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Constrained Mass Removal & Plume 

Persistence
 

“significant limitations with currently available remedial 
technologies persist that make achievement of MCLs throughout 
the aquifer unlikely at most complex groundwater sites in a time 
frame of 50-100 years.”* 

“Complex” groundwater sites are defined as those that have DNAPL 
present (e.g., chlorinated solvents) and that have substantial subsurface 
heterogeneity, including the presence of extensive lower-permeability 
units or fractured media. 

• Why does this situation exist? 

• What options are available? 

*National Research Council (NRC). 2013. Alternatives for 
Managing the Nation's Complex Contaminated Groundwater 
Sites. Wash., DC 2 



Outline
 

•	 Chlorinated-solvent sites- prevalence and issues 

•	 Constrained mass removal and plume persistence: Impact of 
DNAPL source zones 

•	 Constrained mass removal and plume persistence: Impact of 
mass storage in lower-K zones & hydraulic factors 

•	 Constrained mass removal and plume persistence: Impact of 
sorbed mass 

•	 Summary 
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~1600 SUPERFUND Sites
 

~80% have Chlorinated-Solvent Contaminants
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Arizona Sites
 

Chlorinated-
Solvents 
Presence: 

State: 31/35 

Federal: 13/15 
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Groundwater Contamination Sites in Tucson
 

Chlorinated-Solvent Contaminants are Primary Concern 
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Groundwater Remediation 
Standard Method = Pump and Treat
 

Very effective for plume containment
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Impact of P&T on Water Resources
 

•	 Analysis for Tucson [Brusseau & Narter, 2013]- year 2010 

•	 Compare aggregate volume of groundwater extracted for all P&T 
systems to total metropolitan groundwater withdrawal 

•	 Total groundwater withdrawal for all P&T systems = 16.6 M m3 

•	 This is ~20% of the total groundwater withdrawal in Tucson 

•	 Treated water used primarily for potable water or re-injection 

•	 Represents ~6% of total potable water supply 
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Three Chlorinated-Solvent Sites in Arizona
 

• TCE is Primary COC 
• Very Low Retardation (R<2) 
• No Measurable Transformation Processes 
• V. Low Biogeochemical Attenuation Capacity 

Large Plumes 
(several km long) 

11 KM 

4.5 KM 
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Pump & Treat CMD Data
 

Composite Measure: 
CMD = Q * C 

- OU1  
Q = pumping rate
C = concentration 

~90% Reduction 
Currently ~ 1 kg/d 

Asymptotic conditions 

~2 equivalent pore volumes displaced 
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Constrained Mass Removal & Plume 

Persistence
 

Potential Factors: 
•	 Uncontrolled DNAPL Sources 

•	 Plume-scale Lower-K Zones and Mass Storage (diffusive mass 
transfer- “back diffusion”) 

•	 Plume-scale Sorbed-phase Mass Storage
 
(sorption/desorption processes)
 

•	 Hydraulic Factors (P&T well-field, etc) 

•	 Low Attenuation Capacity 

•	 Other (Institutional, Analytical, etc) 
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Constrained Mass Removal & Plume 
Persistence 

Need to Determine Relative Significance of 
Each Factor, and Site-dependent Functionality 

Long Known: 
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1989 



Tucson International 

Airport Area Superfund 


Site
 

•	 TCE/DCE Contamination 

Identified in 1981
 

•	 Site Placed on Superfund 
NPL in 1983 

•	 Pump and Treat started in 
1987 (south plume) 

•	 Source-zone Remediation 
efforts [SVE, ISCO] 

•	 UA Collaboration since 1993 
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Composite CMD: AFP44
 

1987 

High-resolution Temporal Data set 

Asymptotic conditions 

Start Pump & Treat 
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Constrained Mass Removal & Plume 

Persistence
 

Question: What is the relative significance of 

each of the various Persistence/Attenuation 

factors for this site? 

