

1

"Complementary tools for the identification and quantification of total and specific PFAS: LC-HRMS, SFC, CIC and ¹⁹F-NMR"

Dr. Diana S. Aga October 6, 2023 dianaaga@buffalo.edu Department of Chemistry, University at Buffalo RENEW Institute, University at Buffalo

Having the right tools is key to PFAS Analysis

Chromatography with Mass spectrometry (ion-trap, triple quad, Q-ToF, Orbitrap)

LC/MS/MS and GC/MS/MS

Target and Non-target Analysis

...Trace analysis of priority compounds **Targeted Analysis** Triple Quad LC-MS/MS System 12.6 min 351-->271 10.4 min 203-->129 16.7 min 202-->124 19.9 min 295-->145 22.8 min 305-->169 E1-3S 12.1 min 349-->269 Dichlorvos 17.0 min 221-->109 β-E2-3G 10.6 min 447-->325 E1 20.0 min 269-->145 Cournapho 23.0 min 363-->227 Clothianidin 13.3 min 250-->169 Atrazine 18.3 min 216-->174 60 Antibiotics E1-3G 10.9 min 445-->269 Ethprop 21.0 min 243-->131 Cycloate 23.5 min 216-->83 BPA 18.2 min 227-->212 Imidacloprid 13.9 min 256-->209 4-OP 24.0 min 205-->133 EE2-3G 11.0 min 471-->295 Metolachio 21.7 min 284-->252 Thermo TSQ **55** Pesticides Prometon 18.7min 226-->142 Alachlor 21.6 min 270-->238 Dimethoate 14.4 min 230-->199 Quantum Bromacil 11.4 min 261-->205 Chlorpyrifo 25.0 min 350-->198 40 PFAS Ultra Acetamiprid 14.7 min 223-->126 β-E2-17S 11.5 min 351-->97 J-E2 19.2 min 271-->145 Acetochlor 21.7 min 270-->224 4-NP 25.2 min 219-->133 Fipronil 22.3 min 435-->330 β-E2-3S 12.0 min 351-->271 α-E2 19.6 min 271-->145 E3 15.4 min 287-->171 - 27.2 min 315-->169 12 13 14 15 1 22 23 24 25 26 27 14 15 16 17 18 19 19 20 21 22 23 24 2 21 22 23 24 25 26 27 28 Retention time (min)

Non-targeted Analysis

Ъ

...What else could be present?

EPA Toxi Chemspider

¹⁹F-NMR for PFAS analysis

HAZARDOUS

LETTER

Contents lists available at ScienceDirect

Journal of Hazardous Materials Letters

journal homepage: www.elsevier.com/locate/hazl

Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy

Dino Camdzic, Rebecca A. Dickman, Diana S. Aga * Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States

- ¹⁹F-NMR can be used to characterize and quantify PFAS with minimal background signal interferences at the chemical shifts expected for PFAS.
- Intensity of the terminal -CF₃ signal can be used to determine the total PFAS regardless of headgroup.

analytical chemistry

pubs.acs.org/ac

Quantitation of Total PFAS Including Trifluoroacetic Acid with Fluorine Nuclear Magnetic Resonance Spectroscopy

Dino Camdzic,[‡] Rebecca A. Dickman,[‡] Abigail S. Joyce, Joshua S. Wallace, P. Lee Ferguson, and Diana S. Aga*

Total PFAS – ¹⁹F-NMR

Ф

Utilizes supercritical fluids as the mobile phase

- Combines properties of both gas and liquid chromatography
- Supercritical fluids have viscosities similar to those of gases
- Supercritical fluids have densities much closer to that of a liquid

densities much closer to that

Advantages of SFC

- Enhanced isomer separation
- Shorter analysis time
- Environmentally friendly
- Reduced matrix effects

Compound	Critical Temperature (°C)	Critical Pressure (atm)
carbon dioxide	31.3	72.9
ethane	32.4	48.3
nitrous oxide	36.5	71.4
ammonia	132.3	111.3
diethyl ether	193.6	36.3
isopropanol	235.3	47.0
methanol	240.5	78.9
ethanol	243.4	63.0
water	374.4	226.8

PFAS chromatograms: SFC-MS vs. LC-MS

PFSAs detected in Wastewater Activated Sludge (WAS)

Concentrations calculated by external calibration curve

	PFAS name		Concentration (ppb)
Perfluorinated carboxylates (PFCAs)	Trifluoroacetic acid	TFA	0.21
	Perfluorobutanoic acid	PFBA	0.10
	Perfluoropentanoic acid	PFPeA	0.19
	Perfluorooctanoic acid	PFOA	0.21
	Perfluorodecanoic acid	PFDA	0.016
Perfluoroalkyl sulfonates (PFSAs)	Perfluorobutane sulfonate	PFBS	0.017
	Perfluorohexane sulfonate	PFHxS	0.088
	Perfluorooctane sulfonate	PFOS	0.19 13

Combustion Ion Chromatography (CIC)

CIC instrument

Schematic diagram of a combustion ion chromatography¹

1. ThermoFisher Scientific. Combustion IC system, 2022

Sample Ion Chromatogram

Workflow for Biosolids analysis

LC-IMS-QTOF-MS

ч

Liquid Chromatography-Ion Mobility Spectrometry- Quadrupole Time of Flight-Mass Spectrometry

- Utilizes a circular ion mobility cell to trap and manipulate ions in a continuous circular path, allowing for improved separation based on the collision cross section (CCS) of a molecule.
- Resolve isomers of small and large molecules using multi pass feature of the Cyclic IMS.

Cyclic Ion Mobility: Isomer separation of perfluorohexane sulfonic acid (PFHxS)

Ф

Cyclic Ion Mobility: Isomer separation of perfluorohexane sulfonic acid (PFHxS)- 5 passes

Ustinguishing Isomers by IMS and MS fragmentation

Cyclic Ion Mobility: PFHxS standard vs. Leachate sample

Ъ

Techniques	Advantages	Limitations
¹⁹ F-NMR	 Quantification of PFAS without standards Not prone to matrix effects Simple sample preparation 	 Very high detection limits Not suitable for trace analysis
SFC-MS	 Low solvent consumption Faster analysis time Retains ultra-short PFAS 	 Limited selection of column and mobile phase Instrument not frequently available
CIC	 Low solvent consumption Can analyze solid ad liquid samples Provides total F and adsorbable PFAS 	Lack of structural information
LC-IMS-HRMS	 Separation of multiple isomers Suitable for non-target (unknown) analysis 	Limited library for CCS valuesInstrument not frequently available

Acknowledgements

- Dr. Joshua S. Wallace
 - Aga Lab members: JM Aguilar Jonathan Antle Damalka Balasuriya Dino Camdzic Dulan Edirinsinghe Zach Gernold Lahiruni Halwatura Paige Montgomery Jonathan Navarro Ramos Karla Ríos Bonilla Mindula Wijayahena

Award # R01ES032717

Ъ

National Institute of Environmental Health Sciences Your Environment. Your Health. University at Buffalo

Research and Education in eNergy, Environment and Water (RENEW)