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Gas Chromatography-Mass Spectrometry: 
large, costly, time-consuming

PROJECT VISION:
Can we

  –rapidly and inexpensively- detect 
and identify molecules from complex 
environmental samples by combining 
Surface-enhanced Spectroscopy with 

Machine Learning strategies?



Polycyclic Aromatic Hydrocarbons (PAHs)
• 16 Priority pollutants (EPA): toxic, 

carcinogenic, mutagenic
• Found in atmosphere, in soil and in virtually all 

water sources: “legacy pollutants”
• Many societal sources: incomplete combustion, 

diesel fuel, sidestream tobacco smoke, 
barbecue, burnt toast, drinking water

• Many cancers (skin, liver, testicular, bladder)
• Adult onset diseases (Parkinson’s?)
• Poor fetal development: increases in 

premature birth rates
• Always found in complex mixtures



Surface Enhanced Raman Spectroscopy (SERS) 

hν ± hν’

Metal Surface

hν

Molecular adsorbates on metal surfaces respond to the local electromagnetic 
field, emitting inelastically scattered light  (Van Duyne, 1974):

virtual level

ground state 
vibrational 
manifold

Stokes, anti-Stokes
 emission

ω Rω

Plasmonic substrate requires intense near field at pump, 
Stokes frequencies:

<|ENS(ωL)|2 • |ENS (ωs)|2> ≈ <|E|4>

spectrum enhanced by near field
when molecule in the vicinity of a 
plasmonic substrate/metasurface  



Surface Enhanced Infrared Absorption  Spectroscopy 
(SEIRA)

• IR absorption,

• SEIRA ~ |E|2 , not |E|4 like SERS

• spans near-IR to far-IR regime

•IR cross sections ~1010 larger than Raman cross sections!
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SERS and SEIRA combined on the same substrate

SERS SEIRA 3900 nm=2564 cm-1

H. Wang et al., Angewandte Chemie International Edition 46, 9040-9044 (2007). 
F. Le et al., Metallic nanoparticle arrays: a common substrate for both SERS and SEIRA, ACS Nano 2, 707-718 (2008)
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Outline:

• Computational Chromatography: identifying unknown molecules in 
mixtures without separations 

(M. Bajomo, Y. Ju et al., PNAS 119, e2211406119 (2022))
• Identifying SERS spectra with a Raman library using Machine Learning
(Y. Ju et al., ACS Nano 17, 21251-21261 (2023))
• Machine Learning-enhanced SERS + SEIRA Detection of Polycyclic 

Aromatic Hydrocarbons in Human Placenta 
(O. Neumann et al., TBP)



Computational Chromatography: a Machine Learning strategy for 
demixing individual chemical components in complex mixtures

M. Bajomo, Y. Ju, et al., PNAS 119 (2022) e2211406119

Surface Enhanced 
Raman Spectroscopy 

(SERS)

Unsupervised ML Demixing 
Algorithm = NO LIBRARIES&

Rapid, 
ultrasensitive 
detection and 
identification 
of PAHs from 
“unknown” 
PAH mixture 

Machine Learning (ML) algorithms separate out 
vibrational spectra of mixture components

Incident Light
SERS 

Spectrum SERS Data 

Mixture of Chemicals

Yilong Ju

Can we identify the chemical components in a mixture without physically separating them?



Computational Chromatography: a Machine Learning strategy for 
demixing individual chemical components in complex mixtures

M. Bajomo, Y. Ju, et al., PNAS 119 (2022) e2211406119

Can we identify the 
chemical components in 
a mixture without 
physically separating
them?



The Cocktail Party Problem
(aka “Blind Source Separation”)



Independent Component Analysis: 
Key Assumptions about the Data-Generating Process

𝑥𝑥1 = 𝑎𝑎11𝑠𝑠1 + 𝑎𝑎12𝑠𝑠2
𝑥𝑥2 = 𝑎𝑎21𝑠𝑠1 + 𝑎𝑎22𝑠𝑠2

Signals must be 
linearly mixed

Signals must be 
non-gaussian

Signals must be 
independent

𝑝𝑝(𝑠𝑠1, 𝑠𝑠2) = 𝑝𝑝(𝑠𝑠1)𝑝𝑝(𝑠𝑠2)

Independent component analysis (ICA) is a ML method for 
separating a multivariate signal into additive subcomponents.

Chechkin, Aleksei V., et al. "Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities." Physical Review X 7.2 
(2017): 021002.

𝑥𝑥 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠
𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠
𝑎𝑎 = 𝑚𝑚𝑠𝑠𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑑𝑑𝑠𝑠𝑠𝑠𝑤𝑑𝑑
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Source Signals (SERS of Individual PAHS)

𝑥𝑥 = 𝐴𝐴𝑠𝑠
𝑠𝑠 = 𝐴𝐴−1𝑥𝑥

ICA Approximately Demixes to Recover 
Source Signals (Individual Component Spectra)

�̂�𝑠 = 𝑊𝑊𝑥𝑥

Goal of ICA: Find 
demixing matrix W 
(approximation of 
A-1) so that  ŝ ≈ s.

