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Smithsonian Environmental Research Center
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Ecology, biodiversity, conservation, restoration
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Molecular ecology
Biogeochemistry and microbial ecology
Invasions biology
Plant and forest ecology

20 labs, ~100 employees, >40 summer interns

WV &



FosormeTy =

In-situ Sorbent Amendments: A New Direction in Contaminated
Sediment Management’

Upal Ghosh*

University of Maryland Baltimore County, Baltimore, Maryland 21250, United States

Richard G. Luthy

Stanford University, Stanford, California, United States

Gerard Cornelissen

1)

Norwegian Geotechnical Institute, Oslo, Norway, University of Life
Sciences, As, Norway; Stockholm University, Stockholm, Sweden

David Werner

Newrcastle University, Newcastle upon Tyne, United Kingdom

Charles A. Menzie

Exponent, Alexandria, Virginia, United States



Legacy contaminants in exposed
sediment contaminate the food chain
through bioaccumulation in benthic
organisms, flux into the water column, and
uptake in the pelagic food web.

Ghosh et al. ES&T 2011

Contaminated sediment

Activated carbon amended to surficial
bioactive sediments reduces contaminant
exposure to food chain through reduced
bioaccumulation in benthic organisms
and reduced fiux into water column and
uptake in the pelagic food web.



The Aquatic Mercury Cycle
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Discovery of hgcAB led to identification of new t

of Hg-methylators
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Preliminary lab studies with AC

Reduction in MeHg bioaccumulation
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Gilmour, C.C,, G.S. Riedel, G. Riedel, S. Kwon and U. Ghosh. 2013. Activated carbon
mitigates mercury and methylmercury bioavailability in contaminated sediments.
Environ. Sci. Technol. 47:13001-13010.



Ky as surrogate for Hg and MeHg bioavailability
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DEVELOPMENT OF IN-5/TU MERCURY REMEDIATION
APPROACHES BASED ON METHYLMERCURY
BIOAVAILABILITY

Upal Ghosh and James Sanders

Department of Chemical, Biochemical, and Environmental Engineering, UMBC
Cynthia Gilmour
Smithsonian Environmental Research Center
Dwayne Elias

University of Tennessee/ Oak Ridge National Laboratory

Specific Aim 1: Develop in situ remediation tools for Hg and MeHg
impacted sediments

Specific Aim 2: Fill key knowledge gaps needed to develop a
biogeochemical model for MeHg production and degradation in
contaminated sediments and soils

National Institute of
Environmental Health Sciences



ACTIVTED CARBON REMEDIATON MODEL

% '  Activated carbon acts as a sorbents, to

reduce:

1) Hg bioavailability for methylation

2) MeHg bioavailability for uptake by
benthos

3) MeHg flux to overlying water

TEST SITES TO DATE:

Lab trials:

South River, VA
Berry’s Creek, NJ
Pompton Lake, NJ
Rhode River, MD

Layer of carbon

amended sediment Field Trials:
Canal Creek, MD
Penobscot River, ME

Berry’s Creek, NJ
Funding from Dow, DuPont, Mallinckrodt, SERDP 11

Clean new sediment




Approach to evaluating AC as a tools for Hg
risk remediation in sediments and soils

e Lab studies to evaluate efficacy across soil
types

e Small-scale field trials

e Penobscot River, ME
e Berry’s Creek, NJ

e Lab work to examine mechanisms and
parameterize models



Contamination source:

HoltraChem chloralkali
facility

\ ’ Central/Plots
LTT L]
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Supported by: Penobscot River Study/Mallinckrodt Chemical



Design

e 15 plots per site; 5
treatments,

e 3 plots per treatment

e Loading: 5% by dry weigh
of soil, based on top 10
cm of soil

(kg/m2)
Control None
FeCl, . 4H,0 2.3

Lime 0.5

Biochar — Pine
Dust

SediMite
(coconut shell
PAC 50%)

1




Study Time Line

Plots
sited,
edging
installed 8 Amendments
applied
1 9/23/2010

Tt 1 Tt 1 L

9/2010 10/2010 6/2011 9/2011 9/2012
1 month 9 months 1 year 2 years




Key Endpoints/Metrics

e Black carbon in sediment

Amendment retention W W

Efficacy and longevity
e Pore water [MeHg]

* Not evaluated:
bioaccumulation

Impacts on soil biogeochemistry

Soil and pore water sampling over time



Pore water MeHg

Central: Drier,

moderately sulfidic

Schoenoplectus pungens
(three square)

Juncus gerardii (saltmarsh
rush),

Agrostis stolonifera (creeping
bentgrass),

West: Standing pools,
highly sulfidic

Spartina patens (salt marsh

hay),
Agrostis stolonifera (creeping
bentgrass), Eleocharis uniglumis

(spike rush)
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Each bar is the average + std of triplicate plots.
Samples for each plot are composites of 3 samples.
% Treatments significantly different from control on



