

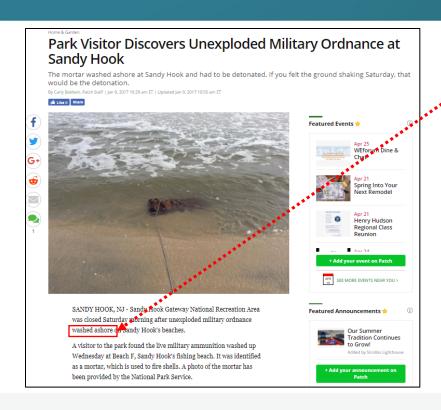
APPLICATION OF INSTRUMENTED SURROGATE MUNITIONS FOR MUNITIONS MOBILITY AND BURIAL AT MUNITIONS RESPONSE SITES

Dr. Carter DuVal

Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, MS

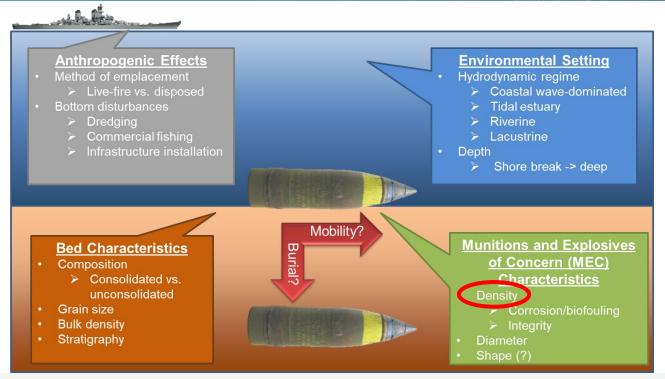
Munitions Mobility & Burial Program SERDP & ESTCP

Problem: A thorough understanding of the fate of Munitions and Explosives of Concern (MEC) is required for the detection, classification, modeling, monitoring, and mitigation of MEC at Munitions Response Sites (MRS)

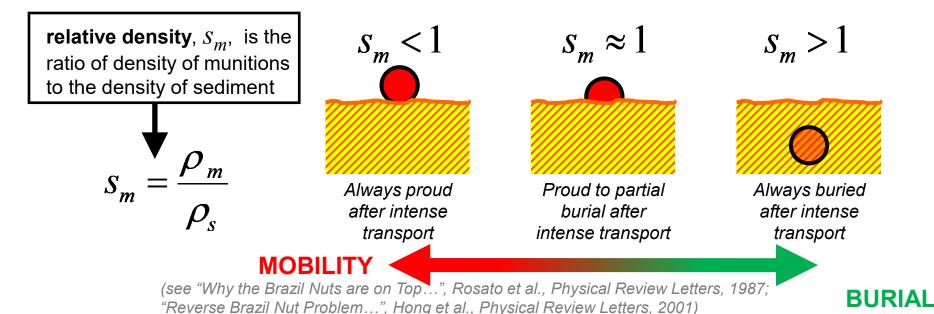

Objectives:

- Identify and reduce the parameters necessary to predict MEC mobility and burial in MRS
- Ultimately arrive at a CONOP and tools (both software and hardware) for MRS management

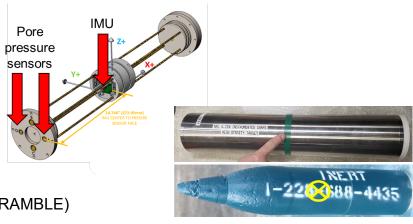
Why Study Munitions Mobility and Burial?



- "...washed ashore..."
- But did it really?
- Was it there the whole time?


