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Climate Change Influences on the Environment
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Climate change makes
catastrophic flood
twice as likely, study
shows

Increased runoff could lead to devastating
landslides and debris flows — particularly in hilly
areas burned by wildfires

Climate crisis made summer drought 20
times more likely, scientists find

Record northern hemisphere drought in 2022 hit crops and power
stations, worsening food and energy crises
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Climate Scientists Warn of a ‘Global
Wildfire Crisis’

Worsening heat and dryness could lead to a 50 percent rise in off-
the-charts fires, according to a United Nations report.

&he New York Eimes

By Julia Jacobe
January 31,2022, 11:52 AM

Flood damage will increase due to climate change, will
disproportionately affect poor communities: Study

Annual flooding damage costs in the U.S. could increase 26% by 2050.
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News sources: abcnews; newsroom.ucla; nytimes;
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theguardian; washingtonpost

More dangerous heat waves are on the
way: See the impact by Zip code.

By mid-century, nearly two-thirds of Americans will experience perilous heat waves, with some regions in the South
expected to endure more than 70 consecutive days over 100 degrees

2053

Days with
dangerous heat
Heat index 2100°F
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According to the
National Interagency
Fire Center, as of Oct
27t in the U.S., there
have been 59,221 fires,
covering >7 million
acres so far, this year —
numbers that are well
above the 10-y average
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Wildfires as a Growing Public Health Problem

« Wildfires are growing in prevalence and intensity, contributing to poor air quality

San Francisco, CA, July-Sept 2020 Manhattan, NY

July21 7 AMET

https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-map.html|

Smoke from wildfires shrouded the San Francisco Bay Area and blocked sunlight on September 9, 2020. Credit: Aaron

Maizlish/Flickr/CC BY 2.0 i S
: From Minnesota to Manhattan, the sun appeared orange because of haze from wildfire

https://climate.nasa.gov/ask-nasa-climate/3066/the-climate-connections-of-a-record-fire-year-in-the-us-west/ smoke.

Bjoern Kils/Reuters

https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-map.html|

 What is in wildfire smoke? A mixture of compounds from tree combustion (e.g., particulate matter,
acrolein, benzene, formaldehyde, PAHs, VOCs, metals, etc)

« Can also be produced with other fuel sources, including variable biomasses and anthropogenic materials

= ~ | GILLINGS SCHOOL OF Ragerlab 3
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Health Impacts of Wildfire Smoke Exposures

( Pulmonary Outcomes )

J

Chronic Obstructive
Pulmonary Disease

Asthma Bronchitis Dyspnea

Respiratory Infection
(e.g., SARS-CoV-2)

( cardiovascular Outcomes )

Cardiac Arrest, Heart Failure, Ischemic Heart Disease

R

« Studies first carried out in firefighters

* Now finding similar relationships
within the general public impacted
by wildfire smoke exposures
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Health Impacts of Wildfire Smoke Exposures

( Pulmonary Outcomes )
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Asthma Bronchitis Dyspnea
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Chronic Obstructive Respiratory Infection
Pulmonary Disease (e.g., SARS-CoV-2)

( cardiovascular Outcomes )

Cardiac Arrest, Heart Failure, Ischemic Heart Disease
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« Studies first carried out in firefighters

* Now finding similar relationships
within the general public impacted
by wildfire smoke exposures

Research at UNC is significantly
contributing to data supporting

wildfire relationships to
increased respiratory infection
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Wildfires and Mechanisms Supporting Increased Risk for
Respiratory Pathogen Infection

Links to SARS-CoV-2 infection risk:
* Multiple studies point to a potential connection between wildfire smoke exposure and higher rates of COVID-19
infection and associated mortality (Kiser et al Environ Health 2020)

* Woodsmoke particles prior to SARS-CoV-2 infection
Inhaled pollutant

alter antiviral response gene expression exposure induces: | o _—
(Brocke et al AJP-Lung 2022) @
/ » ® .. e 5y
Enhanced vi ® .

