Evaluating Plant Uptake of Chemical
Contaminants in Crops Grown Near Urban
Gardening Sites for Human Health Risk
Assessment

<» EPA Page-1



Sponsors of the Virtual Student Federal Service
Internships

> Stuart Walker, Lisa Raterink and Michele Burgess, U.S.
Environmental Protection Agency, Office of Superfund
Remediation and Technolo%\)élnnovaltlon (OSRTI), Assessment
and Remediation Division (ARD), Science Policy Branch

> Jon Richards, U.S. Environmental Protection Agency, Superfund
Division Restoration & Site Evaluation Branch, Region 4

< EPA Page-2



Purpose

> Phase 3 of developing a quantitative approach towards
establishing regional screening levels for chemicals for

gardening scenarios

> Comparison of Risk Assessment Parameters for Homegrown Produce in Various Models

(epa.gov)
>  (https://www.clu-in.org/conf/tio/Plant-Uptake-
Pathways 121922/default.cfm?expand=1#tabs-4)

> |dentified data gap
> Uptake of chemicals in plants

< EPA


https://semspub.epa.gov/work/HQ/100002896.pdf
https://semspub.epa.gov/work/HQ/100002896.pdf
https://www.clu-in.org/conf/tio/Plant-Uptake-Pathways_121922/default.cfm?expand=1#tabs-4
https://www.clu-in.org/conf/tio/Plant-Uptake-Pathways_121922/default.cfm?expand=1#tabs-4

Evaluating Food Consumption by Humans
in State Models for Risk Assessments of
Contaminated sites

The objective of the project is to obtain information
that would be useful for evaluating potential
updates to EPA’s methods for risk assessment at
Superfund sites by evaluating how state models
address consumption by humans of food in
gardening, farming, and hunting scenarios
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Evaluate the uptake of chemical
contaminants in edible vegetables, fruit,
and herbs.

The project would involve research concerning the
consumption of edible vegetables, fruit and herbs grown
at Superfund sites. Personal and community gardens
benefits the property and neighborhood by connecting
cultures and encourage healthy eating habits while
teaching useful skills. EPA receives numerous requests
from communities near Superfund sites regarding the
safety of eating vegetables, fruits and herbs grown in
those soils. Guidance to assist health assessors and EPA
risk assessors in answering those frequently asked
questions. It is critical that better information regarding
soil bioavailability and plant uptake be incorporated into
Superfund human health risk assessment.
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State Risk Assessor Questions

1)Are there currently any state-specific transfer models for chemical contaminants involved
in plant uptake?

1a) If there are transfer models, what are their strengths and weaknesses?

1b) Are they data driven? Or what assumptions go into their creation?

1c) Are they public? Peer reviewed?

2) Is there a list of known contaminants involved in plant uptake for the state level?
2b) Are you aware of any federal sources (e.g., USDA, etc.)?
3) What database/s would you recommend we use for identifying patterns in rate of uptake
for the contaminants?
4) Is there any specific way plants/contaminants are grouped within state models?
5) Is there any priority system within models for the contaminants?
6) Is aggregate uptake of contaminants with similar toxicity mechanisms taken into
account?
7) Have you addressed irrigation of gardens or food crops with contaminated water?
7a) Does it depend on media such as soil and/or water or other parameters (e.g., concentration of contaminant in water) to determine if it
is acceptable?
8) Are there contaminant- or class-specific models? Are the models comprehensive models?
9) Are there currently any state-specific transfer models for chemical contaminants involved
in how much soil, or its mass, adheres to the plant surface?
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Project Description — 1% Year Report

“Comparison of Risk Assessment Parameters for Homegrown
Produce in Various Models” by EPA intern Amanda Balogh
e https://semspub.epa.gov/work/HQ/100002896.pdf

Objective:

e Evaluate the homegrown produce portion of several government issued international models for
assessing the risks from chemicals at contaminated sites.

e The report focused on three models with information on how to conduct site-specific chemical
risk assessments that include the human consumption of homegrown produce:

o the Contaminated Land Exposure Assessment (CLEA) model from the United Kingdom’s
Environment Agency

o the S-Risk model from Belgium
o the CSOIL model from the Netherlands


https://semspub.epa.gov/work/HQ/100002896.pdf

Project Description — 2" Year Report

“Evaluating Plant Uptake Pathways of Chemical Contaminants in State Models for Risk Assessments of
Contaminated Sites”

Objective:

Evaluate current state models and parameters used in assessing the plant uptake pathways of chemical
contaminants found in urban agriculture (UA) scenarios.

Identify food exposure risks associated with contaminated urban sites.

