# One Size Doesn't Fit All: Tailoring Read-across Methodology for TSCA and Other Contexts

James W. Rice, Ph.D.

NIEHS SRP Risk e-Learning Webinar May 23, 2018



#### **TSCA Overview**

- Toxic Substances Control Act (1976)
  - Governs (non-food, non-drug) chemicals
  - Established "Inventory" of chemicals in commerce
  - Established notification requirements
    - Pre-Manufacturing Notice (PMN)
    - Significant New Use Notice (SNUN)
  - Limited testing and data requirements
  - Possibility of restriction of harmful chemicals



Image: Clemens Pfeiffer

Cray 1 Supercomputer released in 1976 5.5 tons; 160 million FLOPS



#### **TSCA Overview**

- Groundbreaking in 1976 but outmoded by the 2000s
  - EPA authority limited and passive (silence = approval)
  - Novel new materials (e.g., nano)
  - Inventory outdated
  - Manufacturers facing variable regulations across the states
- 2016 Frank R. Lautenberg Chemical Safety for the 21st Century Act (LCSA)



Iphone 7 released in 2016 0.0002 tons (6.6 oz) vs. 5.5 tons 40 billion FLOPS vs. 160 million FLOPS



# **TSCA Reform: Key Changes for New Chemicals**

- EPA now has more authority to evaluate and manage chemical risks
- Requirement for **definitive determination** that chemical/ use:
  - Presents unreasonable risk OR
  - May present unreasonable risk (more info needed) OR
  - Not likely to present unreasonable risk
- Overall, data requirements unclear!
- Prioritize non-vertebrate testing (Strategic plan June 2018)









# **TSCA Reform: Key Changes for Existing Chemicals**

- "Prioritization" of chemicals (high/low)
  - Only high chemicals require further risk evaluation
  - EPA must complete prioritization and designate 10 high and 20 low priorities by Dec. 2019
- Risk evaluation for (a few) high priority chemicals
  - 10 started in 2016 (from 2014 TSCA Work Plan); 10 more to begin no later than Dec. 2019
  - Unreasonable risks must be managed with use restrictions or other risk management measures





# **TSCA Reform: Impacts & Actions on New Data**

- Must provide substantial data prior to chemical registration/sale
- Specifies science decisions must be "consistent with the best available science"





# **Animal Testing Isn't the Answer**

#### Time consuming

- 90-day toxicity study can take over a year from planning to report
- 2 year cancer bioassay takes up to 5 years

#### Expensive

Full tox packages can cost millions

#### Wasteful/Ethically challenging

- Full tox packages will involve hundreds of animals
- Most data will be similar to existing data for related chemicals

#### Imperfect

 Whole animal data require extrapolation, not always informative about why toxicity is occurring





# **Challenges in Implementing New Methods**

#### Need for Acceptance

- We are used to animal testing, the status quo
- To avoid treating alternatives as add-ons rather than replacements

#### Challenges in Interpretation

Is a cellular/molecular change adverse, pre-adverse, adaptive or normal?

#### Need for Standardization

 There are many alternative assays and programs, regulators can't know them all

#### Need for Flexibility

- Justification for use of alternative methods has to be context specific
- Example: ECHA read-across guidance requires extensive justification,
   may not be appropriate for all situations where read-across is required



# **Decision Context is Important**

- Product safety is more than chemical registration.
- Different applications may require different levels of effort and justification.
  - Drug/chemical discovery
  - Product impurity assessment
  - Alternatives assessment
- We developed and validated a read-across framework to fill dermal sensitization and irritation data gaps.







#### What Is Read-Across?



Properties of a known (data-rich) chemical, called a surrogate or analog, are "read across" to a new (data-poor) chemical



# **Exploring the Utility of Endpoint-Specific Read-Across Tools – Case Study**

Established a set of 28 chemicals with structural similarity to a target chemical: skin sensitizer hydroxyethyl acrylate

- 1. Evaluated Chemical Structural Similarity
- 2. Considered Structure-Activity Relationship (SAR) Alerts
- 3. Determined Read Across Accuracy



- 1. Chemical Structural Similarity
- 2. Structure-Activity Relationship (SAR) Alerts
- 3. Physicochemical Properties and Read-Across Accuracy



# **Evaluating Chemical Similarity**

- ChemMine<sup>a</sup> and Toxmatch<sup>b</sup>
  - Used to explore and quantify similarity between the chemical structures of paired molecules
  - Enumerate structural features and subsequently calculate a Tanimoto coefficient<sup>c</sup>
  - Differences in methodology (e.g., atom pair vs. molecular fingerprinting) can lead to discordant results



- (a) Chemmine.ucr.edu; (b) European Commission Joint Research Centre;
- (c) Proportion of structural features common to both compounds divided by the total number of features.



