Evaluating Plant Uptake of Chemical Contaminants in Crops Grown Near Urban Gardening Sites for Human Health Risk Assessment

Sponsors of the Virtual Student Federal Service Internships

- Stuart Walker, Lisa Raterink and Michele Burgess, U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI), Assessment and Remediation Division (ARD), Science Policy Branch
- Jon Richards, U.S. Environmental Protection Agency, Superfund Division Restoration & Site Evaluation Branch, Region 4

Purpose

- Phase 3 of developing a quantitative approach towards establishing regional screening levels for chemicals for gardening scenarios
 - Comparison of Risk Assessment Parameters for Homegrown Produce in Various Models (epa.gov)
 - (https://www.clu-in.org/conf/tio/Plant-Uptake-Pathways_121922/default.cfm?expand=1#tabs-4)
- Identified data gap
 - > Uptake of chemicals in plants

Evaluating Food Consumption by Humans in State Models for Risk Assessments of Contaminated sites

The objective of the project is to obtain information that would be useful for evaluating potential updates to EPA's methods for risk assessment at Superfund sites by evaluating how state models address consumption by humans of food in gardening, farming, and hunting scenarios

Evaluate the uptake of chemical contaminants in edible vegetables, fruit, and herbs.

The project would involve research concerning the consumption of edible vegetables, fruit and herbs grown at Superfund sites. Personal and community gardens benefits the property and neighborhood by connecting cultures and encourage healthy eating habits while teaching useful skills. EPA receives numerous requests from communities near Superfund sites regarding the safety of eating vegetables, fruits and herbs grown in those soils. Guidance to assist health assessors and EPA risk assessors in answering those frequently asked questions. It is critical that better information regarding soil bioavailability and plant uptake be incorporated into Superfund human health risk assessment.

State Risk Assessor Questions

1)Are there currently any state-specific transfer models for chemical contaminants involved in plant uptake?

- 1a) If there are transfer models, what are their strengths and weaknesses?
- 1b) Are they data driven? Or what assumptions go into their creation?

1c) Are they public? Peer reviewed?

- 2) Is there a list of known contaminants involved in plant uptake for the state level?
- 2b) Are you aware of any federal sources (e.g., USDA, etc.)?
- 3) What database/s would you recommend we use for identifying patterns in rate of uptake
- for the contaminants?
- 4) Is there any specific way plants/contaminants are grouped within state models?
- 5) Is there any priority system within models for the contaminants?
- 6) Is aggregate uptake of contaminants with similar toxicity mechanisms taken into account?
- 7) Have you addressed irrigation of gardens or food crops with contaminated water?

7a) Does it depend on media such as soil and/or water or other parameters (e.g., concentration of contaminant in water) to determine if it is acceptable?

- 8) Are there contaminant- or class-specific models? Are the models comprehensive models?
- 9) Are there currently any state-specific transfer models for chemical contaminants involved

in how much soil, or its mass, adheres to the plant surface?

Evaluating Plant Uptake of Chemical Contaminants in Crops Grown Near Urban Gardening Sites for Human Health Risk Assessment

Ashley DeJuliannie^{a,b}, Aaliyah Pécou^{a,c}, and Alison Flynt^{a,d}

a Virtual Student Federal Service Internship Program, Department of State, Washington, DC b Environmental Metrology and Policy Master's Degree/Chemistry Ph.D. Dual Program, Georgetown University, Washington, DC c Environmental Science Bachelor's Degree Program, University of Arizona, Tuscon, AZ d Molecular Biology Ph.D. Program, University of Wyoming, Laramie, WY

Project Description – 1st Year Report

"Comparison of Risk Assessment Parameters for Homegrown Produce in Various Models" by EPA intern Amanda Balogh

• https://semspub.epa.gov/work/HQ/100002896.pdf Objective:

- Evaluate the homegrown produce portion of several government issued international models for assessing the risks from chemicals at contaminated sites.
- The report focused on three models with information on how to conduct site-specific chemical risk assessments that include the human consumption of homegrown produce:
 - the Contaminated Land Exposure Assessment (CLEA) model from the United Kingdom's Environment Agency
 - the S-Risk model from Belgium
 - the CSOIL model from the Netherlands

Project Description – 2nd Year Report

"Evaluating Plant Uptake Pathways of Chemical Contaminants in State Models for Risk Assessments of Contaminated Sites"

Objective:

- Evaluate current state models and parameters used in assessing the plant uptake pathways of chemical contaminants found in urban agriculture (UA) scenarios.
- Identify food exposure risks associated with contaminated urban sites.

