Introduction to Geophysical Methods for Fractured Rock

EPA Region 10 Workshop September 11-12, 2019

Frederick Day-Lewis,

USGS

Earth System Processes Division,

Hydrogeophysics Branch

daylewis@usgs.gov

860.487.7402 x21

Outline

- Challenges in fractured rock
- Hydrologic and Geophysical Characterization
 - Why geophysics?
- The fractured rock geophysical toolbox
- Method selection
- Characterization vs. Monitoring
- Borehole logging methods
- Radar imaging methods
- Resistivity imaging methods
- Feasibility studies pre modeling
- Summary

Challenges in Fractured Rock

Characterization Challenges:

- Permeability varies many (5+) orders of magnitude over short distances
- Fractures can act as flow conduits or barriers
- Drilling more expensive than in unconsolidated media
- Sampling and testing more complicated (packers)
- Requires joint interpretation of geology, geophysics, chemistry, groundwater and other types of information

Hydrologic Characterization

- Hydrologic Data:
 - Packer tests
 - Pumping tests
 - Tracer tests
 - Coring
 - Sampling

These are:

- Sparse and local
- Require boreholes
- Expensive

Geophysical Characterization

Geophysical data:

- Improved spatial coverage
- Minimally invasive
- Cost-effective

but...

- Limited resolution
- Must be linked to parameter of interest
- Most powerful when interpreted jointly with other geophysical or hydrologic data

The Fractured Rock Geophysical Toolbox (EDCT)

(FRGT)

Borehole geophysics (high resolution, near-hole information)

Crosshole
resistivity & GPR
(information
between holes,
time-lapse
potential)

Conventional hydrologic measurements (calibration and groundtruth)

NO SINGLE TOOL CAN WORK FOR EVERY PROBLEM/SITE

FRGT Method Selection Tool

Excel-based tool used to identify methods that:

- Address project goals
- Are likely to work at the given site

Goal: Provide project managers and regulators with tools for 'numerical gut checks' to help evaluate geophysical proposals and strategies for specific sites.

Status:

- Published at Groundwater
- Served from: http://water.usgs.gov/ogw/ frgt

Day-Lewis, F.D., Johnson, C.D., Slater, L.D., Robinson, J.L., Williams, J.H., Boyden, C.L., Werkema, D., Lane, J.W., 2016, A Fractured Rock Geophysical Toolbox Method Selection Tool, Groundwater.

Funding from ESTCP (ESTCP ER-200118 and ESTCP ER 201567T2 and from EPA.

FRGT Method Selection Tool

The Toolbox

Conventional:

- Hydraulic tests (single hole) → estimates of transmissivity for isolated intervals of boreholes (i.e., focused packer testing)
- Coring → lithology, fractures, contaminant mass
- Tracer tests → estimates of transport properties (hydraulic conductivity, effective porosity, dispersivity, exchange rates, etc.)

Geophysical:

- Flowmeter logging (single and crosshole) → estimates of tranmissivity associated with single fractures or fracture zones; far-field heads
- Borehole geophysical logging (caliper, electromagnetic, gamma, neutron, nuclear magnetic resonance, induced polarization, fluid conductivity/ temperature, spontaneous potential, televiewer) → highresolution measurements indicating lithology, fracture presence, etc.
- Crosshole resistivity tomography → electrical resistivity structure, tracer movement
- Borehole radar reflection → fracture location and orientation
- Borehole radar transmission tomography → electromagnetic structure, tracer movement

