Exercise – Results 
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BMDS Summary Table

Toxicodiffusion 

(A=0)

Toxicodiffusion 

(A=1)

AIC -120.495

BIC -100.7351

C.dose 0.5935487

K 0.0343045

BMD 0.028027

Test-time 28.56

BMDL 0.018353
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Toxicodiffusion Modeling 
Exercise – Results 

• Open hind_grip_A1.dax

• Model Type: Rptd_Resp_Measures

• Model Name: Toxicodiffusion_beta

• Parameterize the option files as follows and run model:

• Fill in Column Assignments as appropriate

• Time Scale Axis = Log

• Exposure time = 0

• Background degree = 1 (must change from default)

• BMR = 5% Extra risk

• Adverse Direction = Lowertail

• Adverse Definition = Background Rate

• Adverse Level = 5%

• Bootstrap Iterations = 1000
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Toxicodiffusion Modeling 
Exercise – Results 

Hind_Grip vs. Time by Dose
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Toxicodiffusion Modeling 
Exercise – Results 
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Toxicodiffusion Modeling 
Exercise – Results 

BMDS Summary Table

Toxicodiffusion 

(A=0)

Toxicodiffusion 

(A=1)

AIC -120.495 -118.6422

BIC -100.7351 -95.58902

C.dose 0.5935487 0.6153080

K 0.0343045 0.0355523

BMD 0.028027 0.028045

Test-time 28.56 28.56

BMDL 0.018353 0.017513
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Concentration ×Time (C ×T) Data –

The ten Berge Model
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Concentration ×Time (C ×T) 
Modeling – Haber’s Law

• C ×T modeling has primarily been done in the context of acute 

inhalation exposures

• In these instances, both exposure concentration and duration of 

exposure are important for estimating responses

• Haber’s Law

• 𝐶 × 𝑡 = 𝑘

• Originally formulated in the early 1900s by Fritz Haber in the context of researching 

the effects of exposure to chemical warfare agents

• Assumes equivalency any two combinations of exposure concentration and duration 

that have equal products (C1t1 = C2t2)
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Concentration ×Time (C ×T) 
Modeling – Haber’s Law

• Haber himself recognized that the simplified form of his equation was 

an approximation and only useful under certain conditions

• Haber’s law does not take into account rates of detoxification, fractional absorption, 

differences in physiological parameters (e.g., ventilation rate, body weight) of exposed 

subjects

• In certain cases, (e.g., when duration of exposure approaches the half-life of the 

chemical in the body) more sophisticated mathematical models are necessary

• However, due to its simplicity, Haber’s Law extensively used toxicological dose-

response research

• However, multiple, alternative approaches have been recommended 

to more accurately describe the relationship between concentration, 

duration, and response
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Concentration ×Time (C ×T) 
Modeling – ten Berge Equation

• ten Berge et al. (1986) investigated the ability of Haber’s Law to 

describe mortality due to acute inhalation exposures

• Haber’s Law was expressed as 𝑌 = 𝑏0 + 𝑏1ln(𝑐) + 𝑏2ln(𝑡)

• Assuming Haber’s Law adequately describes the mortality response, the values of 𝑏1
and 𝑏2 should be roughly equivalent
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Concentration ×Time (C ×T) 
Modeling – ten Berge Equation
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Concentration ×Time (C ×T) 
Modeling – ten Berge Equation

• Given the failure of Haber’s Law to adequately describe the mortality 

responses, ten Berge suggested an mathematical re-formulation of the 

relationship between concentration and duration

• ten Berge’s equation: 𝐶𝑛 × 𝑡 = 𝑘

• Formulated by rearranging 𝑌 = 𝑏0 + 𝑏1ln(𝑐) + 𝑏2ln(𝑡) to 𝑌 = 𝑏0 + 𝑏2ln(𝑐
𝑛𝑡), 

where 𝑛 = 𝑏1/𝑏2
• ten Berge demonstrated that 𝑐𝑛𝑡 predicted mortality response quite well

• The value of n indicates which variable influences responses to a 

greater degree

• 𝑛 > 1, response is concentration-dependent

• 𝑛 < 1, response is time-dependent

• ten Berge further extended Haber’s Law to situations where 

concentration varies during the exposure period:   [𝑐 𝑡 ]𝑛𝑑𝑡
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Concentration ×Time (C ×T) 
Modeling – ten Berge Equation
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ten Berge Modeling in BMDS

• The ten Berge model was originally coded in Visual Basic by the study 

authors, and has been implemented in BMDS in the C language 

• The general form of the equation is:

𝑧 = 𝑏0 + 𝑏1𝑓𝑐 c + 𝑏2𝑓𝑡 𝑡 + 𝑏3𝑓𝑥 𝑥 + 𝑏4𝑟4 𝑐, 𝑡, 𝑥 + ⋯

• 𝑏0, 𝑏1… are model parameters estimated via maximum likelihood methods

• 𝑐 = concentration, 𝑡 = time, 𝑥 = some other explanatory variable

• 𝑓𝑖 𝑢 =some transformation on the explanatory variable: identity, 𝑢; 

logarithmic, ln(𝑢); or reciprocal, 
1

𝑢

• 𝑟𝑗 𝑐, 𝑡, 𝑥 =interactions (products) of the 𝑓𝑐 c , 𝑓𝑡 𝑡 , 𝑓𝑥 𝑥 terms

• Number of product terms is limited to 2 currently

• Inclusion of product terms may lead to difficulties in model interpretability  
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ten Berge Modeling in BMDS

• For most modeling applications, the model formulation of most 

interest only incorporates c and t parameters that have been 

logarithmically transformed:

𝑧 = 𝑏0 + 𝑏1ln(𝑐) + 𝑏2ln(𝑡)

• Rearrangement by log rules leads to the model form

𝑧 = 𝑏0 + 𝑏2ln(𝑐
𝑛𝑡), where 𝑛 = 𝑏1/𝑏2
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Formatting Data for ten Berge 
Model

• Can create datasets within BMDS, or import them from other 

spreadsheet applications

• Data needs to be in the following format:

• The first columns must be the main effect columns (i.e., concentration and time), in 

any order BUT they must appear first

• The final columns in the dataset should # Subjects and Incidence IN THAT ORDER

• Other explanatory variables (e.g., body weight, age) can appear in any order between 

the main effect columns and the # Subjects/Incidence columns

• Datasets needs at a minimum:

• Total number of exposed subjects

• Number of affected subjects

• 2 explanatory variables

56



Running The ten Berge Model in BMDS
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Dataset Structure
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Select “Conc ×Time” for 
Model Type
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ten Berge Model is 
Automatically Selected
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ten Berge Model Option 
Screen
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ten Berge Model – Column 
Assignments

62



ten Berge Model – Column 
Assignments
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ten Berge Model –Variable 
Transformations
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ten Berge Model – Including 
Variables as Main Effects
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ten Berge Model – Product 
Terms
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ten Berge Model – Select 
Specific Model
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Choose Model Calculations of 
Interest

• The ten Berge model is able to perform the following three 

calculations, providing the user with estimates and confidence 

intervals:

• A value for one explanatory variable, given a percent response and specified values 

for the other explanatory variables

• The percent response given specified values for all of the explanatory variables

• The ratio between the regression coefficients of two explanatory variables (i.e., the 

value of n, when concentration and time are included as main effects and 

logarithmically transformed)
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ten Berge Model – Calculations 
of Interest
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ten Berge Model – Calculations 
of Interest
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ten Berge Model – Results 
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ten Berge Model - Results
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ten Berge Model – Results 
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ten Berge Model – Results 
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ten Berge Model – Results 
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ten Berge Model – Plots 
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ten Berge Model – Plots 
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ten Berge Model – Plots 
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ten Berge Modeling Exercise
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ten Berge Modeling Exercise

• Open 

tenBerge_exercise.dax

• Open option file (Model 

Type: Conc_x_Time; 

Model Name: tenBerge, 

Proceed)

• Parameterize the 

option file as shown

80



ten Berge Modeling Results –
Dose for a Given Response

Dose for 

Given 

Response

Response % 60%

Time 30 minutes

p-value 0.95456

Dose 1650 ppm

Lower CI 1240 ppm

Upper CI 2417 ppm
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ten Berge Modeling Results –
Dose for a Given Response Plot
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ten Berge Modeling Results –
Response for Given Variables

Response for 

Given 

Variables

Exposure 2000

Time 60 minutes

p-value 0.95456

Response 75.5%

Lower CI 66.9%

Upper CI 82.7%
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ten Berge Modeling Results –
Response for Given Variables Plot

84



ten Berge Modeling Results –
Response for Given Variables Plot
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ten Berge Modeling Results – Ratio 
Between Regression Coefficients

Ratio 

Between 

Regression 

Coefficients

Ratio 1.154

Lower CI 0.699

Upper CI 1.609
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