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Abstract

Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous
waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be
made. In support of this effort, the US Environmental Protection Agency (EPA) is investigating methods that relate sample
characteristics to analytical performance. Predicted uncertainty levels allow appropriate study design decisions to be made,
facilitating more timely and less expensive evaluations. Gy sampling theory can predict a significant fraction of sampling error
when certain conditions are met. We report on several controlled studies of subsampling procedures to evaluate the utility
of Gy sampling theory applied to laboratory subsampling practices. Several sample types were studied and both analyte and
non-analyte containing particles were shown to play important roles affecting the measured uncertainty.

Gy sampling theory was useful in predicting minimum uncertainty levels provided the theoretical assumptions were met.
Predicted fundamental errors ranged from 46 to 68% of the total measurement variability. The study results also showed
sectorial splitting outperformed incremental sampling for simple model systems and suggested that sectorial splitters divide
each size fraction independently. Under the limited conditions tested in this study, incremental sampling with a spatula
produced biased results when sampling particulate matrices with grain sizes about 1 mm.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The act of sampling may introduce more uncertainty
than all of the subsequent steps in the measurement
process[1–3]. This is especially true for heteroge-
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neous particulate samples. The goal of most sampling
procedures is to obtain a representative sample. In
terms of characterizing the level of contaminants,
the ideal representative sample would have the same
concentration of contaminants as the original sample.
Procedures for obtaining representative samples from
particulate matrices have been studied for some time in
the minerals industry and a comprehensive sampling
theory originated by Pierre Gy has been developed
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[4–7]. Gy sampling theory was developed as a gen-
eral tool for any particulate matrix, but has been
principally used for mineralogical problems. The US
Environmental Protection Agency (EPA) has an inter-
est in determining how applicable Gy sampling theory
is for environmental matrices[8,9]. Environmental
matrices are very diverse and individual polluted sites
may contain several distinct types of matrices. Haz-
ardous waste sites may contain a heterogeneous ma-
trix of particles from several sources, of which only
a few may be contaminated. However, sometimes the
contaminant may be present to some extent in all the
particles. Some sites may contain several types of
hazardous components present in a variety of concen-
tration and particle distributions, requiring different
sampling practices for different analytes[10,11]. The
purpose of this work is to verify the applicability
of, and experimentally confirm, Gy sampling theory
methods for laboratory sample analysis practices.

Gy sampling theory[4,5] is usually presented as
an accounting of all uncertainty components, and
seven types of sampling error are traditionally identi-
fied [4,6,7] (Table 1). The Gy error components are
the result of assuming that the goal of the study is
to estimate the average amount of analyte over the
entire lot of the target mass to be represented. The
results reported here investigate errors that arise when
subsampling for laboratory analysis. While more
restrictive than site characterization, the sampling is-
sues are very similar for both applications. However,
special concerns related to site characterizations are
not addressed here. For laboratory subsampling, no
long-range trends or large-scale periodicity issues are
assumed to be present.

Of the seven Gy error components, the fundamental
error is the only subsampling error that can be esti-
mated before analysis. It represents the uncertainty

Table 1
Error components in Gy sampling theory

Error component Feature/description

(1) Fundamental Independent particle selection variability, statistical effect
(2) Grouping and segregation Analyte heterogeneity, physical effect largely due to gravity
(3) Long-range heterogeneity Concentration trends across a site or through time
(4) Large-scale periodicity Periodic concentration changes across a site or through time
(5) Delimitation Incorrect, non-representative, sample volume selected
(6) Extraction Removing non-target sample components
(7) Preparation Sample degradation, analyte loss/gain, contamination, etc.

associated with randomly selecting particles from the
sample and is related to the physical and chemical
constitution heterogeneity between particles. For a
well-constructed sampling program using “correct”
sampling methods, the other error sources may be
reduced such that the fundamental error may become
the most significant contributor to the overall sam-
pling uncertainty[4]. The fundamental error, which
represents a lower bound for the measurement error,
is often estimated as:
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whereMS is the sample mass,ML the mass of the lot,
IHL the constant factor of constitution heterogeneity,
f the shape factor,g the granulometric factor,c the
mineralogical factor,l the liberation factor, andd is
the largest particle diameter[4].

