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Context
• 30,000−100,000 unique chemicals used worldwide in various products, processes, 

or services

• Points of Departure (PODs) are essential for characterizing toxicity and assessing 
human health risks and impacts

• Regulatory/authoritative PODs cover a very limited set of chemicals

• Hypothesis: Machine learning can substantially expand the coverage of chemicals 
with actionable PODs
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• NOAEL: No Observed Adverse 
Effect Level. Highest dose at 
which no statistically significant 
adverse effect is observed.

• LOAEL: Lowest Observed 
Adverse Effect Level. Lowest 
dose where response shows a 
statistically significant departure 
from baseline.

• BMD: Benchmark Dose. Dose 
that produces a predetermined 
change in response level 
compared to control 
(benchmark response or BMR).

NOAEL
LOAEL

BMR
BMD

POD: Dose at which a significant 
departure from baseline 
response begins, indicating 
potential toxicity.

What is a POD? Toxicity Metric Derived from 
Experimental Dose-Response Study In Vivo
1. Dose groups of animals at different levels
2. Measure the response in each animal group
3. Determine the dose-response relationship



5

Regulatory / 
Authoritative POD 
from EPA, ATSDR, 

CalEPA, etc.
Surrogate POD 

based on 
analysis of 
ToxValDB

Fixed value 
based on TTC

Fantke et al. 2021: https://doi.org/10.1007/s11367-021-01889-y 

QSAR-Based 
POD based on 

Chemical 
DescriptorsFocus of this 

presentation

Hierarchy of Approaches 
for Deriving a POD for 
Human Health 
Risk/Impact Assessment

Key Challenges
• Regulatory/authoritative PODs cover 

only several hundred chemicals
• Tens of thousands of chemicals have no 

or inadequate data in ToxValDB
• In vivo testing of these chemicals unlikely 

to expand substantially
Machine Learning to the Rescue?

https://doi.org/10.1007/s11367-021-01889-y


Approach: Two-Stage QSAR Model Framework 
for Predicting Points of Departure
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QSAR (Quantitative Structure-Activity Relationship): Uses 
Machine Learning to Predict Toxicity Based on Chemical Structure

OPERA: Mansouri et al. (2018-2024)

https://doi.org/10.1021/acs.est.4c00172
https://github.com/kmansouri/OPERA
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Why a two-stage model?
• Most chemical descriptors can be hard to interpret by a toxicologist or risk 

assessor (as opposed to a chemo-informaticist)
• Existing OPERA models provide open-source predictions for interpretable 

physical-chemical-toxicological parameters 
• Analogous to a “supervised” neural network with a single intermediate 

layer composed of interpretable features.

Conceptual Framework: Two-Stage QSAR Model

Standardization Workflow Parsing & Cleaning Transformations

Chemical IDs 
(e.g., DTXSID)

“QSAR-Ready” 
Structures

Features (X)Run OPERA
QSAR Models

Run POD 
QSAR Model

(Fitted Pipeline)

Predicted 
Surrogate 

PODs (ypred)

Stage 1 Stage 2

Kvasnicka et al. 2024

https://doi.org/10.1021/acs.est.4c00172
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Conceptual Framework: Two-Stage QSAR Model

Standardization Workflow Parsing & Cleaning Transformations

Chemical IDs 
(e.g., DTXSID)

“QSAR-Ready” 
Structures

Features (X)Run OPERA
QSAR Models

Run POD 
QSAR Model

(Fitted Pipeline)

Predicted 
Surrogate 

PODs (ypred)

Stage 1 Stage 2

Training Data Collection, & Preprocessing

Data Collection
Surrogate PODs from 
Aurisano et al. 2023

(yobs)

g: general noncancer
rd: reproductive/developmental

Data Filtering 
> 3 in vivo studies in ToxValDB 

& “QSAR-Ready”

Feature Preparation
Run OPERA 

to generate features (X)ng = 5,209
nrd = 4,938

ng = 1,791
nrd = 2,228

Model Training & Evaluation

“Inner loop” for 
feature selection 

“Outer loop” for evaluation

Performance:
RMSE
MedAE

R2Predict w/
Selected 
Features

Outer 
ytrain

Outer 
ytestInner 

ytrain

Inner 
ytest

Full 
X & yobs

Model Pipeline 
for Each 
Replicate

1. Feature 
Preprocessing

2. Random Forest 
Regression
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https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00172


In-Sample Model Fit: High Accuracy for Training Chemicals
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• RMSE (Root Mean Squared Error): Measures the 
average prediction error magnitude. Lower values 
indicate better accuracy.