Synopsis of Munitions Mobility & Burial

Importance of Density


Instrumented Surrogates: "Mobility Monitoring Units"

Mobility Monitoring Units (MMU) provide much needed observations to quantify physical processes and develop & validate models of munitions mobility and burial

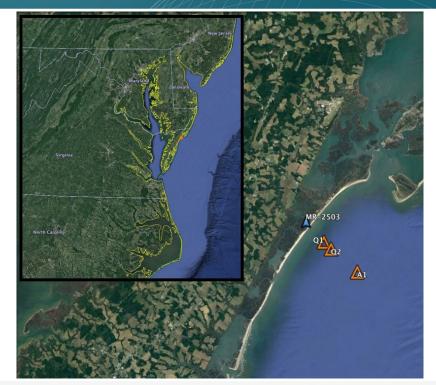
- Equipped with customizable sensor packages tailored to research question
 - ♦ Inertial Motion Units (IMU) precise movement
 - ♦ Acoustic Tracking gross movement
 - Pressure Sensors burial

Examples:

- Wallops Island Munitions Mobility Experiment (WIMMx)
- California Burial Experiment (ExCaliBur)
- Delaware Bay Munitions Mobility and Burial Study
- Riverine Ammunition Mobility and Burial Live-Site Experiment (RAMBLE)

Integrating IMU – Quantifying Mobility

- Collaboration with MR-2410 (Garcia and Landry)
- COTS IMU embedded in nose



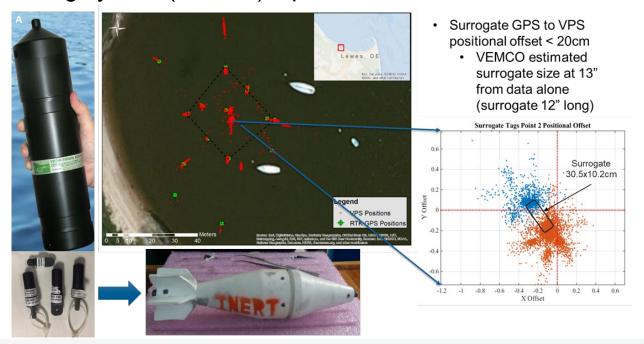
Wallops Island Munitions Mobility Experiment (MR-2320)

- Smart munitions with IMUs logging at 16 Hz continuous
 - Three calibers at each location (81 mm, 4.2 inch, and 155 mm)
- Deployed instrumented benthic quadpods
 Feb Apr 2017 at 9 m and 11 m water

depths

WIMM-X Mobility Results

- Start of mobility during storm at 14 March 2017 at 0228
- Peak significant wave height near
 2.8 m during interval
- Total integrated displacement was 206.4 feet with 344 degree heading
- Diver measured displacement was 202.0 feet with 340 degree heading



Integrating Acoustic Tracking Innovasea Vemco Positioning System (VPS)

Acoustic tracking system (180kHz) – positional accuracies down to 10cm

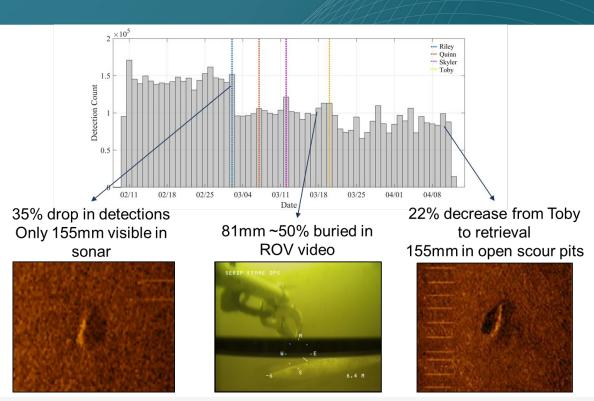
Unexploded Ordnance Characterization in Muddy Estuarine Environments (MR-2730)

- Trembanis (University of Delaware) and DuVal
- Objective: to test and characterize munition mobility and burial in shallow, muddy environments.
 - Monitor the mobility and behavior of sensor-integrated surrogate munitions in muddy environments using a highaccuracy acoustic positioning system
- Four deployments at two sites Oct 2017 May 2019
 - 60mm, 81mm, 4.2", 155mm surrogates