The mineralogical factor is maximum when the ana-
lyte is completely liberated, i.e. when the analyte con-
sists of individual particles free of other materials. It
is minimum when the analyte is uniformly distributed
throughout the sample material. For samples with only
two constituents,c can be estimated as[4]:

c = λM
(1 − aL)2

aL
+ λg(1 − aL), (2)

whereλM is the density of the analyte particles,λg the
density of the non-analyte material, andaL the mass
fraction (in units of decimal fraction) of the analyte.

The development ofEq. (1)assumes that all of the
fragments are collected one-by-one at random.Eq. (1)
also assumes that the average analyte concentration is
associated with particles with an approximately nor-
mal particle size distribution. Other particles are as-
sumed to have negligible analyte levels[4]. Based on
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Eq. (1)the analyst has two ways to reduce the funda-
mental error. One way is to increase the sample mass
and the other is to crush the sample to reduce the par-
ticle diameter. Either option should be considered if
the fundamental error estimate suggests that the study
will not produce data with the accuracy and precision
(representativeness) required to make a statistically
supportable scientific conclusion.

Most samples are very large compared with the
mass required for laboratory analysis. Continued ef-
forts at lowering sample preparation costs, reducing
waste generated from an analysis, and to provide re-
sults when small samples are all that are available have
led to lower and lower mass requirements for a typi-
cal analysis. However, few studies show subsampling
procedures that provide an accurate and precise, or
representative, estimate of the original concentration.
Previous studies[12–16] have shown that one of the
best subsampling methods for particulate samples is a
sectorial splitter. For demonstration purposes, experi-
mental results in this study are limited to those from
sectorial splitters or incremental sampling. All other
methods, such as riffle splitting, fractional shoveling,
and coning and quartering are expected to produce
poorer uncertainty estimates.

Incorrect sampling may result in very uncertain val-
ues. Variability (bias and imprecision) depends on the
mass of the subsample, the subsampling method, and
the distribution of the analyte(s) within a sample. This
behavior was verified experimentally by Starr et al.
[17] who noted smaller sample masses were associated
with “ . . . smaller means, greater skewness, and higher
variances. . . ”. Lame and Defize[18] showed that
the grouping and segregation error may overwhelm
the fundamental error and require a minimum sample
mass to obtain results with an acceptably low uncer-
tainty. Results dependent on sample mass are also ex-
pected if the analyte particles are rare[4]. Walsh et al.
[19] provide an example where performance was un-
affected by an increased sample mass but was highly
improved by a particle size reduction.

Gy sampling theory provides one mechanism to
predict the uncertainty based on the sample proper-
ties and to adjust the sampling protocol if necessary.
We report on three studies designed to test Gy sam-
pling theory and representative sampling for envi-
ronmental matrices. Each study was conducted with
laboratory-prepared samples where the true concen-

tration was known or predictable. Study one compares
sectorial splitting sampling to increment sampling,
with implications for all subsampling practices. Study
two shows the effect of large particles on analytical
variability, even when those particles have no analyte.
The third study assesses Gy sampling theory predic-
tions for mixtures of various particle sizes when the
analyte is present in a non-traditional form, such as a
thin film or coating. The matrix is non-traditional in
the sense that typical controlled studies usually use
matrices with discrete analyte particles.

2. Experimental

2.1. Study one, sectorial versus incremental
sampling

Study one compares incremental sampling with
sectorial splitting sampling. Samples consisted of
0.200 g coarse salt (Morton) (λM = 2.165 g cm−3,
d = 0.05 cm) and 39.8 g sand (ASTM C-778) (λg =
2.65 g cm−3, d = 0.06 cm). Incremental sampling
took place after first mixing the sand/salt mixture by
tumbling it end-over-end for 60 s. Half of the sam-
ple was poured in a back and forth pattern across a
20 cm× 16 cm Pyrex pan. The pan was rotated 90◦
and the process was repeated with the rest of the
sample. Eight 5 g subsamples were made by combin-
ing 10 increments taken with a stainless steel spatula
using a stratified random sample selection. The sam-
ple was exhaustively subsampled. The sampler had
access to the entire sample, a requirement of correct
sampling design with respect to delimitation[4].

