Characterizing Contaminant Mass in the Rock Matrix

Dan Goode, USGS

with Tom Imbrigiotta, Allen Shapiro, Claire Tiedeman, and others

USEPA-USGS Fractured Rock Workshop

EPA Region 10 September 11 & 12, 2019

Outline

- Why Delineate CVOCs in Matrix?
- Rock Core Sampling for CVOCs
 - Synthesis with Other Characterization
- Case study
- CommercialVendor

- Core samples much less affected by migration during and after drilling
 - Gravity pulls Dense-NAPL downward
 - Downward borehole flow carries solutes (advection)

- CVOCs often reside mostly in or on rocks, not in water in fractures
- Water in fastflowing fractures contains a small portion of the CVOCs

Slow release by diffusion and de-sorption causes long-term exceedance of MCLs

(modified from Goode and others 2014)

Fractured Rock: A Challenging Environment for Groundwater Remediation

- 1. Convoluted groundwater flow paths and complex spatial distribution of contaminants
- 2. Diffusion into and out of primary/intrinsic porosity (rock matrix)

A Simple Evaluation of TCE Retention in the Rock Matrix

rption rock matrix

- Bioaugmentation amendments limited to thin permeable strata around injection well, and . . .
- Contaminantsconstrained nearpermeablefractures

- Recommendation 2 [of 10]:
- "Estimate the potential for contaminant to be transported into, stored in, and transported back out of rock matrix over time."

Characterization, Modeling, Monitoring, and Remediation of FRACTURED ROCK

Rock Coring Methods

- Rotary Coring Best method for collecting relatively undisturbed cores; minimal polymer added, only if necessary, to help remove cuttings; minimal chemical effects
 - Triple barrel (inner split barrel) improves sample integrity
- Sonic Coring Can be used, but not preferred because it may create new fractures; high-pressure water introduced to remove cuttings, probable vertical cross-contamination effects

Analysis of Rock Core for CVOCs

- Developed from sediment coring and methanol extraction technologies
- Initial rock-core applications and refinement by Beth Parker, John Cherry, and colleagues (e.g. Sterling, et al., 2005)
- Parker's Trademarked "COREDEN" approach licensed to Stone Environmental
- Stone Environmental and/or Beth Parker's group (now at Guelph U., Canada) have worked on many EPA sites

Analysis of Rock Core for CVOCs

- USGS began using similar methods in Region 3 in 2001 (e.g. Sloto, 2002)
- A "bulk" analysis, includes all CVOC phases in sample

SECTION OF CORE (UNWEATHERED SANDSTONE) SAMPLED FOR VOLATILE ORGANIC COMPOUNDS

Analysis of Rock Core for CVOCs

- USGS began
 using similar
 methods in
 Region 3 in 2001
 (e.g. Sloto, 2002)
- A "bulk" analysis, includes all CVOC phases in sample

Methods

DNAPL screening during coring – Hydrophobic-Dye Cloth (FLUTe)

Rock Core VOC sampling and analysis (Sterling, Parker, Cherry and others 2005)

Variability of Organic Carbon Content in Mudstone

- Continuous rock core from 7 boreholes
- Lithologic description of cores
- Sections of core analyzed for:
 - TCE, DCE, VC
 - Organic Carbon
 - Porosity
 - Bulk density

70BRRock Core TCE

(black, top)

TCE in all but 1

Results

- sample < 15 m
- Non-detect in most samples > 15 m
- Aqueous TCE (blue, bottom) much less variable than core
- DNAPL detected at 27 m during coring (after >12 years of P&T)

Rock Core TCE

Results 70BR

- Optical TeleviewerColor lithology
- High-carbon Black fissile strata
- Gray laminated strata
- Light-gray massive strata

Results 70BR

- Acoustic Caliper
- Highly fractured shallow weathered zone
- Isolated fractures below 15 m depth in Black, and other, strata

Results 70BR

- Transmissivity from Borehole Flowmeter Johnson & Anderson
- Several high-T zones7-15 m depth
- Isolated high-T zones below 15 m
- DNAPL detected at 27 m during coring (after >12 years of P&T)

Distribution of TCE Mass in West Area

- CVOCs in Crystalline Rock
- Shenandoah
 Road
 Groundwater
 Contamination
 Superfund Site,
 East Fishkill, NY

Ref: Feenstra, 2012

Charact

Heterogeneous structure of the crystalline rock matrix (Rasilainen 1997).