• MedAE (Median Absolute Error): Robust to outliers. 
Lower values indicate better accuracy.

• R2 (Coefficient of Determination): Indicates how well 
the model explains variance in the data. Values closer 
to 1 show better fit.

https://doi.org/10.1021/acs.est.4c00172


Good Out-of-Sample (Cross-Validation) Performance
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Expected Performance
• Average Error (RMSE): factor of 4~5 
• Typical Error (MedAE): factor of 2~2.5 
• Explained Variance: ~50%

https://doi.org/10.1021/acs.est.4c00172


QSAR PODs Correlated Better with Regulatory 
PODs than ToxCast & In Vitro NAMs
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General Noncancer Repro./Dev.

QSAR: Good correspondence with 
regulatory PODs

ToxCast/httk: Performed worse 
than a naïve constant model

https://doi.org/10.1021/acs.est.4c00172


Sensitivity Analysis: Random Forest with OPERA Features 
Outperformed Other Models
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Models Compared
1. No feature selection 

applied
2. Alternative machine 

learning estimators for 
model fitting

3. Alternative features for 
modeling
• Experimental LD50s 

instead of predicted
• Features from 

OPERA, TEST on EPA 
CompTox, and RDKit 
2D descriptors

• No imputation of 
missing values

Kvasnicka et al. 2024

https://doi.org/10.1021/acs.est.4c00172


Model Application: Derived Margins of Exposure for 
~30,000 Environmental Chemicals for Risk Screening
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Merged 
NORMAN
Suspect

List

SEEM3
Exposure

Model

Modeled 
Exposures

POD
Models

Modeled 
PODs

Margins of 
Exposure
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Margin of Exposure (MOE) 
= POD
Exposure

  
where lower MOE indicates higher risk

Compared Predicted PODs with Predicted Exposures

SEEM3: Ring et al. 2018

https://doi.org/10.1021/acs.est.4c00172
https://doi.org/10.1021/acs.est.8b04056


General Noncancer Repro./Dev.

MOEs Revealed Several Thousand Chemicals of Concern: 
Should Prioritize Further Investigation
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https://doi.org/10.1021/acs.est.4c00172


New Web App Makes Predictions Available: 
800K+ Chemicals from EPA CompTox Dashboard
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General Noncancer Repro./Dev.

https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/ 

Primary Driver of Uncertainty is Exposure: 
Typically, 4 Orders of Magnitude!

https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/


Conclusion
• PODs are absent for tens-hundreds of thousands of chemicals 

for characterizing human health risks and impacts 
• Regulatory/authoritative PODs cover a very limited set of 

chemicals
• Machine learning can substantially expand the coverage of 

chemicals with actionable PODs
• PODs for inhalation are still unknown, and exposure appears 

to be the primary uncertainty. 
• Current Work: Applying the approach to inhalation, and to 

better model inhalation exposure. 

4 July 2019
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Current Work at EPA: How to Protect Workers from 
Thousands of Potential Chemicals?

• Toxic Substances Control Act / TSCA (1976)
– Regulation of chemicals in commerce

• Lautenberg Act (2016)
– Protect highly-exposed subpopulations
– Including workers, esp. inhalation

• ~29,000 commercially active chemicals
– Challenge for exposure monitoring
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Applying Inhalation POD Models to TSCA Chemicals 
Highlights a Gap in Exposure Monitoring
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General Noncancer Repro./Dev.

2-3x More Potent (Unmonitored)

< 5% OSHA-monitored
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