Links to influenza infection risk:

Impaired immune
cell funetion

* Winter influenza seasons in Montana were four to five
times worse after bad wildfire seasons “%%« ® o] 2 24e e ®

(Landguth et al Environment International 2020) e
chemakmes \-\

* Wood smoke exposure in vivo alters human inflammator ET formation
p . . . y @\ pathway activation
response to a model of influenza infection A Nreson

(Rebuli et al AJRCCM 2019) © s

) ) ) EXPression
Airway epithelial cell

AUNC | Smesserooror Slide credit: Meghan Rebuli, UNC Ragerlab ©



Health Impacts of Wildfire Smoke Exposures

( Pulmonary Outcomes !

J

Chronic Obstructive
Pulmonary Disease

Asthma Bronchitis Dyspnea

Respiratory Infection
(e.g., SARS-CoV-2)

(

{  Cardiovascular Outcomes |

)

Research Questions:
(1) Which chemicals drive toxicity?

(2) Which exposure conditions are
sufficiently similar?

(3) What are the underlying biological
mechanisms?

Cardiac Arrest, Heart Failure, Ischemic Heart Disease

R
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What Chemicals Drive Toxicity?

aaaaaaaaa



Difficulties in Wildfire Research

Variable and unpredictable exposure scenarios

Epidemiology-based studies are often limited

as retrospective analyses

* Where smoke exposures are difficult to
quantify/characterize after the event

htps:/fwww.sfct > > > oa-awakens-t s s os-rage-15495018.php

DUNC

Lab-based studies are extremely difficult to carry out
» Exposure scenarios difficult to generate in the lab
« Biomass combustions are dangerous and can cause explosions

 It’s difficult to analyze chemistry/PM conditions across wide span
of chemistries occurring in wildfire simulations

« It’s difficult to couple exposures with in vitro/in vivo test models

GILLINGS SCHOOL OF
GLOBAL PUBLIC HEALTH
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Partnership with U.S. EPA Atmospheric Chemistry & Toxicology
Lab — lan Gilmour & Yong Ho Kim

Eﬁ Environmental Health Perspectives

HOME CURRENT ISSUE ARCHIVES COLLECTIONS ~ AUTHORS ~ REVIEWERS ABOUT -

Op+d

Vol. 126, No. 1 | Research

Mutagenicity and Lung Toxicity of Smoldering vs. Flaming
Emissions from Various Biomass Fuels: Implications for Health
Effects from Wildland Fires

o' is companion of v~

Yong Ho Kim, Sarah H. Warren, Q. Todd Krantz, Charly King, Richard Jaskot, William T. Preston, Barbara ). George, Michael D. Hays,

Matthew 5. Landis, Mark Higuchi, David M. DeMarini, and M. lan Gilmour =]

Published: 26 January 2018 | CID: 017011 | https://doi.org/10.1289%/EHP2200 | Cited by:6

DUNC
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. Tube Furnace System ...
4 Direction of ring

Dllution air furnace movement

i
prmureQI = :ll
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O]

Glass fiber filter

Exhaust =

Flow controller  Exhaust %
(Vacuum)
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J0°C Flow controller
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NC (Vacuum)

Cooler Cooler  Cooler

. Multi-Stage Cryotrap System .~

Figure 1. Diagram of the biomass combustion and smoke collection system. The tube
furnace system consisted of a quartz tube and a ring furnace that traversed along the
length of the quartz tube and was able to sustain stable flaming or smoldering phases
consistently for 60 min. The multistage cryotrap system had three sequential impingers

that were cooled cryogenically at =10, -50, and —70°C, permitting the capture of PM

and semivolatile organic compounds from the biomass smoke emissions.
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Exposure Design

( Biomass Smoke Exposures

Eucalyptus Peat
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Group of female CD-1 mice sacrificed 4 h post-exposure:

—( Biomass Smoke Exposures )—

( (-) Vehicle Control

100 pg PM in 50 pL saline (2 mg
pm / mL saline) via lung instillation
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Separate group of female CD-1 mice sacrificed 24 h post-exposure:

—( Biomass Smoke Exposures )—

100 pg PM in 50 pL saline (2 mg
pm / mL saline) via lung instillation
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Toxicity Markers

Immune Cell Counts

@ @

Macrophages  Neutrophils

Cytokine Protein
Expression

. Tumor necrosis
Interleukin-6 factor-a

(IL-6) (TNF-a)

Macrophage
inhibitory protein-2
(MIP-2)

Lung Injury Markers

(e

=

Albumin

Total Protein
Concentration

Lactate
dehydrogenase
(LDH)
y-glutamyl
transferase (GGT)
activity

N-acetyl-B-D-
glycosaminidase (NAG)
activity
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Which Chemicals may be Driving Wildfire-Associated Toxicity?

Science of the Total Environment 775 (2021) 145759

Contents lists available at ScienceDirect

crre
Total Environment

essors of
R _pra\ Responses

Q)

OCH;

Science of the Total Environment

€

journal homepage: www.elsevier.com/locate/scitotenv e

Mixtures modeling identifies chemical inducers versus repressors of K
toxicity associated with wildfire smoke St

Julia E. Rager ***, Jeliyah Clark *°, Lauren A. Eaves*®, Vennela Avula®®, Nicole M. Niehoff¢, Yong Ho Kim ¢,
llona Jaspers™““’ M. lan Gilmour &

# Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

b The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

€ Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA

< Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA

¢ The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA

f Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

£ Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

 This study utilized a suite of computational mixtures approaches to identify groups of

chemicals induced by variable biomass burn conditions associated with biological responses
in the mouse lung

= X | GILLINGS SCHOOL OF Ra erlab
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Clusters (called ‘Modules’) of Co-Occurring Chemicals were

ldentified across Biomass Burns

DUNC

“Brown” Module and its Eigenvector
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Brown ME
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“Blue” Module and its Eigenvector

Concentration
(Z-score Normalized)

Mostly PAHs

Blue ME
Acenaphthylene
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Benzo(b)fluoranthene
Benzo(e)pyrene
Benzo[ghi]perylene
Benzo(k)fluoranthene

Chrysene
Fluoranthene

= - Indeno[1,2,3-cd]pyrene

= 1-Methyichysene

I\ : Naphthalene
& o & o F S & F i
N A & e & & & o & e
O o 2 ¥ 2 9 &9 Perylene
Q ) B’ & @ Q & R
o & ¥ gF Q@ & Phenanthrene
L @’ & o@}‘\ & ~— Pyrene
gt &7 &
Q\

Ragerlab

13



Select Chemical Groups Correlated with Cardiopu
Toxicity Endpoints
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« Brown and yellow modules showed the most significant, positive
associations across the largest number of biological responses

« Green module showed the largest number of negative associations ->
potential protective effects? Let’s evaluate further!

GILLINGS SCHOOL OF
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Mixtures Modeling through Quantile g-Computation

Ran models individually for each outcome (i.e.,

Cytokine_IL6_4h i *. :. (% A Al Chemicais (1) ]
=i = AlCremicais xcept (2) each cardiopulmonary toxicity marker)
Cytokine_IL6_24h —a— Green Module
o ._._||_._'* ® Green Module (3)
Cytokine_MIP2_4h ———f * FDRQ<0.05 Three models per outcome:
e (1) All chemicals
okine a | —k | . . ‘
Fytokine TR A e —— (2) All chemicals except those in the ‘green
Injury_Albumin_4h i I—I-I - { mOdUIG,
uh (3) Just the chemicals in the ‘green module’
Injury_Albumin_24h i it i
KI;*
Injury_LDH_24h I—A—I . .
" == General findings:
Injury_NAG_24h I——t—ll : « Toxicity endpoints increased in (2) vs (1)
« Greenis good!
Injury_Protein_24h | ‘g {
Neutrophil_4h — - - -
' )
Neutrophil_24h N — = i
——e—
-0|.5 ll) 0|.5 110 115 2:0 215
Beta (95% CI)

csscrooLor Alex Keil and Nicole Niehoff (NIH) Ragerlab g




Methoxyphenols |
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What’s in the ‘Good’
Module?

