Overview of Radiation and Chemical Ecological Risk Assessment Models and Guidance for Contaminated Sites and Selected Default Input Parameters

By Gregory Latronica

Superfund

- Comprehensive Environmental Response Compensation and Liability Act (CERCLA)
- Superfund Program → Contaminated
 Site Cleanup
- Lack of Consensus on detection and modeling for biota
- EPA → "Ecological Benchmarks for Radionuclides" calculator for
 Superfund site assessments

Ecological Risk Assessment Framework

Biota Dosimetry Overview

- International Atomic Energy Agency (IAEA) and the International Commission on Radiological Protection (ICRP)
- Internal vs. External Exposures
- Dose Conversion Coefficients (DCC)
- Absorbed Fraction

International Commission

on Radiological Protection

Model References for Biota

- ICRP's Reference Animals and Plants
 - Deer, Rat, Duck, Frog, Trout, Flatfish, Bee, Crab, Earthworm, Pine Tree, Wild Grass, Brown Seaweed
- DOE's Organism Wizard

Select a geometry for this organism. The geometry determines the dose conversion factors that will be used for this organism.								
Γ	- Use def geometr	ault y	· · ·			-7] (220 100.	not to sca
1 2 3 4 3 0 7 0 220×100×100 cm								
	Geometru	Mass (kg)	Evample Rec	entors	Beference		this organism	Dimensions (cm)
•	8	1000	Grizzly bear*		Wild Mamr America, 1 J.A. Chapn G.A. Feldh Johns Hop Baltimore.	hals of Nort 1982. Ian and amer, editor kins Univer	h s. sity Press,	220 x 100 x 100

Veight Based on the geometry selection, a suggested weight has been entered. This weight may be changed. The user-defined weight is used only for purposes of allometric modeling. The geometry does not change.	Internal Ingestion Parameters Select which organism you wish to derive the internal ingestion parameters from for this organism. These paramaters include biv's and exposure geometries. © Generic Terrestrial Animal © Generic Terrestrial Plant © Generic Riparian Animal © Generic Aquatic Animal
Help	Back

Risk Assessment Information System (RAIS) for Chemical and Radionuclide Models

Select Benchmark Sources (select at least one)

New Jersey ×

Select All Benchmark Sources

Select Media (select at least one)

Air ×	Biota ×
Sedim	ent ×
Soil ×	
Surfac	e Water ×

Select All Media

Select Individual Chemicals (200 maximum)

~

Primary Radionuclide Models

The ERICA Tool

Google Scholar ERICA tool

Articles About 448,000 results (0.08 sec)

RESRAD-BIOTA

Sensitivity Analysis Help		
	Data Assembly	
Ecosystem Level Units: Tenestrial Aquelic 0	2 General Screening	Compare media concentrations with Biota Concentration Guides, BCGs (RESRAD-BIOTA Level 1)
-Nuclides Potential Contaminants Data Data Contaminants Data Contaminants Data Contaminants Data Contaminants Contaminants Description Contaminants Contami	3 Analysis Site-Specific	Site-representative parameters
Bar H40 Ce-141 Ce-144 Cm-242 Cm-244 Co-58 ▼	Screening Site-Specific Analysis	(RESRAD-BIOTA Level 2) Kinetic/allometric modeling tool (RESRAD-BIOTA Level 3)
Concentration: View Sedment Water: Soit 1 1 Alpha Bq/kg Bq/kg Bq/kg	Site-Specific Biota Dose Assessment	Collection of biota using eco-risk protocols
	The Graded Approach	RESRAD-BIOTA Levels

The FASSET Project

ECOMOD

Other Radionuclide Models

England and Wales EA

More limited, adapted by ERICA and FASSET

EDEN

Small French model for ionizing radiation

CASTEAUR

Specific to river radionuclide concentrations from nuclear installations

DosDiMEco

Calculates energy absorption of reference organisms

LAKECO-B

Dutch model to estimate radionuclide concentrations in lakes and reservoirs

FASTer

Considers food chain transfer parameters to improve FASSET

In the Field

• ERICA effective in predicting dose rates on marine organisms exposed by a decommissioned offshore oil and gas pipeline in Australia

- Success in radioactive biota detection in areas including Fukushima and Chernobyl
- However, field conditions add a level of uncertainty which prevents a full mechanistic understanding from field strategies

Grand Summary Table

Rad Model	User Information	Biota Covered
RESRAD-BIOTA	RESRAD-BIOTA: A Tool for Implementing a Graded Approach to Biota Dose Evaluation. User's Guide, Version 1. (DOE Report No. DOE/EH-0676; ISCORS Technical Report 2004-02, January 2004)	Organisms classified by: terrestrial animal, terrestrial plant, aquatic animal, riparian animal. Organism parameters can then be inputed, new organisms can be added using the Organism Wizard.
ERICA	ERICA Assessment Tool Help Function Document	Default Reference Organisms (page 14): Freshwater : amphibian, benthic fish, bird, crustacean, insect larvae, mammal, mollusc- bivalve, mollusc – gastropod, pelagic fish, phytoplankton, reptile, vascular plant, zooplankton Marine : benthic fish, bird, crustacean, macroalgae, mammal, mollusc- bivalve, pelagic fish, phytoplankton, polychaete worm, reptile, sea anemones & true coral, vascular plant, zooplankton Terrestrial : amphibian, annelid, arthropod – detritivorous, bird, flying insect, grasses & herbs, lichen & bryophytes, mammal – large, mammal- small-burrowing, mollusc – gastropod, reptile, shrub, tree Screen dose-rates found on page 15.

Grand Summary Table (cont.)

FASSET	Handbook for Assessment of the Exposure of Biota to Ionising Radiation from Radionuclides in the Environment	Reference organisms defined by their habitat: forest, semi-natural pasture and healthland, agriculture, freshwater, marine, brackish waters, and rivers Transfer Factors and DCCs for organisms in these ecosystems can be found on pages 57-80
ECOMOD	ECOMOD — An ecological approach to radioecological modelling	Used in aquatic ecosystems: main organisms include phytoplankton, macroalgae, zooplankton, and fish of different feeding and living habits
EDEN	E.D.E.N.: A tool for the estimation of dose coefficients for non-human biota	Study system is defined within the tool. Shape of organisms (ellipses) and media, their composition, and radioactive sources (page S923).
CASTEAUR	CASTEAUR: A tool for operational assessments of radioactive nuclides transfers in river ecosystems	Considers main biotic components of river ecosystems: phytoplankton, zooplankton, macrobenthos and fish (planktivorous and omnivorous)

Help us out!

Do you know of any other ecological risk assessment models for radioactive or chemical contaminants that are not mentioned in this presentation?

If it is publicly available, please provide information on it (e.g., name of government agency, university, company, etc) and how to obtain it (e.g., website, contact name and phone number)

Any other questions?

Acknowledgements

Sources available upon request.