Recorded Signals (SERS of Mixtures)

𝑎𝑎11 𝑎𝑎22𝑎𝑎21 𝑎𝑎12
Mixing
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Example: SERS of 2-Component 
Mixtures of PAHs
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Blank

Anthracene (ANTH)

Pyrene (PYR)

Relative intensities of 
different peaks in the SERS 
of ANTH+PYR varies as 
the concentration ratio of 
ANTH:PYR varies.
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Estimated Independent Components 
Match PAH Source Spectra

Pyrene (PYR)

Anthracene (ANTH)

Independent components 
produced match the SERS  
of the components of the 
mixture



Quantifying Demixing Performance: 
Evaluation Metrics
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Larger detection threshold

Smaller detection threshold

-Fewer peaks detected 
-Less likely to recover 

original peaks 

-More peaks detected 
-More likely to recover 

original peaks 
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Performance of ICA on 2-
Component Mixtures
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How Demixing works “under the hood”: 
Multiple mixture spectra with varying concentration ratios are required

Synthetic mixture spectra 
of varying ratios

Spectra in a 2D space using
 the intensity at the two peaks 
as x and y-coordinates.

Original and demixed 
components

High-throughput
sampling with
naturally-occurring
concentration
variations
makes this
straightforward



Comparing Different ML-based Demixing Algorithms:
Informing based on Prior Domain Knowledge is Valuable

Demixing Algos with various 
assumptions/constraints 
imposed (aka inductive biases):
• Independent Components 

Analysis (ICA)
• Nonnegative ICA (NICA)
• Sparse ICA (SICA)
• Nonnegative Matrix 

Factorization (NMF)
• Near-Separable NMF 

(NSNMF)
• Characteristic Peak 

Extraction-based NMF 
(CaPE)

Extracting 
Characteristic Peaks 
in a shift-tolerant 
manner significantly 
improves 
performance



Can we extend this to multiple components?

How few samples do 
we need with varied 
concentrations?

A synthesized 4-
component mixture:
8 concentration ratios



Four Component PAH 
Demixing

Anthracene (ANTH)

Pyrene (PYR)

Benzo[a]pyrene )B[a]P)

Benz[a]anthracene (B[a]A)

• Despite more peak overlap, there is acceptable agreement 
between demixed spectra and PAH component spectra



Yilong 

Can we use Facial Recognition Approaches to
 identify SERS spectra of molecules using a Raman Database?

Yilong Ju et al., ACS Nano 17, 21251-21261 (2023).                                                             
Identified: Yilong Ju SERS of chemical X

SERS of chemical X

SERS of chemical X

Spectral 
Recognition

Pyrene
Raman

 Database

Identified: Pyrene



The BIG Problem with SERS:

Solution Proposed by others: 
create a SERS database for each type of 
SERS substrate…(not realistic!)
GOAL: Can we develop ML algorithms 
so we can use a Raman library 
(database)to identify chemicals through 
their SERS spectrum?

• SERS spectra are different than 
Raman spectra (in database)!

• SERS spectra are different on each 
SERS substrate!



Different SERS substrates produce different
SERS spectra of the same molecule

Au NP

1μm 1μm

Ag NRAu NS

1μm

Au NS Au NP                                     Ag NRA                                      B                                        C

Raman

                                                                       

C                                

Au NS

Au NP

Ag NR

PYRENE

Characteristic Peak Extractions = CaPE



Yilong Ju

ML-Based Spectral Recognition:  CaPE and CaPSim



Machine Learning-enhanced SERS + SEIRA 
Detection of Polycyclic Aromatic 

Hydrocarbons in Human Placenta
Smoking during pregnancy is associated with increased risk of:
•  miscarriage, 
• prematurity, 
• stillbirth, 
• low birth weight,
• perinatal morbidity,
• sudden infant death syndrome (SIDS), 
• adverse neurodevelopmental disorders 
such as Attention-Deficit Hyperactivity (ADHD), 
• anxiety, and depression

PAHs can cross the placenta 
from the mother to the fetus,
exposing the fetus to these 
chemicals



Machine Learning-enhanced SERS + SEIRA 
Detection of Polycyclic Aromatic 

Hydrocarbons in Human Placenta



SERS and SEIRA of Human Placenta



CaPE Analysis of Smoker vs. Non-Smoker SERS data:





CONCLUSIONS:

• ML can enable the detection of specific PAHs in 
complex mixtures without separations

• Characteristic Peak Extraction (CaPE) simplifies 
SERS spectra so a Raman spectral library can be 
used for identification with CaPSim

• CaPE and CaPSim can differentiate PAHs in the 
placenta of smokers versus non-smokers
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