There is evidence for these
individual chemicals
decreasing DNA damage
and/or inflammation after an
exogenous insult

What's in the ‘Bad’

Modules?

—

Inorganics

)

Copper (Cu)
7440-50-8

Cu

Hexavalent

18540-29-9
o6+
Cr

Nickel (Ni)
7440-02-0
Ni

chromium (CrVI)

lonic Constituents

S04

NO3 PO4
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Individual Chemicals vs

Potential Joint Relationships

DUNC

Many of the relationships identified through
mixtures modeling were not captured through

individual chemical analyses

« Demonstrates the utility of mixtures-based
statistical approaches!

Findings are now informing the design of future in

vitro testing (shown on right)

Goal: Quantify & model the potential relationships
between major chemical drivers of wildfire-

associated outcomes
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Complex Mixture Exposures J

Pine Pine Needles Red Oak

Pine Pine Needles Red Oak

o

[ Chemical Component Exposures ]
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Chemical
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profiles to

.
/—| Methoxyphenols }_\

Coniferyl
Aldehyde

458-36-6

Guaiacol
90-05-1
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Vanillin
121-33-5
0.

— PAHs F—
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50-32-8 129-00-0
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H

quantify potential joint
interactions using
prioritized
gene/pathway targets

Lung Cells from Male and Female

Donors

In Vitro Testing

3D Culture Model of
Mixed Airway Cells

f.aafla

Multi-Omic Response
Signatures

A -
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What Exposure Conditions are Sufficiently
Similar?
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Introduction to Evaluating Exposure / Toxicity Similarities across
Complex Mixtures

 Sufficient similarity methods are used to generally determine groups of exposure conditions

that are chemically/biologically similar enough to be regulated together for safety assessments

r_

Mixture #1
J" . @ I .

.\,

Exposure data

—
Toxicity data
Assess risk

We know a lot about
mixture #1...

Thus, we have a good
idea of how to regulate
mixture #1

Mixture #2
J' . @ I .

.\,

Mixture #1 Mixture #2

[ ] T
f.o.'....
Wl N

L W

Exposure data
? Toxicity data

® Assess risk

We don't know much
about mixture #2...

Except that it might be
similar to mixture #1

—

ik

Can we use mixture #1's
data to predict mixture #2's
toxicity and inform its
associated regulatory
policy?

-
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Examples of Research on Sufficient Similarity

Journal of Toxicology and Environmental Health, Part A, 72: 429-436, 2009
This article is not subject to U.S. copyright

ISSN: 1528-7394 print / 1087-2620 online

DOI: 10.1080/15287390802608890

Evaluating the Similarity of Complex Drinking-Water
Disinfection By-Product Mixtures: Overview of the Issues

Analytical and Bioanalytical Chemistry (2020) 412:6789-6809
https://doi.org/10.1007/500216-020-02839-7

PAPER IN FOREFRONT

l‘)

Check for
Comparison of phytochemical composition of Ginkgo biloba extracts = "%

using a combination of non-targeted and targeted analytical
approaches

Bradley J. Collins ( - Season P. Kerns? - Kristin Aillon? - Geoffrey Mueller® - Cynthia V. Rider - Eugene F. DeRose" -
Robert E. London® - James M. Harnly* - Suramya Waidyanatha'