Sectorial splitting for Study one used a Model RR-4
Rotary Micro Riffler (QuantaChrome Corp., Syosset,
NY) with a capacity to split a sample into eight frac-
tions. The vibration of the feed hopper was adjusted
to process a 40 g sample over several minutes. A slow
feed rate reduces errors related to particle distribution
heterogeneity and is preferable to high rotational rates
for generating representative subsamples[20]. The re-
maining studies used a six-fold Model PT 100 sec-
torial splitter (Retsch, Hahn, Germany), but used the
same feed system as described above.

Subsamples were added to distilled deionized
water and the salt content was determined by con-
ductivity analysis. Conductivity was measured with



162 R.W. Gerlach et al. / Analytica Chimica Acta 490 (2003) 159–168

a Radiometer C.M. 83 Conductivity Meter with a
type CDC 304T probe (Radiometer, Copenhagen).
Standards were prepared from an NEIC primary
KCl stock solution and a Radiometer conductivity
standard (Radiometer Analytical, S.A., Villeurbane,
France) of 0.01 D KCl. Concentrations were con-
verted to [NaCl] by dividing with 0.84[21], resulting
in a maximum bias of 0.5% due to non-linear effects.
Bias adjustments, based on quality assurance stan-
dards run periodically over the experimental period,
were also done, though they were not significant with
respect to the conclusions. Replicate analyses were
run on randomly selected samples. Precision ranged
from 1.3% relative standard deviation (R.S.D.) at low
salt concentrations (5× 10−4 M) to 0.7% R.S.D. at
higher salt concentrations (5× 10−3 M). The preci-
sion of the conductivity results was comparable to the
uncertainty reported in prior studies[21].

2.2. Study two, the effect of large particles

The effect of coarse inert materials on subsampling
uncertainty was evaluated in this study. The coarse
component consisted of sandstone particles with max-
imum diameters of 0.5 cm. Twelve grams (72 parti-
cles) of coarse sandstone were combined with 23 g of
sand and 1 g of table salt (Morton). The 36 g sample
was split six-fold with a sectorial splitter and a ran-
domly selected subsample was split to generate six
1 g subsamples. The subsample mass was determined
with and without the coarse sandstone.

2.3. Study three, sampling mixtures

The main objective of this study was to evaluate
subsampling uncertainty related to particle size. A
second objective was to assess the performance when
the analyte was present as a surface coating instead of
as separate particles. A particle matrix with analyte
coating the surface was prepared as follows. Quartz
stones were crushed and sieved into three sizes;
0.018–0.071, 0.071–0.2, and 0.2–0.4 cm, labeled
small, medium, and large, respectively. For each size
fraction, approximately 50 g of material was placed
in a separate filtration flask and covered with 0.34 M
NaCl for approximately 5 min. Excess solution was
aspirated from each filter flask, the coated particu-
lates were dried overnight, and the dried mass was

gently crushed to disaggregate the particles cemented
together as the salt crystallized. Twelve grams of
each size fraction was split into 2 g subsamples with
the six-fold sectorial splitter. These subsamples were
analyzed to obtain mean and variability estimates for
each size fraction. A 6 g composite sample was pre-
pared by combining 2 g of material from each size
fraction, and the composite sample was split with the
sectorial splitter to produce six 1 g subsamples.