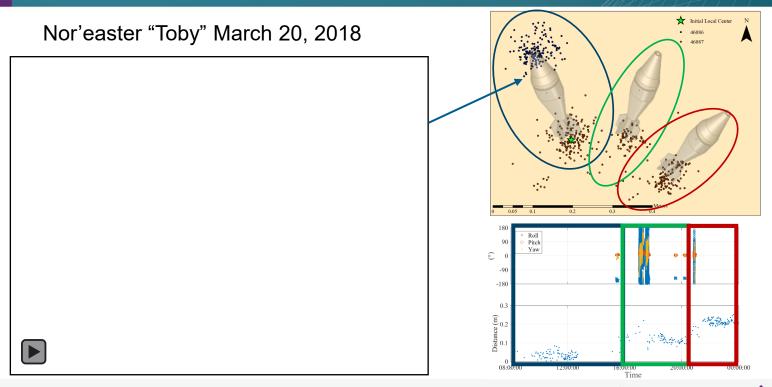
Spring 2018 VPS Animation

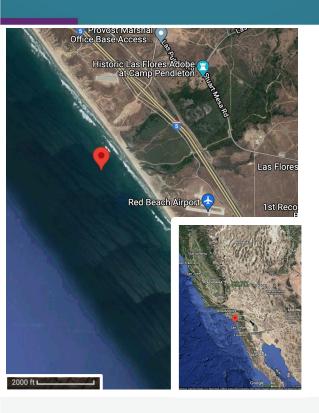
Four Nor'easters

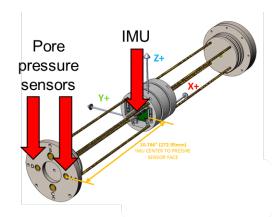
- Riley (Mar 2)
- Quinn (Mar 7)
- Skyler (Mar 12)
- Toby (Mar 20)



Burial and Exposure

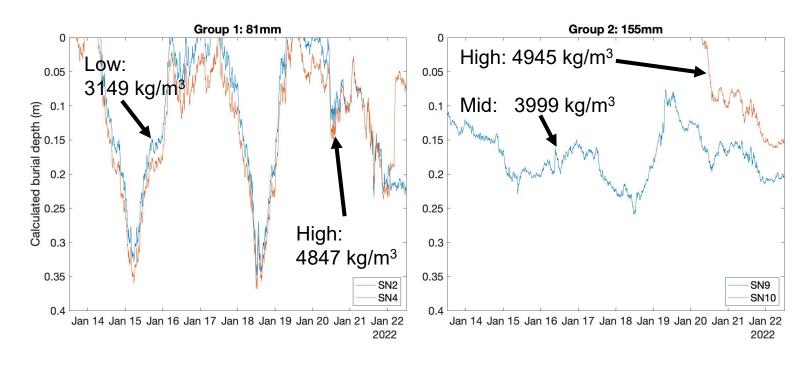

- Field test demonstrated VPS unable to detect buried 180kHz tags.
 - ♦ If daily tag detections decreasew/ no mobility = burial


Surrogate Mobility?

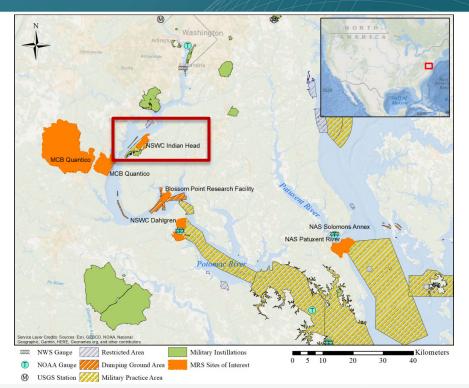


Integrating Pressure Sensors Quantifying Burial Depth

- California Burial Experiment (MR19-1317)
 - To determine effects of surrogate parameters on burial depth from *in-situ* data
- Experiments at Camp Pendleton, CA in 2021 & 2022 at a depth of 20 feet (~ 6.1 meters)
- Each surrogate carried:
 - 2 pore pressure sensors
 - 2 total pressure sensors
 - Inertial motion unit (IMU)