Original Research Article

. 1 . 1 . 2 . 3 Food and Chemical Toxicology 118 (2018) 328-339 bo
Glenn E. Rice', Linda K. Teuschler', Richard J. Bull”, Jane E. Simmons~,
and Paul I FEder4 Contents lists available at ScienceDirect TmET
Toxicolog!
YU.S. Environmental Protection Agency, Cincinnati, Ohio, *MoBull Consulting Richland, Wasj -
*National Health and Environmental Effects Research Laboratory, Office of Research and Dey Food and Chemical Toxicology
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, and “Battelld
Statistics and]nfommt:’on Analysis, Columbus, Ohio, USA journal homepage: www.elsevier.com/locate/foodchemtox e
= |
How similar is similar enough? A sufficient similarity case study with Ginkgo | W
biloba extract et
Natasha R. Catlin™', Bradley J. Collins®, Scott S. Auerbach®, Stephen S. Ferguson®,
James M. Harnly", Chris Gennings®, Suramya Waidyanatha®, Glenn E. Rice®, TOXICOLOGICAL SCIENCES, 172(2), 2019, 316-329
Rl Tvsi Stephanie L. Smith-Roe?, Kristine L. Witt®, Cynthia V. Rider™” SOT Society of JE——
Risk Ana yS1S ® Diyision of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA ST : TOXICOIng Advance Access Publication Date: August 27, 2019
AN INTERNATIONAL JOURNAI U5, Department of Agriculaure, Belisvlle, MD, USA R academic.oup.com/toxsci
An Official Publication of the Society for Risk Analysis “Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
4 [7.S. Environmental Protection Agency, Cincinnati, OH, USA

An Empirical Approach to Sufficient Similarity: Combining
Exposure Data and Mixtures Toxicology Data

Scott Marshall, Chris Gennings B, Linda K. Teuschler, LeAnna G. Stork, Rogelio Tornero-Velez, Kevin M.
Crofton, Glenn E. Rice

First published: 11 February 2013 | https://doi.org/10.1111/risa.12015 | Citations: 10

HUNC | closat rusiic mearrs

Evaluating Sufficient Similarity of Botanical Dietary
Supplements: Combining Chemical and In Vitro
Biological Data

Kristen R. Ryan,** Madelyn C. Huang,** Stephen S. Ferguson ® ,*

)
Suramya Waidyanatha,* Sreenivasa Ramaiahgari,* Julie R. Rice,* Paul E.
Dunlap,* Scott S. Auerbach,* Esra Mutly,* Tim Cristy, Jessica Peirfelice,
Michael J. DeVito,* Stephanie L. Smith-Roe,* and Cynthia V. Rider*?

*Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research
Triangle Park, North Carolina 27709; and TBattelle, Columbus, Ohio 43201

“These authors contributed equally to this study.
“To whom correspondence should be addressed at Cynthia Rider at National Institute of Environmental Health Sciences, PO Box 12233, K2-12, Research
Triangle Park, NC 27709. Fax: 919-541-1019; E-mail: cynthia rider@nih. gov.
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Which Wildfire-Relevant Exposure Conditions are Similar?

Each exposure condition produced a different set of emission chemistries:

b =T '
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| | L - )
. I I Peat_Flaming
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[ I I Red_Oak_Flaming
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-1
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Pine_Smoldering

Pine_Needles_Smoldering

Eucalyptus_Smoldering

I Red_Oak_Smoldering
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If we are just looking at the chemistry, we may conclude that:

« Flaming conditions group together

« Smoldering conditions group together Is this true of the biology?
« Except smoldering peat, which is pretty distinct

) GILLINGS SCHOOL OF Ra' er'l;:—:\b
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Transcriptomic Similarity Scoring

DUNC

Biomass Burn Exposure Scenarios

Flaming Smoldering Flaming smoldering
Eucalyptus Eucalyptus Pine Pine
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Flaming  Smoldering
Pine Pine
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Flaming
Red Oak

