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Specific Aim 3) Develop and apply novel functionality that includes computational 
tools to integrate data streams for mechanistic understanding and to inform risk.

 a) Integrate multi-omics and phenotypic data to develop a mechanistic 
understanding of the biological impacts of N-nitrosamines and their relationships to the 
exposome.

 b) Leverage mathematical modeling to predict the DNA damaging effects of 
mixtures of N-nitrosamines



Multi-omic analysis data types within MIT SRP

• Transcriptomic / spatial transcriptomic data

• Proteomic data (protein expression levels)

• Phosphoproteomic data (quantitative data of protein phosphorylation sites)

• Phenotypic data: cell proliferation / cell death / tumor number / tumor volume / mouse 
survival

• Drug Concentration and Spatial Drug Distribution

The challenge: How best to integrate these data to define cellular response, at a 
molecular level, to exposure to environmental contaminants? What are the critical 
factors that define phenotypic response?



What are the molecular mechanisms underlying the 
carcinogenic effects of NMDA exposure?  

Wild type Mgmt -/- Aag -/-
Aag Tg 

(overexpress)

24 Hrs 
(Early response)

10 weeks 
(Late response)
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What are the molecular mechanisms underlying the 
carcinogenic effects of NMDA exposure?  

Wild type Mgmt -/- Aag -/-
Aag Tg 

(overexpress)

24 Hrs 
(Early response)

10 weeks 
(Late response)



NDMA treatment induces phosphorylation of proteins involved in 
DNA damage response (24 hour timepoint)

Putative ATM/ATR substrates

DSB recognition
DSB repair
DNA Replication



NDMA leads to phosphotyrosine changes

Mgmt -/-
24 Hrs



Inflammation and growth associated proteins 
are upregulated in response to NDMA

Mgmt -/-
24 Hrs



NDMA induces liver cancer at 10 months 
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Is phosphorylation at early time points predictive of liver 
cancer at 10 months? 

Are phosphorylation levels at early time points correlated with 
cancer incidence phenotype?



DNA Damage Response phosphorylation sites associated with 
cancer incidence



Phosphotyrosine sites associated with cancer incidence 



What do we learn from these models?

Exposure level (e.g., amount of DNA damage incurred) in early days is highly predictive 
of tumor development almost a year later 

Exposure to environmental contaminants leads to a systems-level response, including 
upregulation of inflammation / growth / repair pathways --- these pathways include 
multiple oncogenic kinases and their levels are also highly predictive of future tumor 
development.

Data not shown – DNA damage response is largely repaired within 6 weeks, but growth / 
inflammation signaling remains high. This suggests that inhibiting or otherwise 
interfering with these pathways/networks may delay or block tumor progression.



Adavosertib (MK-1775 / AZD-1775) is a wee1 kinase inhibitor that blocks the 
G1/S checkpoint, causing the cell to undergo mitotic catastrophe due to 
proliferation in the presence of DNA damage. Adavosertib is in multiple 
clinical trials – can we use this same framework to define biomarkers of 
drug efficacy in pre-clinical and clinical trials?



Placebo Placebo AZD-1775 
15 mpk

Workflow for protein expression and tyrosine phosphorylation Workflow for protein expression and tyrosine phosphorylation Workflow for protein expression and tyrosine phosphorylation Workflow for protein expression and tyrosine phosphorylation 

Tumors reach 
~250-400 mm3

Treat twice daily for 9 doses (4.5 days)

Quantifying AZD-1775 distribution and drug efficacy in vivo:  GBM PDX 
tumors

monitor tumor size with calipers

resect tumors 2 hours after last treatment, flash freeze immediately

AZD-1775 
15 mpk

Workflow for protein expression and tyrosine phosphorylation 

AZD-1775 
50 mpk

Workflow for protein expression and tyrosine phosphorylation 

AZD-1775 
50 mpk

Patient derived xenografts of GBM12 injected into 3 
cohorts of mice, 5 mice per cohort

Study repeated with GBM22 and GBM84, with flank and intracranial tumors 

Section, MALDI-MSI Homogenize, Phosphoproteomics



Matrix-assisted laser desorbtion-ionization mass spectrometry imaging 
(MALDI-MSI) analysis of drug concentration, lipids, metabolites, and other 

biomolecules
Frozen Section

Matrix
Application

Mass
Spectrometer

Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. (2001) Imaging mass spectrometry: a new technology for the analysis of protein 
expression in mammalian tissues. Nat Med. 7(4):493-6.

Nathalie Agar, BWH/DFCI



MALDI-MSI shows high heterogeneity of AZD-1775 distribution in flank tumors 

H&E staining
Yellow = necrosis

AZD1775 drug

Average 
AZD1775 
drug

Take-home:  Drug distribution can have high intra- and inter-tumor heterogeneity, even in 
flank tumors.  