EPA receives numerous requests from communities near Superfund sites regarding the safety of eating
vegetables, fruits and herbs grown in those soils.

Guidance to assist health assessors and EPA risk assessors in answering those frequently asked questions.
It is critical that better information regarding soil bioavailability and plant uptake be incorporated into

Superfund human health risk assessment.
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Common Anthropogenic Sources of Contaminants of Emerging Concern (CEC)!

Source Contaminant Type
Trace Elements Persistent Organic Pollutants (POPS)

Paint (before 1978) Pb
High traffic areas Pb, Zn PAHs
Treated lumber As, Cr, Cu
Burning wastes PAHs, Dioxins
Contaminated manure Cu, Zn
Coal production Mo, S, Se PAHSs, Dioxins
Sewage sludge Cd, Cu, Zn, Pb
Petroleum refining/spills Pb PAHs, MAHs
Pesticides Pb, As, Hg OC Compounds
Commercial/industrial site use Pb, As, Ba, Cd, Cr, Hg, Zn PAHs, MAHs, PBDEs, PCBs, PFAS

Lead (Pb); Zinc (Zn); Arsenic (As); Chromium (Cr); Copper (Cu); Molybdenum (Mo); Sulfur (S); Selenium (Se); Cadmium (Cd); Mercury
(Hg); Barium (Ba); Organochlorine (OC); Polybrominated diphenyl ethers (PBDEs); Polychlorinated biphenyls (PCBs); Per- and
polyfluoroalkyl substances (PFAS)



State Specific CECs in Urban Gardening Sites

State Specific CECs: Lead?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Zinc?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Arsenic?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Copper?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Nickel?
Nickel
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Molybdenum?
Molybdenum
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Selenium?

Selenium
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Cadmium?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Mercury?
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Chromium?

Chromium
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State Specific CECs in Urban Gardening Sites

State Specific CECs: Barium?
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Human Health Risk Assessment of CEC Exposure

Risk Assessment for Potential Exposure to CECs in Urban Agriculture?

e Exposure routes to CECs in urban

soils:
Exposure Diagram for Contaminants of

Emerging Concern in Urban Agriculture
o Inhalation Scenario

o Dermal

o Ingestion

Contaminated crops

Ingestion of contaminated l
food or soil Inhalation of contaminated

. soil particles
[ ] G i o

Dermal contact with

/ soil particles g contaminated soil

TN TYYNPYY A N . WYRP
WA ﬁ\ UL § R <= =2 - v AT

Contaminated soil



Human Health Risk Assessment of CEC Exposure

Risk Assessment for Potential Exposure to CECs in Urban Agriculture?

Organ/System

Observed Effects

Cardiovascular

Heart attack, heart failure, rapid heart rate

Dermal

Contact dermatitis, skin ulcers, skin discoloration, warts, hair loss, tooth decay, nail loss, lesions, chloracne,
hyperpigmentation

Developmental

Decreased 1Q, cognitive delays, delayed growth,

Endocrine

Endocrine system disruption

Gastrointestinal

Nausea, abdominal pain, vomiting, diarrhea

Hematologic

Anemia, copper deficiency

Hepatic

Liver damage, liver dysfunction, liver failure, liver cancer

Immune

Fever, decreased white blood cell count

Musculoskeletal

Joint pain, muscle aches, decreased bone strength, muscle weakness

Nervous Mood disorders, confusion, headaches, fatigue, dizziness, paralysis, cognitive dysfunction, memory loss, tremors,
decreased mental alertness, unconsciousness, drowsiness, hearing loss, lightheadedness, impulsivity, spasms,
convulsions, seizures, acute encephalopathy, decreased attention span, behavioral abnormalities

Ocular Vision loss, color vision loss

Reproductive

Sperm abnormalities, miscarriage, infertility

Urinary

Kidney failure, kidney disease, elevated uric acid levels

Respiratory

Cough, shortness of breath/difficulty breathing, bronchitis, lung cancer, asthma attacks, acute respiratory distress,
throat irritation, nasal irritation

Other

Decreased bodyweight
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Plant Uptake of CECs from Urban Soil

Urban vs Rural Soil Systems

Inorganic Soil
45-48%

Organic Soil
2-5%

FOREST SOILS

Air
25%

Water
25%

Inorganic Soil
69-79%

Air
10-20%

URBAN SOILS

Water
10-20%

Organic Soil
1%



Plant Uptake of CECs from Urban Soil

Potential for uptake by and accumulation of CECs within the edible parts of crop plants?