Rasilainen, K. (1997). Matrix Diffusion Model, In SItu Tests Using Natural Analogues.

Commercial Vendor Available

Parker's Trademarked "COREDEN"
 approach licensed to
 Cascade Environmental
 (previously to Stone Environmental)

- Stone Environmental and/or Beth Parker's group (now at Guelph U., Canada) have worked on several sites
- Parker and colleagues continue to refine methods
 - E.g. Microwave heated methanol extraction (speeds analysis) & vacuum-sealed crusher (reduces VOC loss prior to extraction)

Take Home

- Long-term CVOCs in groundwater at many fractured-rock sites controlled by gradual release from rocks (diffusion, sorption, etc.)
- Rock Core Sampling for CVOCs
 - Represents pre-drilling distribution (mediates open-hole effects)
 - Synthesis with Other Characterization!!
- Commercial Vendor available
- Becoming more widely applied as part of Superfund program

Stop here.

Following slides included in handouts

Toxic Substances Hydrology Program
New Jersey Water Science Center
Hydrologic Research & Development
Program
Office of Ground Water
National Assoc. Geoscience
Teachers/USGS Intern Program

Office of Superfund Remediation and Technology Innovation Region 3

Pierre Lacombe
Allen Shapiro
Claire Tiedeman
Alex Fiore
Steven Walker
Matt Miller
& others...

Naval Facilities
Engineering
Command

References

- Feenstra, Stanley, 2012, Matrix diffusion studies at the Shenandoah Road Groundwater Contamination Superfund site: Applied Groundwater Research Ltd. DRAFT Report provided by EPA, 178 p.
- Goode, D.J., Imbrigiotta, T.E., Lacombe, P.J., Tiedeman, C.R., Walker, Steven, and Miller, M.A., 2011, Changes in distribution of trichloroethene and other contaminants in fractures and the rock matrix during bioaugmentation at NAWC: (abs.) SERDP/ESTCP Proc. Partners In Environmental Technology Technical Symposium and Workshop, Washington, D.C., Nov. 30 Dec. 2.
- Goode, D.J., Imbrigiotta, T.E., and Lacombe, P.J., 2014, High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling: *J. Contaminant Hydrology*, v. 171, p. 1-11.
- Parker, B.L., S.W. Chapman, and J. A. Cherry. 2010. Plume persistence in fractured sedimentary rock after source zone removal. *Ground Water* 48 (6).
- Shapiro, A.M., and Brenneis, R.J., 2018, Variability of organic carbon content and the retention and release of trichloroethene in the rock matrix of a mudstone aquifer: *J. Contaminant Hydrology*, v. 217, p. 32-42, doi:10.1016/j.jconhyd.2018.09.001.
- Shapiro, A.M., Goode, D.J., Imbrigiotta, T.E., Lorah, M.M., and Tiedeman, C.R., 2019, The complex spatial distribution of trichloroethene and the probability of NAPL occurrence in the rock matrix of a mudstone aquifer: : *J. Contaminant Hydrology*, v. 223, doi:10.1016/j.jconhyd.2019.04.001.
- Sterling, S. N., Parker, B. L., Cherry, J. A., Williams, J. H., Lane, J. W., Jr., Haeni, P. F., 2005, Vertical cross contamination of Trichloroethylene in a borehole in fractured sandstone, *Ground Water*, vol. 43, no. 4, p. 557-573.
- Sloto, R. A., 2002, Hydrogeological Investigation at Site 5, Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pa., USGS WRIR Report 01-4263, 37 p.