Method	Geophysical Property	Relevant Hydrologic Property/Parameter	Acquisition method(s)
Seismic refraction & reflection	Seismic velocities & reflectivity (bulk & shear moduli)	Depth to bedrock, water table, aquifer boundaries	Lab, borehole, crosshole, surface
DC Electrical Resistivity (ER)	Electrical resistivity	Water content, salinity, pore fluid, porosity, lithology	Lab, borehole, crosshole, surface
Induced polarization (IP)	Chargeability	Surface area of pores/grains, lithology	Lab, crosshole, surface
Spontaneous Potential (SP)	Spontaneous potential	Flow through porous medium, redox potential	Lab, borehole, crosshole, surface
Ground penetrating radar (GPR)	Dielectric constant, electrical conductivity	Water content, salinity, pore fluid, porosity, lithology	Lab, crosshole, surface
Electromagnetic (EM)	Electrical resistivity	Water content, salinity, pore fluid, porosity, lithology	Lab, borehole, crosshole, surface, airborne
Conventional borehole logging: caliper, gamma, sonic, etc.	Many	Many: fracture locations, clay content, lithology, etc.	Borehole
Advanced borehole logging: ATV/OTV, flowmeter, etc.	Many	Many: fracture locations, lithology, transmissivity, etc.	Borehole

The Goal of Characterization

Conceptual Model / Hydrogeologic Framework:

- Aquifer architecture/plumbing network; i.e., the spatial distribution of major fractures or fracture zones
- Some understanding (statistical?)
 of the fractures not explicitly
 identified
- Some understanding (statistical?)
 of the properties of the matrix

Simulation Model / Attaching #'s to the Framework:

 A quantitative description of aquifer properties in 3D: Hydraulic conductivity, porosity, etc.; possibly for a discrete fracture network; e.g., MODFLOW, MT3D, FRACMAN, etc.

The Goal of Monitoring

Understanding of changes in:

- Contaminant mass
- Tracer concentration
- Biostimulation amendments
- Aquifer properties
- Example: Brandywine, MD

A note on: Monitoring vs. Detection

The Detection Problem: A 2-D Crosshole GPR example: finding a plume

→ Plume is masked by geologic heterogeneity

A note on: Monitoring vs. Detection

The Monitoring Problem: Difference against background

→ Plume is revealed by subtracting out pre-injection background, removing unrelated spatial contrasts; i.e., we removed the haystack

Borehole geophysical logging (

Used for understanding:

- Well construction and integrity of the borehole
- Geology and structure
- Water (amount and chemistry)
- Hydraulically active fractures intersecting boreholes and between boreholes

The bulk of geophysical work in fractured rock is borehole logging

Example of borehole log panel from the U. Connecticut Landfill [23-24], in which major fractures appear in multiple logs at ~110 ft, 90 ft and 75' depths

Flowmeter Logging

Used for understanding:

- Flow in boreholes
- Hydraulic context for interpretation of samples, or selection of sampling locations
- Far-field heads
- Fracture transmissivities

Methods: Single-hole, cross-hole, fluid differencing, dilution...

Overview of FLASH software [Day-Lewis et al., 2011, Ground Water]

Radar Tomography and Reflection

Used for understanding:

- Electromagnetic structure
- Interpreted for lithology, fracture zones, physical property variations (transmission mode)
- Interpreted for individual fractures (reflection mode)

Use to monitor:

- Tracer experiments
- Remediation

Reflection-Mode Radar

10

Borehole Reflection Data:

 Yield fracture location and orientation (w/ directional antennas)

Can detect individual fractures

Reflector that does not intercept the borehole

Radial Distance (m)

Reflection Examples:

1. Reflection Radar, Bronx, NY

Reflection Example: 2. Mirror Lake, NH

Reflection Example: 3. Machiasport, ME

State Plane NAD83, Maine East Zone 1801

Recent Fractured Rock Data Integration

Discrete fracture network realizations conditioned to borehole reflection mode radar and hydrologic data [C. Dorn, PhD, U. Lausanne] for Stang-er-Brune Site, France

Electrical Resistivity

Why resistivity?