Intra-tumor distribution



Quantifying AZD-1775 drug efficacy:  DNA damage signaling in flank tumors



Data integration:  Partial least-squares regression (PLSR) model to connect 
GBM84 phosphoproteomic and drug levels



Data integration:  Partial least-squares regression (PLSR) model to connect 
GBM12 phosphoproteomic and drug levels



Data integration:  Partial least-squares regression (PLSR) model to connect 
GBM22 phosphoproteomic and drug levels



‘Cross-model’ model:  integrating AZD1775 drug level and phosphorylation 
data across 45 flank tumors



Extension to clinical trial tissue specimens: Phospho-Nibrin directly 
correlates with adavosertib drug distribution in GBM tumor tissue 

 74 Lopez et al. Multimodal platform for drug distribution and response in CT
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Fig. 6 Multimodal platform application to clinical specimens. (a) Integration of the spatial distribution of tumor cells (histology), drug (MALDI-
MSI), and antibody (t-CyCIF) from the CE and NCE specimens from the same patient (case C). From left to right, histological image, DAPI (in gray) 
used in the corresponding IF cycle where NBN was stained to control for cell loss, drug distribution image acquired by MALDI-MSI (green), 
NBN distribution acquired by t-CyCIF (blue), nonlinear registration of DAPI, drug, and NBN, and nonlinear registration of the histological image 
to drug and NBN. (b) Harmony clustering analysis of t-CyCIF images identified 6 joint clusters with similar proportions across 10 distinct im-
ages. (c) Differential expression analysis of the t-CyCIF markers shows distinct associations of molecules related to DNA damage repair (blue), 
glial (green), proliferation (orange), and stromal lineage (red). Colors represent scaled log-fold changes, scaled to z scores for each marker. (d) 
Integrated analysis of MSI and t-CyCIF associates DDR and proliferation phenotypes with spatial distribution of adavosertib. Spatial distribution of 
adavosertib is higher (FDR = 0.09) near cluster 5 and lower (FDR = 0.004) near cluster 3 cells. (e) Differential response between CE and NCE regions 
for patient D based on the t-CyCIF harmony clusters reveal differences between them. Abbreviations: CE, contrast-enhancing; DAPI, diamidino-
2-phenylindole; DDR, DNA damage response; FDR, false discovery rate; IF, immunofluorescence; MALDI-MSI, matrix-assisted laser desorption/
ionization mass spectrometry imaging; NCE, non–contrast-enhancing.
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Multimodal platform for assessing drug distribution 
and response in clinical trials
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Abstract
Background. Response to targeted therapy varies between patients for largely unknown reasons. Here, we devel-
oped and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multi-
plexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights 
into heterogeneous response to therapy.
Methods. Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, 
and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same 
tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue 
imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The 
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New directions – using partial correlation network analysis to infer 
networks and critical nodes from multi-omic data, including 
phenotypic data 

Article

Markov field network model of multi-modal data
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SUMMARY

Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can
be beset by spurious connections due to indirect impacts propagating through an unmapped biological
network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination
by an intravenous route protects against tuberculosis, correlating with changes across various immune
data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-
modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov
fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate
network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features.
We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used
theMF to predict outcomes of perturbations at various immune nodes, including an experimentally validated
B cell depletion that induced network-wide shifts without reducing vaccine protection.

INTRODUCTION

In recent decades, various biological fields have explored the
benefits of integrating multiple experimental modalities to char-
acterize individual samples from a biological system.1 Various
computational methods have been developed to procure in-
sights into biological phenomena by specifically leveraging the
multi-modality of data,2,3 resulting in improved biomarker dis-
covery, molecular interaction inferences, and predictive power.1

In principle, the unique advantage of multi-modal data is the abil-
ity to measure multiple biological scales, compartments, or as-
pects, which could each play a vital role in the mechanistic or
‘‘causal’’ chains of a biological system, thereby enabling data-
driven and relatively less-biased identification of the key interac-
tions governing particular phenomena. However, the precise

capacity of multi-modal data for distinguishing mechanistic in-
teractions from simple correlations is often not explicitly evalu-
ated and only implicit in the improved performance of multi-
modal analyses.
Many tools can be used for modeling networks of interactions

from data, ranging from statistical networks4 to spatiotemporal
differential equation models.5 In particular, network modeling
can help distinguish when correlations arise from ‘‘direct’’ rela-
tions (e.g., interaction) or are an ‘‘indirect’’ consequence (e.g.,
correlated but not causal) of various pathwayswithin the network
(Figure 1A). To this end, the general category ofmethods in prob-
abilistic graphical models (PGMs) (e.g., Bayesian-directed
acyclic graphs [DAGs] used for causal inference) have the prac-
tical benefits of explicitly modeling direct and indirect relations
via conditional dependence while requiring relatively modest
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Figure 2. Role of multi-modal data integration in PCN modeling
(A) Schematic of how partial correlations between nodes can arise if variables are hidden (i.e., the elimination algorithm). Example shows a case in which 4 black

nodes with no edges connecting each other become completely connected upon hiding the red nodes.

(B) Linear regression models of dose, lung CFU, and lymph node CFU using only their neighboring features in the PCN.

(C) Performance of linear regression models for predicting any given node using only its neighbors in either the multi-modal PCN or a single-mode PCN.

Regression performance is compared with the number of neighboring features.

(D) Cumulative distribution function of number of features neighboring a given node in either multi- or single-mode PCNs, with green and blue showing whether

features in the multi-modal PCN arise from the same or different data mode as the node itself.

(E) Same as (D), but for the proportion of possible features as opposed to the number.

(F) Observed single-mode partial correlations vs. those predicted by the multi-modal PCN.

(G) Partial correlations to dose or lung CFU for the flow PBMC features from the single-mode PCN, the single-mode PCN predicted by the multi-modal PCN, and

the multi-modal PCN.

(H) Distribution of partial correlation values in single-mode PCNs that were previously zero in the multi-modal PCN.
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