Smoldering
Red Oak

Flaming  Smoldering
Peat Peat
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Transcriptomic Similarity Scoring Yields

Exposure Groupings
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Transcriptomic Similarity Scoring

For hypothetical exposures A and B, the Jaccard distance, or dissimilarity, is defined as:

|A N B number of altered genes in common between exposures A and B
D(A,B)=1-— =1-
|A U B| total number of altered genes between exposures A and/or B
| similarity=0
|||||||||||||||||||||||||||||||EX,DOSUfe/‘\I > _,,y_
_|||||||||||||||||||||||||||||||ExposureBI dissimilarity=1
R S Eposure A | >S|m|Iar|ty=0.3
-------------------------------- Exposure B | dissimilarity=0.7
‘ Exposure A | > S|.m|.lar-|ty?0.67
Exposure B | dissimilarity=0.33
Hypothetical gene without Hypothetical gene with
an exposure-induced exposure-induced
expression change expression change

= ™ | GILLINGS SCHOOL OF Ra' erlab
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Clustering of Transcriptomic Similarity Scores (4h)

DUNC

LPS (119 DEGs)
Flaming Peat (156 DEGs)

Flaming Eucalyptus (159 DEGs) .
Smoldering Eucalyptus (88 DEGs)
Flaming Pine Needles (83 DEGS) I
Flaming Red Oak (49 DEGs)

Flaming Pine (21 DEGs) I

Smoldering Pine Needles (17 DEGs)
Smoldering Pine (21 DEGs)

Smoldering Peat (1 DEG)
Smoldering Red Oak (2 DEGSs)

4h Transcriptomic Response Signatures

™ W ]

—

gene with significant
change in expression

toxicity marker with
significant increase

no significant
change

A, | |
i

Toxicity Markers

%
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Clustering of Transcriptomic Similarity Scores (24h)

B 24h Transcriptomic Response Signatures Toxicity Markers
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-> Overall, responses are more muted in comparison to 4 h post-exposure,

with the same exposures grouping together at the top

= ™~ | GILLINGS SCHOOL OF Ragerlab
MUN(‘ GLOBAL PUBLIC HEALTH g 25



Grouping Results Summary

A Most Biological Responses Least Biological Responses
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-> Largely consistent groupings across transcriptomics, toxicity phenotypes, and post-exposure time periods
-> Largely inconsistent groupings with the chemical exposure profiles (though targeted methods were employed)
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Differences between Chemical vs. Biological-based Groupings is
Consistent with Previous Studies

Example: Black Cohosh (BC) sample similarity ‘calls’ on whether or not each sample
aliquot was similar to a NTP test article (Ryan et al. 2019)

BC BC BC BC BC BC BC BC BC BC BC BC BC BC

Analysis " 5" ' 0 E F 6 H I J AA AB AC_ AD

Non-targeted chemistry

SC-PHH gene expression

Figure 6. Summuary of total sufficient similarity indings for black cohosh (BC) samples. Conclusions of sufficient similarity for the different data streams are shown. A
black box indicates the result for each data stream is "similar” to the NTP test article (BC 1) and a white box indicates “different.” Only samples used in all analyses are
presented. SC-PHH = sandwich culture of primary human hepatocytes.

Though our future wildfire research will incorporate more global chemistry
approaches (e.g., NTA) to more holistically capture exposure signatures
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What are the Underlying Biological Mechanisms?
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Extracellular Vesicles (EVs) are Extremely Understudied in
Relation to Chemical Safety and Risk

JUNC

What are EVs?