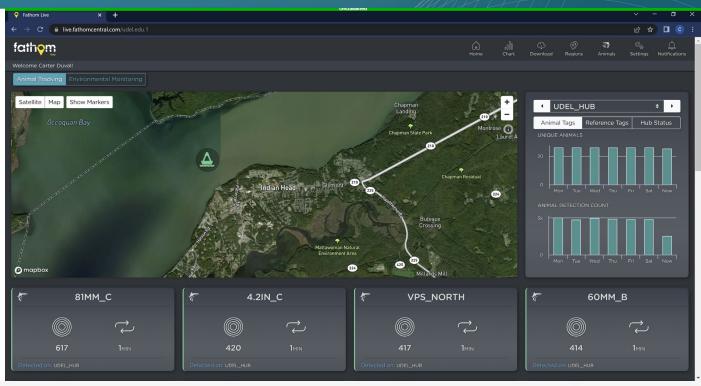

Field Experiment

Burial Depth by Surrogate Type & Density

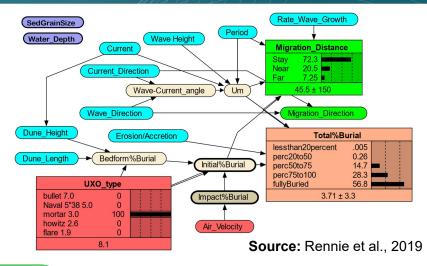


Riverine Ammunition Mobility and Burial Live-Site Experiment (RAMBLE)

- Objective: Quantify mobility and burial of munitions and explosives of concern (MEC) in dynamic riverine environments using a Munitions Response Site (MRS)
- NSF Indian Head, MD
 - ♦ 12000 Acres
 - Sediments:
 - 36% Clay, 27% Silt, 37% Sand
 - Median grain size (0.01mm Silt)
- Battleship Gun test 1891-1921
 - ♦ 1-in to 16-in AP & HE projectiles
- Rockets 1946-1947



Innovasea Vemco Fathom Live



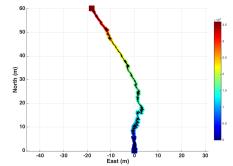
Transitioning from Field to Forecasting

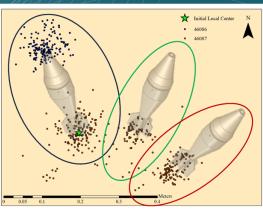
- MMU observations → model development
- Provide tools for MRS management
 - Ex: Underwater Munitions Expert System Model (UnMES) – Rennie et al., 2019
 - Monitor for Mobility and burial at MRS
- Determine fate of munitions at MRS
 - Better inform DCL

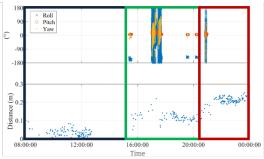
Summary

- Basic and applied research needs drove the development and application of prototype instrumented surrogates to characterize the physics necessary for modeling munitions mobility and burial in underwater environments
- Wide application of instrumented surrogates to varying environmental types and underwater sites
 - Monitor for mobility and burial at MRS
 - Observations to develop mobility and burial models
- Long-term site management that includes predicting munitions phenomenology represents a future mission critical technology

Acknowledgements

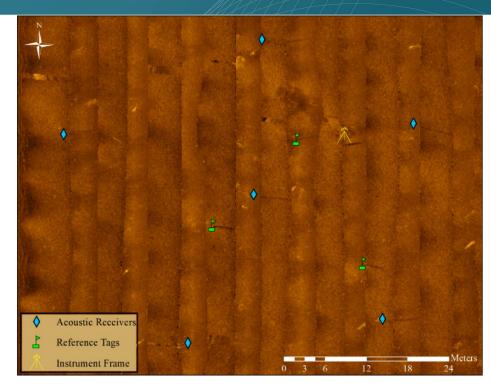

SERDP & ESTCP


- John Jackson
- Mike Tuley (IDA)
- Mike Richardson (IDA)
- Dave Bradley (retired)
- Herb Nelson (retired)


SERDP MM&B Pl's

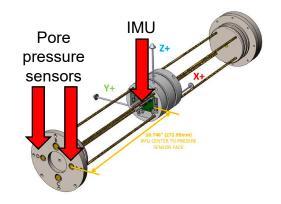
- Joe Calantoni
- Carl Friedrichs
- Marcelo Garcia
- Blake Landry
- Allison Penko
- Sarah Rennie
- Nina Stark
- Art Trembanis

