Urban Runoff as a Drinking Water Source: Protecting Public Health with Distributed Treatment

David Sedlak
Department of Civil & Environmental Engineering
University of California, Berkeley
E-Learning Webinar Climate & Health
NIES Superfund Research Program
October 7, 2022

The Stormwater Team

Joe Charbonnet

Greg LeFevre

Richard G. Luthy

Marc Teixidó Planes

Jessica Ray

Stephanie Spahr

Water 1.0: Centralized Supply

Water 2.0: Drinking Water Treatment

Water 3.0: Wastewater Treatment

Water 4.0: Reuse, Stormwater, Desalination, etc.

Spahr et al. (2020)

UC BERKELEY SUPERFUND RESEARCH PROGRAM SCIENCE FOR A SAFER WORLD

Capture, Treat, and Recharge

Ashoori et al. (2019)

Woodchip Biofilter

Biochar-Amended Woodchip Biofilter

Geomedia for Contaminant Removal

Issues of concern:

- Competition (e.g., NOM, Ca²⁺)
- Biotransformation
- Clogging
- Regeneration/disposal

Competition from Natural Organic Matter

Ray et al. (2019)

Biofilms and Clogging

Geomedia Regeneration

- -Mn-oxide coated sand
- -oxidizes phenols (BPA)
- -fails after several years
- -activity restored with HOCl

Charbonnet et al. (2021)

UC BERKELEY SUPERFUND RESEARCH PROGRAM SCIENCE FOR A SAFER WORLD

UC BERKELEY SUPERFUND RESEARCH PROGRAM SCIENCE FOR A SAFER WORLD

Modular Advanced Oxidation Process

Final Thoughts

• Stormwater recharge is becoming more popular as a means of breaking the reliance of cities on imported water.

Final Thoughts

- Stormwater recharge is becoming more popular as a means of breaking the reliance of cities on imported water.
- Distributed recharge systems require source control and low-maintenance treatment systems to minimize risks from chemical contaminants.

Final Thoughts

- Stormwater recharge is becoming more popular as a means of breaking the reliance of cities on imported water.
- Distributed recharge systems require source control and low-maintenance treatment systems to minimize risks from chemical contaminants.
- Technologies developed for hazardous waste site remediation (e.g., permeable reactive barriers, sorbents, AOPs) are useful in these efforts.

References

Ashoori N., Teixido M., Spahr S., LeFevre G.H., Sedlak D.L. and Luthy R.G. (2019) Evaluation of pilot-scale biocharamended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. *Water Research*, 154: 1-11. doi: 10.1016/j.watres.2019.01.040

Charbonnet J.A., Duan Y., van Genuchten C.M. and Sedlak D.L. (2018) Chemical Regeneration of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. *Environ. Sci. Technol.* 52(18): 10728-10736 doi:10.1021/acs.est.8b03304

Duan Y. and Sedlak D.L. (2021) An electrochemical advanced oxidation process for the treatment of urban stormwater. *Water Research X* Volume 13, article 100127 doi: 10.1016/j.wroa.2021.100127

Ray J.R., Shabtai I.A., Teixido M., Mishael Y.G. and Sedlak D.L. (2019) Polymer-clay composite geomedia for sorptive removal of trace organic compounds and metals in urban stormwater. *Water Research*, 157:454-462. doi: 10.1016/j.watres.2019.03.097

Spahr S., Teixido M., Sedlak D.L. and Luthy R.G. (2020) Hydrophilic trace organic contaminants in urban stormwater: occurrence, toxicological relevance, and the need to enhance green stormwater infrastructure. *Env. Sci.-Water Res. & Technol.* 6:15-44. doi: 10.1039/c9ew00674e