Pore water MeHg
reductions

Reduction in MeHg relative to control

Reduction in MeHg relative to control
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Penetration of AC
into marsh surface

~2 cmin 2 years . | 7 .
fop 3 cm c_ontains ~10% black carbon}
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1 year retention:
AC/SediMite 55 +20%
Biochar 28 + 35%



Depth of Carbon layer, Sept. 2017
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Field Tr|aI Berry S Creek NJ
Phragmltes marsh

Cmdy Gllmour Terr BeII AIyssa McBurney, lee Butera, AIIy Bullock
Smithsonian Environmental Research Center
Upal Ghosh, James Sanders
University-of Maryland Baltimore County
Susan Kane Driscoll, Charlie Menzie, and Ben Amos, Exponent
Betsy Henry, Anchor QEA
Steve Brown, The Dow Chemical Company




Plot Design —thin layer surface placements

Plot A Plot B Plot C Plot D
SediMite Control AC+Sand AC
(formulated with (Calgon GAC (Calgon GAC)
regenerated PAC) +~2 cmsand)

l_ Access Bridge

Nevertouch Marsh

70 ft x 70 ft (silt fence)

30 ft x 30 ft (plot)

................

Decontamination
Area

10 ft x 10 ft (subplot)
€© 2013 New Control Sites



Design

e Application by vortex sprayer

e 2 vyear study

* Soil sampling design similar to §
Penobscot — cores and sippers,
composites and replicates, focus
ontop 5cm

e Alsoincluded caged and wild
amphipod exposure




Plot.C: SAND +

Appearance of the experimental plots two months after amendment application.



Activated Carbon Retention in Berry’s Creek

Sediment cores from SediMite™ plot
were sectioned in 1-cm intervals.
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Total Hg uptake by Leptocheirus
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OUT Low Sedimite Control Plot AC+Sand AC OUT Hi

Average uptake across 3 sampling dates, 5 composites per plot per date

% Treatments significantly different from controls

* Modeled with elevation as a co-variate, AC reduced total Hg uptake on average
by ~50%
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MeHg in soiland --
pore waters
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Ex-situ evaluation of 80-90%  90-95%  0-60%

8
AC on MeHg in Berry’s ot
: - 6 -
Creek Marsh soils E -
o 4
Effect of amendments mixed é - L)
into anaerobic soil slurries =2 S T [
(2:1 soil:water) 0 - , M- —
1 week incubation SOIL  OLC RAC ZVi
1.E+06
M OUT1
OLC = Calgon OLC GAC oOUTS
8 1.E+05 X
RAC = SediMite formulated = ) T
with regenerated PAC £ 1.E+04 ] =
Z\/| — zero-valent iron 1 E+03 - ,
“ETI CC-1004" from SOIL AC ZVI

Connelly-GPM 2-3X  4-11X 1-2X
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Correlates of AC efficacy

AC is more effective
in sediments and
soils with:

* naturally low K|

increase in K
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Ky MeHg
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Correlates of AC efficacy

100

AC is more effective

@
in sediments and - * 3
. . z
soils with: w 10 o*$
@
= 8 .
 naturally low K, = 20®
e 1 e ,
£
* higher pore water °? - 0.3333
DOC 0 . .
1.0 10.0 100.0
DOC, mg/L

* No relationship with Hg or MeHg
concentration in pw or solid



How does DOM Impact MeHg
partitioning to Activated Carbon?

8 -

isotherms for /

MeHg onto AC
in the presence

log (ng MeHg/kg AC)
log (mg DOM/kg AC)
I

and absence of 5 | A MeHg log Ka = 4.89
¢ MeHg+DOM log Ka = 4.03
DOM
= DOM log Ka = 3.37
0 | |
0 1 2
log (ng MeHg/L)
log (mg DOM/L)

Schwartz et al (in prep)



Impact of DOM on Hg and MeHg sorption to AC in soils

Suwannee River Humic Acid Spike
15 mg/L 30 mg/L 60 mg/L

L l

MeHg sorption to AC
""--

Ir)Or
8an;
ICHg Sorptio, :
(@] AC

5% AC amendment




Summary

e Activated Carbon can be an effective tool in

reducing MeHg risk by reducing MeHg in pore
waters

e Efficacies range from no impact to 50X
Increase in K,

— Avg pore water reduction of ~50% across all
studies

e Early days for AC use in sediment/soil Hg
remediation



Summary

e Activated Carbon seems most effective for
MeHg in soils with natural low K, high DOC

 AC was more effective in reducing MeHg than
total Hg for most sites

e Goal: develop an empirical model to predict
the potential effectiveness of AC amendments
for specific sites



. Funding:
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