Environmental factors affecting the potential for CECs' uptake by plants

+ =
high temperature I low temperature

factors affecting high wind speed — calm wind - low wind speed

evapotranspirati low air humudity o high air humitidy

on hot and dry agricultural areas — cold continental agricultural areas
adequate soil moisture — drought
- Plant physiology parameters affecting the potential for CECs' uptake by plants
~ A : :
i 1 k plant genotype (genus and species)-leafy vegetables «» crops with small root ststem/succulent plants
"\' : growing season during summer growing season during the rainy period
factors affecting healthy plants (non-stressed plants) — stressed plants
ealthy p p p
q ( o) plarlnls high plant evapotranspiration (high Ke values)  «» low plant evapotranspiration (low Kc values)
EYODUKIEOD BT high net irrigation requirements — low net irrigation reguirements
Roots low lipid content in roots — high lipid content in roots

Aerial

parts of ‘ Soil properties affecting the potential for CECs' uptake by plants

plant + -

low levels of SOM high levels of SOM
. sandy soils clay soils
Soil sandy soils loamy soils

acidic pH (pH=pKa of CEC)
aerated soils (aerobic conditions)

basic pH (pH> pKa of CEC)
waterlogged soils (anaerobic conditions)

11111



Plant Uptake of CECs from Urban Soil

Potential for uptake by and accumulation of CECs within the edible parts of crop plants?

Physiochemical Properties of Pollutants

+ -
Low molecular weight (MW) High molecular weight (MW)

Hydrophilic Hydrophobic

Transpiration stream concentration factor (TSCF): the ratio of chemical concentration in the
transpiration stream to to the concentration found in the external solution.



Plant Uptake Models

Contaminant uptake and translocation by plants®

Contaminant uptake by plants generally follow two main uptake
pathways:

(1) Extracellular transport
e Depends on nature of elements only

e Physiological conditions have no effect on uptake rate

(11) Intracellular transport
e Depends on:
o Pollutant factors
o Plant biological characteristics

o Environmental media factors

S

5oil line

Leaf air space
(Acy)

Xylem
(a¥p)



Plant Uptake Models

Contaminant uptake and translocation by plants®

1. Toxicity of organic pollutants to leave cells:

(1) Abnormal cell ultrastructure; 2. Pollutants uptake by

(2) Disturbed cell plant from air:

biosynthesis; 7 (’:‘. (1) PCBS;
(3) Disturbed DNA, etc. \ﬁw (2) PCDD/Fs;
e
RS 3) Herbicides, etc.

3. Factors influncing uptake/

translocation: .
Translocation

(1) Organic pollutant factors;
(2) Plant biological characteristics factors;

(3) Environmental media factors.

4. Pollutants uptake by plants from soil:

(1) PCBs; (2) PCDD/Fs; ~

5. Toxicity of organic pollutants to root cells: Inordinate mitotic division.



Plant Uptake Models

Quantifying Uptake of CECs Across Plant Species>

e Fruit vegetables growing under control greenhouse conditions (i.e. cucumber, green beans,
tomatoes) have higher potential to uptake and accumulate CECs in their edible parts
compared to plants cultivated in open fields.

o Due to:
m longer growing and irrigation period
m  higher net irrigation requirements (NIR) values
m water requirements met solely with irrigation—no precipitation events occur in
protected agriculture.
e Fruit vegetable crops uptake and accumulate CECs based on their reported

bioconcentration factor (BCF) and net irrigation requirements (NIR) values

cucumber > okra > tomatoes > green beans > eggplants > pepper > melons > marrows > watermelons > artichokes > peas



Plant Uptake Models

Quantifying Uptake of CECs Across Plant Species>

Highest potential for CEC uptake by plants

Lowest potential for CEC uptake by plants

Celery, spinach, lettuce, cabbage, carrots, radish, late-season
potatoes, spring potatoes, mid-season potatoes, cucumber,
green beans, okra, marrows, tomatoes, watermelons, melons

pepper, eggplant, maize, alfalfa, peanuts, haricot beans,
wheat, barley, bananas, walnut, citrus, avocado, fruit trees,
pistachio, table olives, almonds, table grapes
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Remediation of Contaminated Urban Soil®

e Remediation methods:
o Bioremediation- Cost-effective, minimally invasive, beginner-friendly
m Phytoremediation

m Mycoremediation

o  Other Methods- More expensive, more invasive, requires expert
knowledge
m Soil washing
m Thermal treatment

m Electrokinetics



Bioremediation Methods

Remediation of Contaminated Urban Soil’-13

e Phytoremediation Phytovolatilization

o  Utilizes natural plant processes to remove or degrade soil pollutants. Phytoerraction
o  Phytoextraction, phytodegradation, & phytostabilization are most
applicable techniques in urban soil
e Studies on phytoremediation of CECs:

o Trace elements

Phytotransformation
o Dioxins I‘
o OCPS Translocation
| Phytofiltration
o PCBs (" q robse
@ Stabilized pollutants
o PFAS

. Gaseous pollutants |

e Limitations:

o  Time- Phytoremediation can take years.

