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Tooele Army Depot

Groundwater contamination since beginning of depot activities
e 1942- WWII servicing of military vehicles
* Primarily TCE
* Multiple source areas (ditches, lagoons, sumps, landfill)
* 4 mile long plume(s) extends offsite

Remedial activities include:
e Excavation and capping
* 5400 gpm pump and treat (1994-2004)

* Largest in Department of Defense
* Air stripping
* Source treatment
* MNA

Regulatory requirements
* Monitoring and continued characterization
* Annual updates to flow and transport model




Tooele Groundwater Flow and Transport Model

* Unique Case:
* Groundwater Model Updated Annually over 25 Year Period
e Consistent Modeling Team for Entire Period

* Applications:
 Definition of Sensitive Parameters/Data Gathering
Conceptual Model Development
Support for Shut-Down of Pump and Treat System
- Implementation of Monitored Natural Attenuation
Supporting Evidence for Abiotic Degradation
Probabilistic Analysis of Plume Migration Reaching Action Boundaries
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Most Significant Model Changes

e 1993 Completion of initial flow model by HEC

e Evaluation of plume containment by Pump & Treat system

e 1997-2003 Annual Recalibrations

* Model extent expanded to SW, NE; vertical resolution increased

e 2004 Flow and Transport Model

* Model extent expanded NE,SE

 Multiple calibration targets (heads, drawdown, plume migration, etc)
e Steady state flow, transient transport

2007 Transient calibration of water levels from 1942 to present

2008 Analysis of uncertainty in model predictions

2010 Calibration using parameter estimation (PEST)

2016 Evaluation using Ensemble Kalman Filtering (EnKF)

2018 Initial implementation of abiotic degradation
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Source Flux By Area: 2003, 2008, 2013 Models
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Uses of Model

* Definition of Sensitive Parameters/Data Gathering

e Conceptual Model Development
 Mountain Front Recharge to GW
* Location of low K Confining Bed

e Support for Test Shut-Down (and Permanent
Shutdown) of Pump and Treat System

* Implementation of Monitored Natural Attenuation

 Supporting Evidence for Abiotic Degradation

* Planning Lead Time for Potential
Remediation

* Probabilistic Analysis of Plume Migration
Reaching Action Boundaries
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Conceptual Model Development - Mountain Front Recharge

* Based on large snowfall, snowmelt event that occurred between
March 26 and April 4, 2016

Weather history Tooele march 2016

Day High Low Precip. Snow Snow

depth

(°F) (°F) (inch) (inch) (inch)
25 mar 2016 55.0 35.1 0.00 0.00
26 mar 2016 51.1 28.0 0.46 0.00
27 mar 2016 57.9 33.1 0.00 0.00
28 mar 2016 57.9 30.0 0.49 0.98
29 mar 2016 48.0 30.0 0.30 0.00
30 mar 2016 45.0 30.0 0.00 0.00
31 mar 2016 34.0 T 0.00 0.00
1 apr 2016 33.1 0.00 0.00 0.00
2 apr 2016 34.0 0.00 0.00 0.00
3 apr 2016 42.1 0.00 0.00 0.00
4 apr 2016 43.0 T 0.00 0.00
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Mountain Front Recharge
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Mountain Front Recharge

* Early April water levels “spike” (ft)
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Mountain Front Recharge
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U.S.ARMY

Mountain Front Recharge

2007-12-03

The rate and timing of direct mountain front
recharge in an arid environment, Silver Island

Mountains, Utah

Gregory T. Carling
Brigham Young University - Provo
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Mountain Front Recharge

Conclusion

* SE wells closer to mountain fronts had greatest early April
response in water levels.

* Thus, snowmelt and subsequent increased GW recharge
from canyons, streams has direct, larger, and faster than
expected influence on water elevations than previously
anticipated.

* This is contrary to the previous conceptualization that
subsurface recharge to model domain from mountain fronts
took months/years

22



Mountain Front Recharge

Integration of Conceptualization into Numerical Model

CH3

CH4 Model Domain

CH1 CH2

CH2

The MODFLOW CHD Package
adjusted to interpolate greater GW
inflows in SP6 — Fall/Winter 2016