A geophysical property dependent on many subsurface properties....

$$\sigma_{earth} = \frac{1}{\rho_{earth}} = \sigma_{w}(T)\phi_{int}^{m}S_{w}^{n} + \sigma_{surf}(S_{p}, \sigma_{w}, \theta, T)$$

Resistivity Tomography

Used for understanding:

- 1D, 2D or 3D electricalconductivity structure
- Lithology, fracture zones, physical property variations

Use to monitor:

- Tracer experiments
- Remediation

Imaging Amendment Transport and Distribution in Fractured Rock Formations: Naval Air Warfare Center, Trenton NJ

Problem

Understanding fluid flow in fractured rock systems is a remediation design, but notoriously difficult

Objective

Demonstrate cross-hole 4D ERT imaging to monitor fluid transport within the fracture zone (ESTCP ER-201118: PI Lee Slater)

Supplementary Information

- Saturated fractured rock (low-grade coal/shale formation)
- Borehole televiewer logs; various geophysical logs to determine fracture contacts at borehole locations, strike, dip
- Saline tracer will increase bulk conductivity of occupied fracture(s)

Well

Location of

Multi-Purpose ERT/Packer/Sampling System and Baseline ERT Image

System Layout

Baseline ERT Image

Source: Robinson et al., 2015. *Groundwater*.

Time-Lapse Difference Imaging Results and Cost

Results

- Tracer distribution captured with time, verified via sampling
- Migrates through fracture zone captured in baseline image
- Demonstrates capability to monitor 3D fluid flow in fractured systems

Costs

- 7 integrated packer/electrode/sampling arrays
 - 96 hours + \$5K materials
- Array installation: 32 hours
- Baseline characterization: 8 hours
- Time Lapse 8 frames: 16 hours
- Utilized existing boreholes

Source: Robinson et al., 2015. *Groundwater*.

How to Avoid Pitfalls: The Feasibility Assessment

RED FLAGS:

- Highly detailed images/small features far from electrodes
 - –Indicative of data overfitting
- Quantitative interpretations
 - Maps of contaminant concentrations
 - -Maps of porosity, saturation, mineralogy
 - –Maps of bioactivity
- Interpretation without any supporting information
- Sounds Complicated! How can we avoid pitfalls?
 - REQUIRE A FEASIBILITY ASSESSMENT FROM YOUR CONTRACTORS!

Pre-Modeling Feasibility Assessment Flowchart

after Day-Lewis, F.D., Slater, L.D, Johnson, C.D., Terry, N., and Werkema, D., 2017, An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites, Journal of Environmental Management, http://dx.doi.org/10.1016/j.jenvman.2017.04.033

Example Feasibility Assessment: Imaging a DNAPL Plume

Step 1
Assign Electrical Conductivity

True conductivity estimated from

- Estimated saturation
- Estimated porosity
- Estimated native and DNAPL fluid conductivity

after Terry, N., Day-Lewis, F.D., Robinson, J., Slater, L.D., Halford, K., Binley, A., Lane, J.W., Werkema, D., in press, The Scenario Evaluator for Electrical Resistivity (SEER) Survey Design Tool, Groundwater.

Example Feasibility Assessment: Imaging a DNAPL Plume (cont.)

 Step 7: Go/ No-Go Decision
 Does pre-modeling suggest the target is sufficiently resolvable with electrical imaging?

after Terry, N., Day-Lewis, F.D., Robinson, J., Slater, L.D., Halford, K., Binley, A., Lane, J.W., Werkema, D., in press, The Scenario Evaluator for Electrical Resistivity (SEER) Survey Design Tool, Groundwater.

SUMMARY

- Fractured rock a challenging environment to:
 - Characterize
 - Model
 - Monitor
- Method selection
 - FRGT-MST
- Characterization
 - Structure
 - Major features
- Monitoring
 - Changes in properties
 - Amendment emplacement
 - Remediation effects?
- Approaches
 - Borehole geophysics (more later)
 - Cross hole imaging
- Feasibility studies to mitigate risk of failure (SEER)

MW10