Source Projects


- MR-2227
 - https://serdp-estcp.mil/projects/details/b9dabb8a-cfbc-45a7-af4c-7c70e8492e70/mr-2227-project-overview
- MR-2320
 - https://serdp-estcp.mil/projects/details/84a23a05-67f5-4bfc-b59c-7c206e1d26e1/mr-2320-project-overview
- MR-2410
 - https://serdp-estcp.mil/projects/details/433e1f59-6310-41bc-bf4b-9fe81e88224d/mr-2410-project-overview
- MR-2730
 - https://serdp-estcp.mil/projects/details/316316aa-fd82-4507-b96d-bb8a74a230e1/mr-2730-project-overview
- MR19-1317
 - https://serdp-estcp.mil/projects/details/f9550a1a-e05a-4f21-8deb-38c9c4add9da
- MR21-1227
 - https://serdp-estcp.mil/projects/details/9fa4ba4b-6c11-47e4-8f9f-cb4e6f0d3a30/mr21-1227-project-overview

VPS Grid

- VPS Grid and Surrogate Tracking
 - ♦ 6 receiver system in pentagonal grid allows for maximum overlap in shallow water
 - 10-13 instrumented surrogates deployed and monitored by VPS tracking
 - 60mm
 - 81mm
 - 4.2inch
 - 155mm
 - Multiple acoustic detections per minute per tag



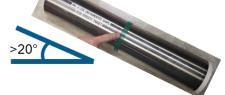
Field Site

- Surrogates were deployed in two groups:
 - Group 1: SN2, SN3, and SN4 (smaller units)
 - Group 2: SN8, SN9, and SN10 (larger units)
 - Label numbers indicate density, from lightest to densest

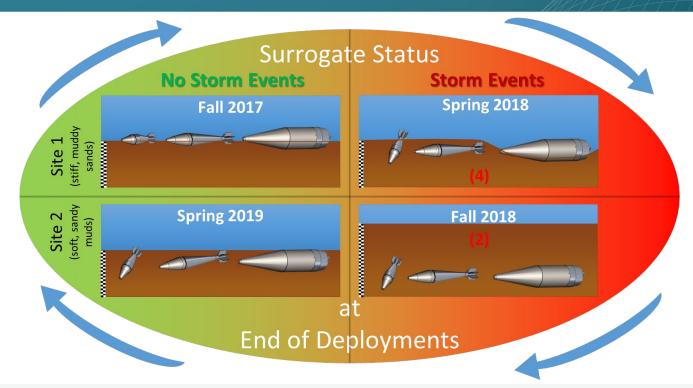
	81mm d	liameter, 510n	nm long	155mm diameter, 750mm long		
	SN2	SN3	SN4	SN8	SN9	SN10
Density (kg/m³)	3149	4069	4847	3350	3999	4945
In-air weight (kg)	8.27	10.69	11.56	47.41	56.59	69.99

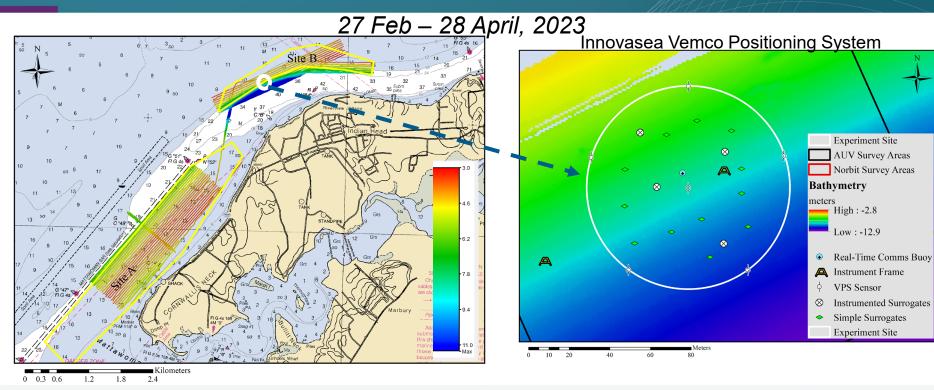
Inferred depths: Orientation

	SN8	SN3	SN10	SN4	SN2	SN9
Orientation of long axis rel. to Mean wave dir.	9.0	13.4	18.1	22.8	32.8	38.1
Behavior	No burial	Unburied/ Reburied	Partial burial	Full burial	Full burial	Full burial
	Light density 155mm		High density 155mm	,	Light density 81mm	Mid density 155mm


Orientation is a primary factor in burial variability

~20° from the mean wave direction is the cut-off between partial and immediate full burial




Deployment Summary

Spring 2023 Field Experiment