3. Results and discussion

3.1. Study one, sectorial versus incremental
sampling

Estimates for the total amount of salt in the origi-
nal sample were determined for each subsample. For
incremental sampling,Fig. 1a shows the measured
percent bias from each individual subsample and the
percent bias for the cumulative estimate of the mean
based on all of the subsamples up to that point. The
first six incremental subsamples are biased low and
the last two are biased high. Subsample eight is biased
high enough to qualify as an outlier (P < 0.01) based
on Dixon’s outlier test[22]. The cumulative bias and
relative standard deviation are remarkably consistent
for runs two through seven, and the cumulative bias re-
mains at least 16% low until the result from subsample
eight is included. The mean bias with all eight results
is +1.9%. In contrast, the sectorial splitter produced
five high-biased and three low-biased subsamples and
the cumulative bias was always less than 5% except at
run two (seeFig. 1b). The mean bias after exhaustive
analysis was 3.2% for the sectorial splitter results.

Incremental sampling is affected by several error
components of Gy sampling theory (Table 1), includ-
ing: the fundamental error, the grouping and segre-
gation error, the extraction error, and the delimitation
error [4]. The fundamental error is related to the het-
erogeneous nature of the particle mixture and is in-
dependent of the sampling method. The grouping and
segregation errors are related to the non-uniform dis-
tribution of analyte, often resulting from gravitational
effects. Only 10 increments were used while more than
30 increments have been recommended[4]. The ex-
traction error is the difference between the planned,
or delineated, portions to be sampled and the portion
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Fig. 1. Bias for individual subsample analysis (�) and for the cumulative estimate of average analyte level (�) as a function of the
subsample run number for (a) incremental and (b) sectorial splitter sampling in Study one. Bias for single increment subsamples taken
after ring-and-puck grinding to a fine powder ((a) only) (�).

taken. The magnitude of this error is unknown. The
delimitation error is also unknown but is expected to
be small since the particle sizes are small compared
with the spatula and the area involved in each incre-
ment. The corresponding errors with sectorial splitting
are expected to be smaller than or equal to the errors
for the incremental method.

The fundamental error for an individual sam-
ple analysis predicted usingEqs. (1) and (2)with
f = 0.75 (very cubic shaped),g = 0.55 (a screened
sample),aL = 0.005, l = 1.0 (complete liberation
of analyte from the matrix), andd = 0.06 cm is
σFE = 8.2%. This represents 46% of the 17.7% sam-
ple analysis error found experimentally from the pop-
ulation of individual sectorial splitter results.Eq. (1)
required several assumptions and is considered to be

an approximate result, with the total experimental er-
ror accounting for additional uncertainty from other
sources.

Significant operational factors differentiate the sec-
torial and incremental results. The sectorial splitter
subsamples are generated simultaneously, are statisti-
cally equivalent, and could have been analyzed in any
order. The incremental sampling results depend on the
subsample run order. Any bias or error associated with
one subsample may affect the results for subsequent
subsamples. In this example, all early incremental sub-
samples had large negative biases and the result from
the last incremental subsample was crucial in gener-
ating a summary result with a low bias.

If incremental sampling as described in this study
was used for routine analysis, then at most a few
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subsamples would be taken and any reported concen-
tration would have a large negative bias (Fig. 1a).
For the sectorial splitter method, only a few subsam-
ples had a large positive or negative bias (Fig. 1b). If
only a few randomly chosen sectorial splitter subsam-
ples were analyzed, then the expected bias would be
much smaller than the bias in the incremental sam-
pling method. For sample types similar to those used
in this study, sectorial splitting is expected to outper-
form incremental sampling.

It is also of interest to compare the performance
from the above methods to the results from the anal-
ysis of one additional sample. The additional sample
consisted of 100 g of the same materials used above
and in the same proportion. This sample was ground
to a fine powder in a ring-and-puck mill before taking
individual 0.5 g grab samples from random locations.
The relative biases for eight of these samples are plot-
ted in Fig. 1a. The cumulative (mean) bias for these
samples was 1.1% with a coefficient of variation of
1.4%. Despite having 1/10th the mass of the Study
one subsamples and using no incremental fractions,
the particle size reduction from grinding lowered the
sampling error well below the error found with the
original matrix by either sampling method. This is in
agreement with Gy sampling theory, where a change
in particle diameter is expected to have a large effect
on the fundamental error (Eq. (1)). UsingEq. (1) the
diameter for the ground powder is predicted to be a
factor of 12 smaller than the initial particle size. This
is consistent with the silt-like visual and tactile char-
acteristics of the powder[23]. However, there is a cost
associated with this procedure. It consumed the entire
sample and required a lengthy cleanup effort, substan-
tially increasing the price per sample.

