Optimizing Injection-Based Remediation in Bedrock: Lessons from DNAPL Remediation by Chemical Oxidation

Paul M. Dombrowski, P.E.

Bedrock Remediation Challenges

- Incomplete understanding of groundwater flow and contaminant transport
- Difficulties in site characterization
- Cost of investigation / remediation
- Unrealistic remedial objectives

Characterization and Remediation of Fractured Rock (FracRx-1) http://fracturedRX-1.itrcweb.org

Focus on Geology

- How does site geology impact the answers to these questions?
 - Where is the contamination?
 - Where is it traveling?
 - How did it get there?
 - What amendment is being delivered?
- Injected amendments likely to follow path similar to groundwater flow

Site Setting

- Paper mill, textile manufacturing, dry cleaning
- PCE primary contaminant >120 mg/L
 - Likely DNAPL
- Superfund-lead site
 - ROD: demolition, soil excavation,
 ISCO in groundwater and fractured rock
 - 50-ppb is GW remediation target
- GW flow is south towards river
 - GW depth ~5 -35 ft bgs

Site Bedrock

- Glacial till & floodplain deposits 4 to 5-ft thick
- Bedrock
 - interbedded & fractured limestone
 - dolomitic limestone
 - dolomitic sandstone
 - granitic gneiss at ~140 feet bgs
- Carbonate bedrock
 - Upper Carbonate (UC) to 50-60'
 - Middle Carbonate (MC) to 80-90'
 - Lower Carbonate (LC) to 140'

Site Bedrock

- Geophysical investigation
 - bedding plane fractures slightly dip away from the river
 - vertical fractures strike toward river.
 - predominantly low angle (<10°) bedding planes
- Consistently no flow or very little vertical groundwater flow (upward) within the carbonate bedrock boreholes

PCE in Site Bedrock

Bedrock Groundwater Remediation

- Air hammer drill rigs installed injection wells
 - 43 IWs: 30-ft bgs, 2", 20-ft screens
 - 19 nested IWs: 2", 20-ft screens (@ 30 & 75-ft bgs)
 - 4 nested IWs: 2", 20-ft screens (@ 30 & 55-ft bgs)
- Injection wells for chemical oxidation injections
 - Sodium persulfate selected as oxidant

- Sodium Persulfate
 - Molar ratio of base:persulfate < 0.5:1
 - Overburden and Bedrock
 - 24,300 gallons injected in bedrock
- Higher Injection rates (~5-10 gpm)
 - Significant daylighting
- Many IWs did not receive ISCO
 - >60% of volume into 12 wells (of 89)
- PCE results mixed (decreased some / increased many)
 - Increase in sulfate, chloride, and CO2 in many wells

- Chemical Oxidation primarily treats aqueous phase PCE
- Can non-aqueous phase PCE be made more available for treatment?
- Modified Fenton's Reagent (MFR) solubilizes DNAPL
 - Bubble agitation
 - Free radicals
 - O₂• surfactant-like effect
 - Globule breakdown

Figure 1-1. Conceptual site model of a DNAPL source zone. (Source: U.K. Environmental Agency 2004)

In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones, ITRC, June 2008

- Modified Chemical Oxidation
 - Base Buffer Capacity Test
 - 2:1 molar ratio of base:persulfate
 - Bedrock: BASP
 - Overburden: MFR + BASP (1:1 v/v)
- Lower injection rates & more pumps
 - 85 wells
 - 0.5-1.5 gpm / Less daylighting
 - Multiple attempts into wells
 - 18,900 gallons injected in bedrock

Large increases in PCE concentration in BR

- BR Well Modifications
 - Removed casings and screens
 - Re-install casings keyed into bedrock
 - Open boreholes for injection
- Bedrock: BASP
 - Straddle Packers to target intervals
 - 39 wells
 - MFR (5% H2O2) in 13 BR boreholes (pilot)
 - 20,700 gallons injected in bedrock

- Additional BR injection points
 - Not all boreholes connected
- Increased injection volume into BR
 - 62 wells
 - MFR + BASP in 24 wells (MFR:BASP ~ 1:1 v/v)
 - Straddle Packers
 - 26,000 gallons injected in bedrock

Performance Results

- Source Area Wells:
 - ISCO effective treatment for aqueous phase contamination

Performance Results

 Looking at long view for DNAPL treatment

MFR + BASP at BR interface - desorption of DNAPL

Performance Results

Looking at long view for DNAPL treatment

• Migration and/or Localized DNAPL

Summary

- If at first you don't succeed...
 - Re-evaluate Conceptual Site Model
 - Optimize Remedial Design
- ...Try again

Thank You

Jeff Catanzarita (USEPA ERT)

Prasad Kakarla, Mike Temple, Tom Musser, Kevin O'Neal, Mark Ratner ISOTEC Field Teams

Paul M. Dombrowski, P.E. (MA, CT) Senior Remediation Engineer pdombrowski@isotec-inc.com

O: 617-902-9383 M: 917-971-2956

Treatability Laboratory

March 29, 31 and April 1, 2021