Conducted an integrated Laboratory, Field, 
and Modeling study 
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Plume-scale Modeling Effort
 

~50 km2 

Known Inputs 

Conduct series of 
scenario-testing 
sensitivity 
analyses 
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Impact of Transport Processes
 

K Variability & Diffusive Mass Transfer (back diffusion) 
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Impact of Transport Processes
 

Sorption-desorption (nonlinear, rate limited) 

[Sims include physical heterogeneity] 
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Impact of Transport Processes 
Controlling Factor for Early Phase DNAPL in Source zones 
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Source-zone Architecture, DNAPL 
Dissolution, and Mass Removal 

Multi-scale Investigations of Systems 
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APS 

~6 mm 
~10 cm ~2 m 

Pore Core Intermediate 



 

 

DNAPL Source Behavior 
Pore-scale Imaging: 10 um resolution 

1 2 3 41 
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Desorption Control 

NAPL Dissolution Control [1-4]: 
Non-uniform accessibility 

No-NAPL Expt 
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DNAPL Source Behavior 

Flow-cell Experiments 

DNAPL Sn Imaging 
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Pore Volume 

Control- Homogeneous 

Mixed Source 

Heterogeneous 

Heterogeneous-2 

Laboratory Experiments 
- Known DNAPL distributions 
- Permeability variability 
- Measure DNAPL in situ 
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DNAPL Source Behavior 

Variables: 

• Domain size 
[20 vs 10,000 m2] 

• Gradient & Q 
[natural vs induced] 

• Initial DNAPL Mass 

Field Data 
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AFP44- 3 

3 Hangers 

Dover- Surf 
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Data Analysis & Interpretation 
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Relative Time 

1:1 

Minimal Reduction 

Maximal Reduction 

- Employ contaminant mass discharge (CMD) 
metric 

- Determine relationship between reduction in 
mass discharge and reduction in mass 

- Enhances comparative analysis 
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DNAPL Source Behavior
 

Contaminant Mass Distribution [Accessibility] 
{source architecture, site age (mass removed)} 

Field Data Flow-cell Experiments 
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Post Source-zone Remediation
 

Persistence Factors: 

•	 Residual DNAPL Sources (incomplete removal/containment) 

•	 Plume-scale Lower-K Zones and Mass Storage (diffusive mass 
transfer- “back diffusion”) 

•	 Plume-scale Sorbed-phase Mass Storage
 
(sorption/desorption processes)
 

•	 Hydraulic Factors (P&T well-field, etc) 

•	 Other (Institutional, Analytical, etc) 
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Composite CMD: AFP44
 

SVE 
Start 

ISCO 
Start 

1987 

Impacts from Source Remediation efforts 

Current CMD = 
0.2 kg/d 

Pre SZR CMD = 
2 kg/d 

~90% Reduction 

ISCO 
End 

SVE 
End 
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Plume Persistence after Source 

Remediation
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Lower-permeability Zones & Diffusion 
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Fraction Mass Reduction 

Model Simulations 

Stochastic (random K fields) 
vs. 

Discrete (homogeneous, orthogonal) layers 
(MODFLOW) 
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Well-field Configuration 
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Model Simulations 

3–Layer system (Clay-Sand-Clay) 
[MODFLOW] 
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Sorption-Desorption Processes 

Extensive Elution Tailing 

• Observed for all media 

• Occurs with short contact times 

• Need continuous-distribution 
domain model 

Causative Mechanisms? 
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Sorption-Desorption Processes
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Sorption-Desorption Processes 

98-80% quartz, feldspars 
2-20% clay (montmorillonite- expanding) 
0.03% organic carbon 
0.02% hard carbon (kerogen, bc) 

Non-linear sorption 

Peak Shift = 
change in 
d-spacing 

AFP 44 
Sediment 

XRD Analysis: several AFP44 samples 
and 2 (mont) specimen controls 

Clay inter-layer d-spacing = ~0.3-0.6 nm 
TCE thickness = ~0.3 nm 
Increase in d-spacing for 
TCE treatment 

= ~0.4 nm 

TCE Intercalation [+ HCI] 

No apparent aging 
effect 
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Summary: 3 Hanger Site at TIAA 
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Hydraulic Source Control 

Plume Reduction = ~50% 

Identify Relevant Factors: 

1. Low-K Zones and DMT 
2. Source Residual 
3. Well-field Configuration 

[~2-3 pore volumes] 
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Summary: continued
 

•	 Source Zones- incomplete removal/containment of 
contamination, continuing source 

•	 Large, Persistent Plumes- contributing factors 

•	 Site “Architecture” and “Age” key factors 
–	 Subsurface properties (permeability field, flow field) 
–	 Contaminant distribution (phases, relative accessibility) 
–	 Change in contaminant distributions and accessibility as sites age 

•	 Alternatives to P&T ? 

•	 Long-term Site Management 
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