Table 2
Effect of large inert particle on subsampling variance in Study two

Subsample Sand (g) Large particles (g) Total inert (g) NaCl (g) NaCl in sand (g/g) NaCl in total (g/g)

LP-21 0.64 0.73 1.37 0.0335 0.0500 0.0239
LP-22 0.61 0.11 0.72 0.0243 0.0385 0.0328
LP-23 0.65 0.55 1.20 0.0233 0.0348 0.0191
LP-24 0.63 0.11 0.74 0.0356 0.0531 0.0457
LP-25 0.68 0.00 0.68 0.0347 0.0488 0.0488
LP-26 0.56 0.45 1.01 0.0320 0.0542 0.0307

Mean 0.626 0.325 0.951 0.031 0.047 0.034
R.S.D.a (%) 6.4 90.1 30.1 17.6 17.2 35.1

a R.S.D.: relative standard deviation.

3.2. Study two, the effect of large particles

The large particles in each nominal 1 g subsample
were counted. The frequency distribution of the large
particles agreed with a Poisson distribution based on
a χ2-test [24] where all of the subsamples withn ≥
4 large particles were pooled (χ2 = 2.54; critical
χ2

0.90,3 = 6.25), indicating that the sectorial splitters
distribute all of the particles independently. The distri-
bution of the fine components appeared visually uni-
form and independent of the distribution of the coarse
particles.

If one ignores the presence of the large particles,
then the experimental R.S.D. for NaCl in the salt/sand
portion of the samples is 17.2% (Table 2). The un-
certainty may be primarily attributable to the distribu-
tion of salt rather than sand. The relative error is only
slightly different from the error for NaCl and the er-
ror for sand is comparatively small. When the mass of
the large particles is included, the measured R.S.D. for
NaCl is 35.1%. If the large sandstone particles were
converted to sand particles before sectorial splitting,
the predicted R.S.D. for NaCl in sand is 11%. This
value is based on the assumption that the sand particles
created from the large particles were distributed with
the same variability associated with the original sand
component. This result is a more appropriate value
to compare with the large particle R.S.D. because the
subsample masses are equal for each case. Thus, the
increase in uncertainty associated with larger inert par-
ticles is at least a factor of 2 and more likely to be
larger than a factor of 3.

Gy sampling theory can be applied to the subsam-
pling of just the sand and salt if the particle dis-
tributions are assumed to be independent of particle
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Table 3
Fundamental error estimates for Study two

Parametera Salt and sand Large particles added

Step 1 Step 2 Step 1 Step 2

MS (g) 4 0.667 6 1
ML (g) 24 4 36 6
f 0.75 0.75 0.5 0.5
g 0.55 0.55 0.55 0.55
λM (g cm−3) 2.165 2.165 2.165 2.165
λg (g cm−3) 2.65 2.65 2.65 2.65
aL 0.0416 0.0416 0.0278 0.0278
c = λ/aL 50.3 50.3 76.2 76.2
l 1 1 1 1
d (cm) 0.06 0.06 0.5 0.5

σFE (%) 3.1 7.5 60.0 148
Total σFE (%)b 8.1 160

a Parameter definitions—MS: mass of the sample (the subsample);ML : mass of the lot (the sample);f: shape factor;g: granulometric
factor; λM: analyte particle density;λg: non-analyte particle density;aL : concentration as decimal proportion;c: mineralogical factor;l:
liberation factor; andd: largest particle diameter.

b Fundamental error (as R.S.D.) due to both Steps 1 and 2.

size. Since the mass of the large particles is known,
it can be subtracted andEq. (1)can be applied to the
two-step process summarized inTable 3. Columns 2
and 3 ofTable 3show the parameter estimates and re-
sulting fundamental error predictions for the sand/salt
fraction alone. The fundamental error predicted for
the two-phase salt/sand subsampling protocol is 8.1%.
This is 47% of the measured value of 17.2%. The
fundamental error is very similar to the 17.7% results
from Study one.