Purpose:

- EPA receives numerous requests from communities near Superfund sites regarding the safety of eating vegetables, fruits and herbs grown in those soils.
- Guidance to assist health assessors and EPA risk assessors in answering those frequently asked questions.
- It is critical that better information regarding soil bioavailability and plant uptake be incorporated into Superfund human health risk assessment.

Poll Time!

Common Anthropogenic Sources of Contaminants of Emerging Concern (CEC)¹

Source	Contaminant Type		
	Trace Elements	Persistent Organic Pollutants (POPS)	
Paint (before 1978)	Pb		
High traffic areas	Pb, Zn	PAHs	
Treated lumber	As, Cr, Cu		
Burning wastes		PAHs, Dioxins	
Contaminated manure	Cu, Zn		
Coal production	Mo, S, Se	PAHs, Dioxins	
Sewage sludge	Cd, Cu, Zn, Pb		
Petroleum refining/spills	РЬ	PAHs, MAHs	
Pesticides	Pb, As, Hg	OC Compounds	
Commercial/industrial site use	Pb, As, Ba, Cd, Cr, Hg, Zn	PAHs, MAHs, PBDEs, PCBs, PFAS	

Lead (Pb); Zinc (Zn); Arsenic (As); Chromium (Cr); Copper (Cu); Molybdenum (Mo); Sulfur (S); Selenium (Se); Cadmium (Cd); Mercury (Hg); Barium (Ba); Organochlorine (OC); Polybrominated diphenyl ethers (PBDEs); Polychlorinated biphenyls (PCBs); Per- and polyfluoroalkyl substances (PFAS)

State Specific CECs: Lead²

State Specific CECs: Zinc²

State Specific CECs: Arsenic²

State Specific CECs: Copper²

State Specific CECs: Nickel²

State Specific CECs: Molybdenum²

State Specific CECs: Selenium²

State Specific CECs: Cadmium²

Cadmium

State Specific CECs: Mercury²

State Specific CECs: Chromium²

State Specific CECs: Barium²

Poll Time!

Human Health Risk Assessment of CEC Exposure

Risk Assessment for Potential Exposure to CECs in Urban Agriculture³

- Exposure routes to CECs in urban soils:
 - Ingestion
 - \circ Inhalation
 - Dermal

Exposure Diagram for Contaminants of Emerging Concern in Urban Agriculture Scenario

Risk Assessment for Potential Exposure to CECs in Urban Agriculture³

Organ/System	Observed Effects			
Cardiovascular	Heart attack, heart failure, rapid heart rate			
Dermal	Contact dermatitis, skin ulcers, skin discoloration, warts, hair loss, tooth decay, nail loss, lesions, chloracne,			
	hyperpigmentation			
Developmental	Decreased IQ, cognitive delays, delayed growth,			
Endocrine	Endocrine system disruption			
Gastrointestinal	Nausea, abdominal pain, vomiting, diarrhea			
Hematologic	Anemia, copper deficiency			
Hepatic	Liver damage, liver dysfunction, liver failure, liver cancer			
Immune	Fever, decreased white blood cell count			
Musculoskeletal	Joint pain, muscle aches, decreased bone strength, muscle weakness			
Nervous	Mood disorders, confusion, headaches, fatigue, dizziness, paralysis, cognitive dysfunction, memory loss, tremors,			
	decreased mental alertness, unconsciousness, drowsiness, hearing loss, lightheadedness, impulsivity, spasms,			
	convulsions, seizures, acute encephalopathy, decreased attention span, behavioral abnormalities			
Ocular	Vision loss, color vision loss			
Reproductive	Sperm abnormalities, miscarriage, infertility			
Urinary	Kidney failure, kidney disease, elevated uric acid levels			
Respiratory	Cough, shortness of breath/difficulty breathing, bronchitis, lung cancer, asthma attacks, acute respiratory distress,			
	throat irritation, nasal irritation			
Other	Decreased bodyweight			

Poll Time!