CH1 CH2 CH3 CH4
sp1 477 364 277 305
SP2 476 363 276 304
SP3 475.5 362.5 275.5 303.5
SP4 4745 361.5 275.5 302.5
SP5 473.5 50 275.5 301.5
SP6 476 276 304
SP7 4745 361.5 275.5 302.5
SP8 4725 3595 2745 3005
Initial
CH1 CH2 CH3 CH4
sp1 477 364 277 305
SP2 476 363 276 304
SP3 475.5 362.5 275.5 303.5
Sp4 4745 3615 2755  302.5
SP5 4735 60 275.5 301.5
SP6 476 276 304
SP7 4745 361.5 275.5 302.5
SP8 4725 3595 2745 3005

Final
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Mountain Front Recharge
;

FY17 Transient Model Calibration — increasing subsurface
inflow from canyons resulted in improved calibration
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Conceptual Model Development — Confining Bed
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Confining Bed Conceptualization

Burk, et al. (2005) of the WETLANDS

Utah Geo]ogic Su rvey IN TOOELE VALLEY,UTAH -
AN EVALUATION OF THREATS

performed a study to _____POSED BY GROUND-WATER

delineate areas of recharge “ Wﬁ“‘“mﬁmu@ﬂm?? =

and discharge to springs and
wetlands in the Tooele Valley.

Water balance survey.

The study also delineated
location of a fine grained o :
confining bed resulting from @ UTAR GEOLOGICAL SURVEY

a divisionn of

> Utah Department of Nalural Resources

lake recession. 2k e el




Confining Bed Conceptualization

A conclusion of their analysis was the existence of a sloping confining layer
near the same location as in the Tooele groundwater flow model. Studies

were completely independent of each other and based on different
approaches/data.

Land Surface

Shallow
water table

= == < prncipal

d - Fine-grained i
- confining layer -~

Tertiary
basin

 Secondary Recharge |

Figure 10, Schematic diagram of Tooele Villey grownd-warer flow system.
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Confining Bed Conceptualization

Figure 7. Wetland unit 14, which includes wet-meadow environment. The photo was taken in August after most of the
pond had dried up.

Burk et al., (2005)

29



Locason of Study Arsa

30



Supporting Evidence for Degradation
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Supporting Evidence for Degradation
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Supporting Evidence for Degradation
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Supporting Evidence for Degradation

note: accurate match with flow gradient resulted in over simulation of transport
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Supporting Evidence for Degradation

e Over-simulation of historical and future plume movement at
the plume edge suggests that the model is not accounting for
physical and/or chemical processes

* Separate sensitivity analysis indicated that simulated TCE
degradation could improve the model match to observed plume
migration

* These results support the presence of degradation in some
areas of the aquifer

* Simulation of this process has potential to improve the
calibration of the model and provide grounded predictions
more consistent with recently observed trends in concentration

e Supports need for investigation of physical field evidence

36



37

Supporting Physical Evidence for Degradation

Sediment sample from Tooele Army Depot

10 v man! Figure 3. Magnetite extracted from core sample AS-8 310-315 with a magnet.
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Supporting Physical Evidence for Degradation
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Supporting Evidence for Degradation
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Planning Lead Time for Potential Remediation

* How long are TCE concentrations likely to remain below 5 ug/L along
the GWMA or 1-mile buffer boundary?

* |nitialize predictive plume to reflect both modeled and observed TCE
concentrations

* Minimize uncertainty related to initial conditions

 Employ Monte Carlo analysis

* Inject stochasticity into calibrated model parameters
* Mean: Calibrated value
* 95% confidence interval: £ 20% of mean

* Randomly sample values from stochastic model parameters (frequency based on
probability)

* Models created by parameter sampling should all represent plausible versions of reality

e Results should still reflect intended uncertainty while still maintaining relatively high
calibration quality



Planning Lead Time for Potential Remediation

5-Year Prediction
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Planning Lead Time for Potential Remediation

1-Mile Buffer Boundary
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Conclusions

* The Tooele model has been continuously developed and
refined on an annual basis over a 25 year period.

* The groundwater flow and transport modeling team has
been largely consistent throughout the past 25 years.

* This has allowed for:

Multiple field investigations based on model findings

The increased complexity and expanse of the model as data
warrants

Validation of the model based on studies independent from the
modeling effort

Developing supporting evidence for abiotic degradation
Planning lead time for potential remediation in the future

43



44

Tooele Army Ordnance Depot — Continuous
Improvement of a Groundwater Model for
Remedy and Decision Making over a 25 Year

Period
Peter Andersen, P.E.
Tetra Tech Inc.
Jon P Fenske, P.E. Alpharetta GA
USACE-IWR-Hydrologic Engineering Center
Davis CA James Ross, PhD, P.E.

HydroGeologic Inc.
Hudson OH



Questions/Comments?