Eq. (1) was also applied to the complete subsam-
ple, including the large particles, with parameter set-
tings and results shown in the last two columns of
Table 3. The fundamental error for the two-phase sub-
sampling protocol is 160%, much larger than the mea-
sured value of 35%.Eq. (1)provides a poor estimate
when applied to the complete subsample mainly due
to the sample characteristics not conforming to the as-
sumptions.Eq. (1) was developed with the assump-
tion that the diameter is representative of particle sizes
from a compact distribution. The large particles rep-
resent 33% of the sample weight while the rest of
the sample consists of particles that are much smaller.
The shape factor change from 0.75 to 0.5 reflects
the more sphere-like nature of the sandstone particles
compared to the rather cubic shape of the sand par-
ticles. However, the sample particle diameters do not
form a continuous distribution, but a bimodal discrete

distribution. Since the diameter,d, in Eq. (1) is iden-
tified with an upper bound for a normal distribution
of particle sizes, poor predictions are not surprising
here.

3.3. Study three, sampling mixtures

Study three involves subsampling a mixture com-
posed of three size fractions where each size fraction
contributes an equal mass. Evaluation of the mean and
standard deviation for each particle size fraction re-
veals an interesting result. Despite having the least
amount of NaCl, the large particle fraction had the
largest standard deviation (Table 4). The large frag-
ment fraction has more than five times the error in ab-
solute concentration than the small fragment fraction
has, though it contains only about one-third as much
NaCl. A simple statistical error estimate based on the
variability for the individual size fractions gives an
8.3% error for the mixture sample results compared
with the measured 12% value.

The above results are in overall agreement with Gy
sampling theory, which characterizes sample particle
size effects by using a diameter representative of the
largest particles. Larger particle sizes are associated
with larger uncertainties. As shown above, this is the
case not only with particles associated with the analyte
of interest, but also with the analyte-free particles.
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Table 4
Measured composition and uncertainty for [NaCl] in crushed quartz splits in Study three compared to the uncertainty for the fundamental
error predicted from Gy sampling theory

Size fraction Size range
(cm)

Mean [NaCl]
(g/g)

S.D.a [NaCl]
(g/g)

Measured
errorb (%)

Propagated
errorb,c (%)

Gy theory fundamental
errorb,d (%)

Largee 0.2–0.4 0.00107 0.000257 24.0 – –
Mediume 0.071–0.2 0.00247 0.000161 6.5 – –
Smalle 0.018–0.071 0.00324 0.000046 1.4 – –
1:1:1 Mixturef 0.018–0.4 0.00263 0.000320 12.0 8.3 8.2

a S.D.: standard deviation.
b Error as relative standard deviation.
c Mixture error predicted from size fraction errors.
d Fundamental error.
e Final subsample mass of 2 g.
f Final subsample mass of 1 g.

The fundamental error for the mixture sample
could not be estimated using the formula in the right
hand side ofEq. (1), as the sample did not contain
a set of particles enriched in analyte distinct from
the rest of the particles. For this sample matrix, an
alternate approach based on contributions from in-
dividual particles as described in[25] was used. In
this approach, the fundamental error equation can be
written as:

s2
FE =

(
1

MS
− 1

ML

) ∑
i

(ai − aL)2

a2
L

M2
i

ML
, (3)

where the summation is over each particle,Mi is the
mass for theith particle,MS the mass of the sample,
ML the mass of the lot, and “a” values are the analyte
mass fractions.