Plant Uptake of CECs from Urban Soil

Urban vs Rural Soil Systems

Potential for uptake by and accumulation of CECs within the edible parts of crop plants⁴

	Environmental factors affecting t	the potential f	for CECs' uptake by plants			
	+		-			
	high temperature	\leftrightarrow	low temperature			
factors affecting	high wind speed	\leftrightarrow	calm wind - low wind speed			
evapotranspirati –	low air humudity	\leftrightarrow	high air humitidy			
on	hot and dry agricultural areas	\leftrightarrow	cold continental agricultural areas			
	adequate soil moisture	\leftrightarrow	drought			
	ES .		Plant physiology p + plant genotype (genus and spe	aramete	ers affecting the potential for CECs' up v vegetables ↔ crops with small root	take by plants
Acrial	Roots C	àctors affectin plants evaporation rat	g growing season duri healthy plants (non-str high plant evapotranspiratio high net irrigation red low lipid content	ng summ essed pla n (high K quirement in roots	ther growing season du timts) \leftrightarrow growing season du stress to values) \leftrightarrow low plant evapotrans ts \leftrightarrow low net irrigat \leftrightarrow high lipid co	ed plants piration (low Kc values) ion reguirements ontent in roots
parts of			Soil properties affecting the	potential	l for CECs' uptake by plants	
plant			+		-	
			low levels of SOM	\leftrightarrow	high levels of SOM	
Soil			sandy soils	\leftrightarrow	clay soils	
SUI			sandy soils	\leftrightarrow	loamy soils	
			acidic pH (pH <pka cec)<="" of="" td=""><td>\leftrightarrow</td><td>basic pH (pH> pKa of CEC)</td><td></td></pka>	\leftrightarrow	basic pH (pH> pKa of CEC)	
	다는 여행한 전에는 것은 것은 것은 것이라는 것이다.		aerated soils (aerobic conditions)	\leftrightarrow V	waterlogged soils (anaerobic conditions)	

Potential for uptake by and accumulation of CECs within the edible parts of crop plants⁴

Physiochemical Properties of Pollutants

+	_
Low molecular weight (MW)	High molecular weight (MW)
Hydrophilic	Hydrophobic

Transpiration stream concentration factor (TSCF): the ratio of chemical concentration in the transpiration stream to to the concentration found in the external solution.

Plant Uptake Models

Contaminant uptake and translocation by plants⁵

Contaminant uptake by plants generally follow two main uptake pathways:

(i) Extracellular transport

- Depends on nature of elements only
- Physiological conditions have no effect on uptake rate

(ii) Intracellular transport

- Depends on:
 - Pollutant factors
 - Plant biological characteristics
 - Environmental media factors

Plant Uptake Models

Contaminant uptake and translocation by plants⁵

5. Toxicity of organic pollutants to root cells: Inordinate mitotic division.

Plant Uptake Models

Quantifying Uptake of CECs Across Plant Species⁵

- Fruit vegetables growing under control greenhouse conditions (i.e. cucumber, green beans, tomatoes) have higher potential to uptake and accumulate CECs in their edible parts compared to plants cultivated in open fields.
 - Due to:
 - longer growing and irrigation period
 - higher net irrigation requirements (NIR) values
 - water requirements met solely with irrigation-no precipitation events occur in protected agriculture.
- Fruit vegetable crops uptake and accumulate CECs based on their reported bioconcentration factor (BCF) and net irrigation requirements (NIR) values

cucumber > okra > tomatoes > green beans > eggplants > pepper > melons > marrows > watermelons > artichokes > peas

Quantifying Uptake of CECs Across Plant Species⁵

Highest potential for CEC uptake by plants	Celery, spinach, lettuce, cabbage, carrots, radish, late-season potatoes, spring potatoes, mid-season potatoes, cucumber, green beans, okra, marrows, tomatoes, watermelons, melons
Lowest potential for CEC uptake by plants	pepper, eggplant, maize, alfalfa, peanuts, haricot beans, wheat, barley, bananas, walnut, citrus, avocado, fruit trees, pistachio, table olives, almonds, table grapes

Poll Time!

Remediation of Contaminated Urban Soil⁶

- Remediation methods:
 - Bioremediation- Cost-effective, minimally invasive, beginner-friendly
 - Phytoremediation
 - Mycoremediation
 - Other Methods- More expensive, more invasive, requires expert knowledge
 - Soil washing
 - Thermal treatment
 - Electrokinetics

Remediation of Contaminated Urban Soil⁷⁻¹⁸

- Phytoremediation
 - Utilizes natural plant processes to remove or degrade soil pollutants.
 - Phytoextraction, phytodegradation, & phytostabilization are most applicable techniques in urban soil
- Studies on phytoremediation of CECs:
 - Trace elements
 - Dioxins
 - OCPs
 - PCBs
 - PFAS
- Limitations:
 - Time- Phytoremediation can take years.
 - Severity- Contamination must be low-moderate otherwise plants will not survive.