# **Chemical Similarity – Comparing Evaluation Tools**

| Compound of Interest                | Structure                        | ChemMine<br>Similarity Score | ToxMatch Similarity Score |  |
|-------------------------------------|----------------------------------|------------------------------|---------------------------|--|
| Hydroxyethyl acrylate (target)      | H <sub>2</sub> C OH              | N/A                          | N/A                       |  |
| Ethyl acrylate                      | $H_2C$ $CH_3$                    | 0.44                         | 0.83                      |  |
| Tetraethylene glycol diacrylate     | H <sub>2</sub> C CH <sub>2</sub> | 0.10                         | 0.66                      |  |
| Ethylene glycol<br>monopropyl ether | H <sub>3</sub> C OH              | 0.14                         | 0.39                      |  |

- Despite variation in similarity score value, the similarity rank order determined by ChemMine and Toxmatch demonstrated agreement.
  - Kendall's coefficient of concordance, W = 0.72, p = 0.067



- 1. Chemical Structural Similarity
- 2. Structure-Activity Relationship (SAR) Alerts
- 3. Physicochemical Properties and Read-Across Accuracy



#### **SAR Sensitization Alerts**

- Utilized two SAR programs Toxtree and Derek Nexus™
- Compared results to animal test data

| Compound of Interest                | Structure                        | Toxtree<br>SAR Alert? | Derek Nexus™<br>SAR Alert? | Animal Test<br>Data |
|-------------------------------------|----------------------------------|-----------------------|----------------------------|---------------------|
| Hydroxyethyl acrylate (target)      | H <sub>2</sub> C OH              | Yes                   | Yes                        | Sensitizer          |
| Ethyl acrylate                      | H <sub>2</sub> C CH <sub>3</sub> | Yes                   | Yes                        | Sensitizer          |
| Tetraethylene glycol diacrylate     | H <sub>2</sub> C CH <sub>2</sub> | Yes                   | Yes                        | Non-<br>Sensitizer  |
| Ethylene glycol<br>monopropyl ether | H <sub>3</sub> C OH              | No                    | No                         | Non-<br>Sensitizer  |



# **SAR Alerts – Comparing Evaluation Tools**

True Positive Rate: Hazard Present; Alert Present

Hazard Present; Alert Not Present





True Negative Rate: Hazard Not Present; Alert Not Present

Hazard Not Present; Alert Present







- 1. Chemical Structural Similarity
- 2. Structure-Activity Relationship (SAR) Alerts
- 3. Physicochemical Properties and Read-Across Accuracy



# **Adverse Outcome Pathway for Skin Sensitization**



**Exposure/Dermal Absorption based on chemical structure and properties** 



# **Physicochemical Property Exclusion Criteria**

- Refined surrogate selection approach by considering physicochemical data and SAR alerts relative to target chemical
  - Molecular weight (excluded if greater than 2x that of target)
  - Aqueous solubility (excluded if less than 1/1000<sup>th</sup> of target)
  - Vapor pressure (excluded if greater than 2000x that of target)
  - ChemMine Similarity Score (excluded if less than 0.1)
  - SAR Alerts (include only those that trigger SAR alerts in both Toxtree and Derek Nexus™ - consistent with target)





# **Read-Across Accuracy**



- Number of proposed surrogates decreased from 28 to 11
- Improved accuracy of read-across approach
  - Original test set: 15 out of 28 chemicals (54%) accurately matched hazard
  - Refined test set: 11 out of 11 chemicals (100%) accurately matched hazard



#### **Conclusions and Future Work**

- Endpoint-specific read-across can be used to bolster product safety evaluations when multiple tools and information sources are carefully implemented to fill data gaps.
- Robust chemical read-across is not necessarily one-size-fitsall.
- Agencies developing read-across guidance should consider that read-across approaches can be tailored to specific criteria and needs.
- Supporting case studies could be used justify read-across for TSCA (e.g., PMNs).



#### **References and Resources**

Backman, TW; Cao, Y; Girke, T. 2011. "ChemMine tools: An online service for analyzing and clustering small molecules." Nucleic Acids Res. 39(Web Server issue):W486-W491. doi: 10.1093/nar/gkr320.

Bjorkner, B. 1984. "The sensitizing capacity of multifunctional acrylates in the guinea pig. "Contact Dermatitis 11(4):236-246. doi: 10.1111/j.1600-0536.1984.tb00990.x.

Cohen, JM; Rice, JW; Lewandowski, TA. 2018. "Expanding the Toolbox: Hazard-Screening Methods and Tools for Identifying Safer Chemicals in Green Product Design." *ACS Sustainable Chem. Eng.* 6(2):1941-1950.

European Chemicals Agency (ECHA). 2016. "REACH dossier for 2-(propyloxy)ethanol (CAS No. 2807-30-9)." Accessed at https://www.echa.europa.eu/web/guest/registration-dossier/-/registered-dossier/5863/1.

Ideaconsult Ltd. 2015. "Toxtree - Toxic Hazard Estimation by decision tree approach." Accessed at http://toxtree.sourceforge.net.

Ideaconsult Ltd. 2016. "Toxmatch." Accessed at https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive\_toxicology/qsar\_tools/toxmatch.

Lhasa Ltd. 2016. "Derek Nexus." Accessed at https://www.lhasalimited.org/products/dereknexus.htm.

National Library of Medicine (NLM) 2016. "ChemIDplus: A TOXNET database." Accessed at http://chem.sis.nlm.nih.gov/chemidplus/.



# Thank you

# jrice@gradientcorp.com

James W. Rice, Ph.D.
Gradient
20 University Road, Cambridge, Massachusetts, USA

<a href="https://gradientcorp.com/working-at-gradient.html">www.gradientcorp.com/working-at-gradient.html</a>