To useEq. (3) the summation is broken into three
parts, one for each size fraction, withai andMi based
on approximations. The approximations are that the

Table 5
Size fraction components of the fundamental error calculations for Study three

Size fraction Average
dimension (cm)

Particle
numbera (N)

Adjustedab

(weight fraction)
Average particle
mass (g)

IHL
c

Large 0.3 28 0.00125 0.0714 0.00655
Medium 0.135 307 0.00288 0.00651 0.00002
Small 0.0445 8564 0.00377 0.000234 0.00147

Average= 0.00263 Total= 0.00804

a Number of particles estimated with shape factor= 1 (vi = d3
i ).

b Weight fraction sample concentrations (as a mass fraction) scaled so the average calculated mixture concentration matches the average
measured mixture concentration.

c Constant factor of constitution heterogeneity.

values ofai and Mi are constant for each size frac-
tion. The values forai are the average analyte level
found for each size fraction, but scaled slightly (see
Table 5) so the calculated average analyte level for
the mixture matched the measured analyte level. This
correction removes variance contributions due solely
to bias between initial estimates. The value ofMi is
the estimated average mass for a particle with average
particle size for the size fraction associated with theith
particle. Average mass values were estimated using a
shape factor of 1 for this matrix, allowing particle vol-
umes to be calculated asd3. The shape factor is higher
than one might expect because the particles were ob-
served to have generally elongated shapes rather than
being generally symmetrical.

The error contribution by size fraction (Table 5)
again demonstrate the importance of the larger size
fraction in determining the sampling error. The con-
stant factor of constitution heterogeneity contribution



R.W. Gerlach et al. / Analytica Chimica Acta 490 (2003) 159–168 167

for the large size fraction is 0.00655. This is sub-
stantially larger than the corresponding values for
the medium and small size fractions (last column,
Table 5). The overall fundamental error estimated
with this approach is 8.2%, which is 68% of the
measured error. This estimate would provide useful
information if available at the planning stage of a
study, or when determining a subsampling protocol.

4. Conclusions

Studies that use particulate samples must consider
the subsampling process as an integral part of the
method. Subsampling may substantially affect the
variability and sampling practices can generate biased
values despite the use of accurate chemical analy-
ses. These studies show the principal error is due to
sampling rather than chemical analysis procedures.

The comparison of incremental sampling with sec-
torial splitting sampling showed that incremental sam-
pling results could be biased unless exhaustive analysis
is carried out. Sectorial splitters outperformed incre-
mental sampling when applied to very simple sample
matrices. The incremental sampling procedure did not
meet the typical benchmark of 30 increments to mini-
mize grouping and segregation error effects. However,
the results from exhaustive analysis suggest an ex-
traction error bias would have been unaffected by the
use of additional increments—as the sampling device
failed to select 100% of the target when each increment
is sampled. The sampling device was flat but without
vertical sides, and is classified as an incorrectly de-
limited sampling device. While technically true, the
sample depth was so shallow that parallel sides were
expected to make little difference in the outcome. The
sampling device was probably also incorrect with re-
spect to extraction[4] because it was unable to remove
all the fine particles associated with each increment.

Several aspects of Gy sampling theory were experi-
mentally confirmed with laboratory generated test ma-
trices containing discrete or large particles. Estimates
of the fundamental error were consistent with the mea-
sured variability for the samples with discrete analyte
particles, and represented about 47% of the total er-
ror (Study two). The presence of large, analyte-free
particles was shown to play as important a role as the
analyte in contributing to the measurement variability.

Though finely crushing a sample resulted in dramat-
ically reduced subsampling variability, the additional
effort required for cleanup between samples is very
large, making this an unattractive alternative.

Gy sampling theory also successfully provided es-
timates of subsampling uncertainty when applied to
particulate matrices where the analyte was distributed
across all of the particles. The fundamental error esti-
mated for Study three represented 68% of the total er-
ror. However, the calculation of the fundamental error
for the surface-coated matrix sample relied on auxil-
iary information that would not normally be available.
In addition, though the results for this matrix appear
promising, the fundamental error calculation for Study
three involves several approximations and should be
verified using different combinations of size fractions
and particulate characteristics before this method is
generally applied.
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