(Krishnasamy et al. 2022)

Remediation of Contaminated Urban Soil¹⁹⁻²⁵

- Mycoremediation
 - Utilizes fungi to remove or degrade soil pollutants.
- Studies on mycoremediation of CECs
 - Petroleum products
 - Dioxins
 - Trace elements
 - PFAS
- Limitations:
 - Lack of research- Mycoremediation is a fairly new concept and requires more research studies to determine effectiveness.

Biodegradation of Pollutants via Mycoremediation

Best Practices²⁶

- Research the area in which you will be gardening before you start
- Get your soil tested
- Research pesticides and fertilizers that you will be using for any concerning chemicals
- Research what plants absorb CECs more than others
- Use soil amendment to stabilize contaminants in your soil
- Remove all contaminated soil and replace it with clean soil
- Use bioremediation techniques (i.e. phytoremediation, mycoremediation)
- When in doubt, grow your plants in pots or other means of above ground planting

Guidance for Urban Growers

Soil Testing²⁷⁻²⁹

- Trace Elements
 - Commercially sold kits are available for purchase online to test your soil for certain contaminants at home
 - Does not have a wide range of contaminants they can test for
 - Soil samples can also be sent to state universities that have an agricultural program that offers soil testing to the public or privately owned labs that conduct soil testing.
 - Methods Used: ICP-MS and ICP-OES

Guidance for Urban Growers

Soil Testing²⁷⁻²⁹

• Persistent Organic Pollutants

- Testing for persistent organic pollutants can be done by sending soil samples to specific labs that have the ability to test for these kinds of pollutants. This can be done through a few different methods:
 - Methods Used: GC-MS, LC-MS, HPLC, IC-MS

Regional Trends of Common Crops Grown in Urban Areas

- **Region 1**: Maine, New Hampshire, Massachusetts, Vermont, Rhode Island, Connecticut
- **Region 2**: New York, New Jersey
- **Region 3**: Pennsylvania, Delaware, Maryland, Virginia, West Virginia
- **Region 4**: Kentucky, Tennessee, North Carolina, South Carolina, Mississippi, Alabama, Georgia, Florida
- **Region 5**: Ohio, Michigan, Indiana, Illinois, Wisconsin, Minnesota
- **Region 6**: Louisiana, Arkansas, Oklahoma, Texas, New Mexico
- Region 7: Nebraska, Kansas, Missouri, Iowa
- **Region 8**: Montana, North Dakota, South Dakota, Wyoming, Utah, Colorado
- **Region 9**: Arizona, Nevada, California, Hawaii
- Region 10:Alaska, Washington, Oregon, Idaho

Figure 1: EPA Regions of the United States

Research Gaps

- 1. Plant uptake models that can encompass all classes of contaminants
- 2. How can we quantify the bioavailability of individual contaminants across plant species?
- 3. State specific plant uptake models (what are individual states using?)
- 4. What role do non-EPA agencies with authority to protect food supply, agricultural resources,

and public health have in developing baseline standards for food production?

5. A better scope on variability in plant uptake and exposure risk of CECs within plant species

Poll Time!

Contact Information

Ashley DeJuliannie

VSFS Intern / Georgetown University

ard123@georgetown.edu

Aaliyah Pecou

VSFS Intern / University of Arizona

aapecou@gmail.com

Alison Flynt

VSFS Intern / University of Wyoming

aflynt1@uwyo.edu

Please reach out with any questions and/or information that may help with phase 4 of this project!

References

- 1. Lupolt, S.N. et al. The Safe Urban Harvests Study: A Community-Driven Cross-Sectional Assessment of Metals in Soil, Irrigation Water, and Produce from Urban Farms and Gardens in Baltimore, Maryland. *Environ Health Perspect.* **2021**, *129*(11), 1-12. DOI: 10.1289/EHP9431
- 2. Smith, B. et al. Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous United States. https://pubs.usgs.gov/sir/2017/5118/sir20175118_element.php?el=29
- 3. Moradi, A., Honarjoo, N., Najafi, P., & Fallahzade, J. (2016). A human health risk assessment of soil and crops contaminated by heavy metals in industrial regions, central Iran. *Human and ecological risk assessment: An international journal*, *22*(1), 153-167.
- 4. Christou, A., Papadavid, G., Dalias, P., Fotopoulos, V., Michael, C., Bayona, J.M., Piña, B., Fatta-Kassinos, D., 2019a. Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environ. Res. 170, 422-432.
- 5. Cheng Z, Yao F, Yuan-wang L, Hui-qing C, Zhao-jun L, Jian-ming X. 2017. Uptake and translocation of organic pollutants in plants: a review. Journal of Integrative Agriculture. 16(8), 1659-1668.
- 6. Bwapwa, J. K. (2022). Factors affecting the bioremediation of industrial and domestic wastewaters. In Microbial biodegradation and bioremediation (pp. 461-472). Elsevier.
- 7. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. *Chemosphere*, 91(7), 869-881.
- 8. Mehes-Smith, M., Nkongolo, K., & Cholewa, E. (2013). Coping mechanisms of plants to metal contaminated soil. Environmental change and sustainability, 54, 53-90.
- 9. Campanellaand, B., & Paul, R. (2000). Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. International Journal of Phytoremediation, 2(2), 145-158.
- 10. Huelster, A., Mueller, J. F., & Marschner, H. (1994). Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environmental science & technology, 28(6), 1110-1115.
- 11. Nhung, N. T. H., Nguyen, X. T. T., Long, V. D., Wei, Y., & Fujita, T. (2022). A review of soil contaminated with dioxins and biodegradation technologies: current status and future prospects. Toxics, 10(6), 278.