Particles released from cells with an outer lipid bilayer that contain (and

transport) molecules - are distinguished from cells because they cannot
replicate

EVs carry different molecular content and then impart beneficial, neutral,
or detrimental effects to nearby or distant target tissues
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Approaches to incorporate extracellular vesicles into
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EVs as Cross-Tissue Mediators of Wildfire Toxicity

Wildfire Exposure In Vivo Exposure
Conditions

Environment International 167 (2022) 107419
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Environment International

/ l x ELSEVIER journal homepage: www.elsevier.com/locate/envint

Full length article
Lung/BALF Plasma Heart
Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of

cross-tissue cardiopulmonary responses to biomass smoke
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Gregory J. Smith *© Dav1d M. Reif’, 1101'1‘1 Jaspers %2 M Ian Gilmour®, Julia E. Rager > a?

* Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
b The itute for Emvir 1l Health Soluti Gillings School of Global Public Health, The University of North Caroling at Chapel Hill, Chapel Hill, NC, USA

© The Center for Envirenmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA

9 Curriculum in Toxicology, School of Medicine, University of North Garolina, Ghapel Hill, NG, USA

* Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
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Gene expression Altered miRNAs Gene expression
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Evaluated EV-encapsulated MicroRNAs in Mouse Plasma

Plasma

Heart

: Transcription ; ; : :
D miRNA O Regulator O Kinase - Increased miRNA Expression [:I Increased mRNA Expression
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Evidence Supporting Possible Transfer of miR-30b from Plasma
to Heart after Biomass Smoke Exposure

(A) If miR-30b expression changes If miR-30b expression
originate from external tissues changes originate from
(e.g., plasma) and enter the heart: the heart:
No change in Increased
pri-miR-30b expression pri-miR-30b expression
N/ N
Increased N\ Increased
miR-30b expression NP miR-30b expression
A A
(B) miR-30b qRT-PCR _ miR-125b qRT-PCR
25 2.5
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° * @
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5 5
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EVs as Cross-Tissue Mediators of Wildfire Toxicity

Wildfire Exposure Key Event 1: Lung Cell Responses Key Event 2: EV miRNAs Key Event 3: Communication with Distal Tissues
Conditions Gene expression changes & pathway-level Release of miRNAs encapsulated in EV miRNAs circulating in blood reach target tissues (e.qg.,
. alterations involving hypoxia and cell stress EVs into circulating blood heart) and impact gene expression and pathway-level
A ~ X alterations involving hypoxia and cell stress

O RSN CrG*
T Particulate
st Matter C

s S
o MO e

Supporting Evidence

Current study supports association
between biomass smoke exposures and
lung hypoxia/cell stress pathway changes

Current study supports association Current study supports association between changes in plasma EV miRNAs

between lung hypoxia/cell stress pathway  coinciding with changes in heart hypoxia/cell stress pathway changes
changes coinciding with changes in

plasma EV miRNAs Current study supports association between changes in plasma EV miRNAs
coinciding with changes in the same miRNAs (e.g., miR-30b) in heart tissue

Additional mechanistic evidence from Additional mechanistic evidence from published articles: Das and Halushka
published articles: Chen et al. 2017, Su et et al. 2015, Davidson et al. 2019, Emanueli et al. 2016, Gong et al. 2017,
al. 2020, Zhang et al. 2021 Minghua et al. 2018
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Currently Developing Methods to Evaluate EVs within In Vitro

Models
In Vitro Wildfire Studies

3. Differential EV Proteomic
Landscape

1. 3D Organotypic Models of 2. EV Isolation from
the Airway Epithelium + Conditioned Media

Biomass Smoke Exposure
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Overall Impact

* It's impossible to test every chemical in wildfires (individually or across combinations)

» Leveraging in silico mixtures modeling has great utility towards decreasing reliance upon animal
testing and informing future in vitro/in vivo study designs

Real-world solutions: What can we do with these findings?

c A * Improve risk characterizations of these complex exposure
conditions by identifying major toxicity drivers

s € s « |dentifying the ‘bad actors’ in these exposures can inform

S \ | geographical regions that may be more at risk of wildfire

. | smoke-induced health impacts, based on their prevalent

s et biomass species
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