(Krishnasamy et al. 2022)

o  Severity- Contamination must be low-moderate otherwise plants will

not survive.



Bioremediation Methods

Remediation of Contaminated Urban Soil'®-23

Biodegradation of Pollutants via

e Mycoremediation Mycoremediation
o Utilizes fungi to remove or degrade soil pollutants.

e Studies on mycoremediation of CECs
o  Petroleum products e

o Dioxins

Secreted Enzyme

Pollutant Degraded Pollutant

o Trace elements
o PFAS
e Limitations:

o Lack of research- Mycoremediation is a fairly new

Degradation Process

concept and requires more research studies to

determine effectiveness.



Guidance for Urban Growers

Best Practices?®

Research the area in which you will be gardening before you start

Get your soil tested

Research pesticides and fertilizers that you will be using for any concerning chemicals
Research what plants absorb CECs more than others

Use soil amendment to stabilize contaminants in your soil

Remove all contaminated soil and replace it with clean soil

Use bioremediation techniques (i.e. phytoremediation, mycoremediation)

When in doubt, grow your plants in pots or other means of above ground planting



Guidance for Urban Growers

Soil Testing?’-?

e Trace Elements
o Commercially sold kits are available for purchase online to test your soil for certain contaminants at
home
m  Does not have a wide range of contaminants they can test for
o Soil samples can also be sent to state universities that have an agricultural program that offers soil
testing to the public or privately owned labs that conduct soil testing.
m  Methods Used: ICP-MS and ICP-OES Transfer Optics
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Figure 1: IC-MS diagram Figure 2: IC-OES diagram




Guidance for Urban Growers

Soil Testing?’-?

e Persistent Organic Pollutants

o Testing for persistent organic pollutants can be done by sending soil samples to specific labs that have

the ability to test for these kinds of pollutants. This can be done through a few different methods:
m Methods Used: GC-MS, LC-MS, HPLC, IC-MS

Sample
injector

T regulated oven

Mass
spectrometer
G Column: detector
N packed or
He, Ny, H, open tubular
(capillary)

@ =

Figure 1: GC-MS diagram

Mass Spectrometer

Sample Injection

Syringe Pump

lon Source

Mass Analyzer

Qutput

Liquid
Sample
=
E Column

\(Stauonary Phase)  Detector
O . . =

S e ". >
(K Solvent i | ®
Delivery Pum
y P Convert the amount of each
component into an electrical signal

Mobile Phase

Figure 2: LC-MS diagram

Sample Introduction

Plasma
Pump

| »}- _

Mass Spectrometer

S/
|

Spray Chamber _Pneumatic Nebulizer

Liquid Sample}

Figure 3: HPLC diagram

Figure 4: IC-MS diagram




Guidance for Urban Growers

Regional Trends of Common Crops Grown in Urban Areas

Region 1: Maine, New Hampshire, Massachusetts,
Vermont, Rhode Island,Connecticut

Region 2: New York, New Jersey

Region 3: Pennsylvania, Delaware, Maryland,
Virginia, West Virginia

Region 4: Kentucky, Tennessee, North Carolina,

South Carolina, Mississippi, Alabama, Georgia, Florida
Region 5: Ohio, Michigan, Indiana, Illinois, Wisconsin,
Minnesota

Region 6: Louisiana, Arkansas, Oklahoma, Texas,
New Mexico

Region 7: Nebraska, Kansas, Missouri, lowa

Region 8: Montana, North Dakota, South Dakota,
Wyoming, Utah, Colorado

Region 9: Arizona, Nevada, California, Hawaii

Region 10:Alaska, Washington, Oregon, Idaho
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Figure 1: EPA Regions of the United States



Research Gaps

1. Plant uptake models that can encompass all classes of contaminants

2. How can we quantify the bioavailability of individual contaminants across plant species?

3. State specific plant uptake models (what are individual states using?)

4. What role do non-EPA agencies with authority to protect food supply, agricultural resources,
and public health have in developing baseline standards for food production?

5. A better scope on variability in plant uptake and exposure risk of CECs within plant

species



Poll Time!



Contact Information

Ashley DeJuliannie Aaliyah Pecou
VSFS Intern / Georgetown University VSES Intern / University of Arizona
ard123@georgetown.edu aapecou(@gmail.com

Alison Flynt
VSES Intern / University of Wyoming

aflyntl @uwyo.edu

Please reach out with any questions and/or information that may help with phase 4 of this
project!
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