References

12. Zhang, H., Chen, J., Ni, Y., Zhang, Q., & Zhao, L. (2009). Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. Chemosphere, 76(6), 740-746.

13. Singh, T., & Singh, D. K. (2017). Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. International journal of phytoremediation, 19(9), 834-843.

14. Beaudette, L. A., Ward, O. P., Pickard, M. A., & Fedorak, P. M. (2000). Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Letters in applied microbiology, 30(2), 155-160.

15. Darlington, R., Barth, E., & McKernan, J. (2018). The challenges of PFAS remediation. The Military Engineer, 110(712), 58.

- 16. Evangelou, M. W., & Robinson, B. H. (2022). The phytomanagement of PFAS-contaminated land. International Journal of Environmental Research and Public Health, 19(11), 6817.
- 17. Lesmeister, L., Lange, F. T., Breuer, J., Biegel-Engler, A., Giese, E., & Scheurer, M. (2021). Extending the knowledge about PFAS bioaccumulation factors for agricultural plants-a review. Science of The Total Environment, 766, 142640.
- 18. Shahsavari, E., Rouch, D., Khudur, L. S., Thomas, D., Aburto-Medina, A., & Ball, A. S. (2021). Challenges and current status of the biological treatment of PFAS-contaminated soils. *Frontiers in Bioengineering and Biotechnology*, *8*, 602040.
- 19. Moghimi, H., Heidary Tabar, R., & Hamedi, J. (2017). Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World Journal of Microbiology and Biotechnology, 33, 1-10.
- 20. Nhung, N. T. H., Nguyen, X. T. T., Long, V. D., Wei, Y., & Fujita, T. (2022). A review of soil contaminated with dioxins and biodegradation technologies: current status and future prospects. Toxics, 10(6), 278.
- 21. Pinedo-Rivilla, C., Aleu, J., & Collado, I. G. (2009). Pollutants biodegradation by fungi. Current organic chemistry, 13(12), 1194-1214.
- 22. Tachibana, S., Kiyota, Y., & Koga, M. (2007). Bioremediation of dioxin-contaminated soil by fungi screened from Nature. Pakistan Journal of Biological Sciences: PJBS, 10(3), 486-491.
- 23. Akhtar, N., & Mannan, M. A. U. (2020). Mycoremediation: expunging environmental pollutants. Biotechnology reports, 26, e00452
- 24. Vaseem, H., Singh, V. K., & Singh, M. P. (2017). Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus. Ecotoxicology and environmental safety, 145, 42-49.

References

25. Shahsavari, E., Rouch, D., Khudur, L. S., Thomas, D., Aburto-Medina, A., & Ball, A. S. (2021). Challenges and current status of the biological treatment of PFAS-contaminated soils. *Frontiers in Bioengineering and Biotechnology*, *8*, 602040.

26. EPA (2011) https://www.epa.gov/sites/default/files/2014-03/documents/urban_gardening_fina_fact_sheet.pdf

27. https://labmodules.soilweb.ca/trace-elements/

28.https://www.agilent.com/en/support/atomic-spectroscopy/inductively-coupled-plasma-optical-emission-spectroscopy-icp-oes/icp-oes-faq#:~:text=Inductively%20Coupled%20Plasma%20Optical%20Emission%20spectroscopy%20(ICP%2DOES)%20is,state%20to%20an%20excited %20state.

29. https://www.ohsu.edu/elemental-analysis-core/icp-ms-technique