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Climate Change Influences on the Environment

Flooding
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Drought Heat Wildfire

News sources: abcnews; newsroom.ucla; nytimes;  
theguardian; washingtonpost

According to the 
National Interagency 
Fire Center, as of Oct 
27th in the U.S., there 
have been 59,221 fires, 
covering >7 million 
acres so far, this year –
numbers that are well 
above the 10-y average



Wildfires as a Growing Public Health Problem
• Wildfires are growing in prevalence and intensity, contributing to poor air quality

3

https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-map.html

https://climate.nasa.gov/ask-nasa-climate/3066/the-climate-connections-of-a-record-fire-year-in-the-us-west/

San Francisco, CA, July-Sept 2020

https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-map.html

Manhattan, NY

• What is in wildfire smoke? A mixture of compounds from tree combustion (e.g., particulate matter, 
acrolein, benzene, formaldehyde, PAHs, VOCs, metals, etc)

• Can also be produced with other fuel sources, including variable biomasses and anthropogenic materials 



Health Impacts of Wildfire Smoke Exposures
• Studies first carried out in firefighters

• Now finding similar relationships 
within the general public impacted 
by wildfire smoke exposures
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Health Impacts of Wildfire Smoke Exposures
• Studies first carried out in firefighters

• Now finding similar relationships 
within the general public impacted 
by wildfire smoke exposures
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Research at UNC is significantly 
contributing to data supporting 

wildfire relationships to 
increased respiratory infection



Wildfires and Mechanisms Supporting Increased Risk for 
Respiratory Pathogen Infection

6Slide credit: Meghan Rebuli, UNC

Links to SARS-CoV-2 infection risk:
• Multiple studies point to a potential connection between wildfire smoke exposure and higher rates of COVID-19 

infection and associated mortality (Kiser et al Environ Health 2020)

• Woodsmoke particles prior to SARS-CoV-2 infection 
alter antiviral response gene expression 
(Brocke et al AJP-Lung 2022)

Links to influenza infection risk:

• Winter influenza seasons in Montana were four to five 
times worse after bad wildfire seasons 
(Landguth et al Environment International 2020)

• Wood smoke exposure in vivo alters human inflammatory 
response to a model of influenza infection 
(Rebuli et al AJRCCM 2019)



Health Impacts of Wildfire Smoke Exposures
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Research Questions:
(1) Which chemicals drive toxicity?
(2) Which exposure conditions are 

sufficiently similar?
(3) What are the underlying biological 

mechanisms?



What Chemicals Drive Toxicity? 
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Difficulties in Wildfire Research
Epidemiology-based studies are often limited 
as retrospective analyses
• Where smoke exposures are difficult to 

quantify/characterize after the event
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https://www.economist.com/science-and-technology/2018/08/02/software-can-model-how-a-wildfire-will-spread

https://www.sfchronicle.com/california-wildfires/article/Bay-Area-awakens-to-smoky-skies-as-wildfires-rage-15495018.php

https://www.freepik.com/vectors/laboratory-microscope

Variable and unpredictable exposure scenarios

Lab-based studies are extremely difficult to carry out
• Exposure scenarios difficult to generate in the lab
• Biomass combustions are dangerous and can cause explosions
• It’s difficult to analyze chemistry/PM conditions across wide span 

of chemistries occurring in wildfire simulations
• It’s difficult to couple exposures with in vitro/in vivo test models



Partnership with U.S. EPA Atmospheric Chemistry & Toxicology 
Lab – Ian Gilmour & Yong Ho Kim
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Exposure Design
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Toxicity Markers



Which Chemicals may be Driving Wildfire-Associated Toxicity?
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• This study utilized a suite of computational mixtures approaches to identify groups of 
chemicals induced by variable biomass burn conditions associated with biological responses 
in the mouse lung



Clusters (called ‘Modules’) of Co-Occurring Chemicals were 
Identified across Biomass Burns
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“Brown” Module and its Eigenvector “Blue” Module and its Eigenvector

Mostly PAHsInorganics and ions



Select Chemical Groups Correlated with Cardiopulmonary 
Toxicity Endpoints 
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Mostly n-alkanes

Mostly PAHs

Mostly methoxyphenols

Inorganics and ions

Inorganics and ions

Mix

Mix

• Brown and yellow modules showed the most significant, positive 
associations across the largest number of biological responses

• Green module showed the largest number of negative associations -> 
potential protective effects? Let’s evaluate further!



Mixtures Modeling through Quantile g-Computation
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Ran models individually for each outcome (i.e., 
each cardiopulmonary toxicity marker)

Three models per outcome:
(1) All chemicals
(2) All chemicals except those in the ‘green 
module’
(3) Just the chemicals in the ‘green module’

General findings:
• Toxicity endpoints increased in (2) vs (1)
• Green is good!

(1)
(2)

(3)

Alex Keil and Nicole Niehoff (NIH)



What’s in the ‘Good’ 
Module?

There is evidence for these 
individual chemicals 
decreasing DNA damage 
and/or inflammation after an 
exogenous insult
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What’s in the ‘Bad’ 
Modules?



Individual Chemicals vs 
Potential Joint Relationships

• Many of the relationships identified through 
mixtures modeling were not captured through 
individual chemical analyses

• Demonstrates the utility of mixtures-based 
statistical approaches!

• Findings are now informing the design of future in 
vitro testing (shown on right)

• Goal: Quantify & model the potential relationships 
between major chemical drivers of wildfire-
associated outcomes
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What Exposure Conditions are Sufficiently 
Similar?
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Introduction to Evaluating Exposure / Toxicity Similarities across 
Complex Mixtures

• Sufficient similarity methods are used to generally determine groups of exposure conditions 
that are chemically/biologically similar enough to be regulated together for safety assessments
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Examples of Research on Sufficient Similarity
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Which Wildfire-Relevant Exposure Conditions are Similar?
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Each exposure condition produced a different set of emission chemistries:

If we are just looking at the chemistry, we may conclude that:
• Flaming conditions group together
• Smoldering conditions group together
• Except smoldering peat, which is pretty distinct

Is this true of the biology?



Transcriptomic Similarity Scoring
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Transcriptomic Similarity Scoring
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For hypothetical exposures A and B, the Jaccard distance, or dissimilarity, is defined as:

similarity=0  
dissimilarity=1

similarity=0.3
dissimilarity=0.7

similarity=0.67
dissimilarity=0.33

Exposure A
Exposure B

Exposure A
Exposure B

Exposure A
Exposure B

Hypothetical gene without 
an exposure-induced 
expression change

Hypothetical gene with 
exposure-induced 
expression change



Clustering of Transcriptomic Similarity Scores (4h)
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Clustering of Transcriptomic Similarity Scores (24h)
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-> Overall, responses are more muted in comparison to 4 h post-exposure, 
with the same exposures grouping together at the top



Grouping Results Summary
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-> Largely consistent groupings across transcriptomics, toxicity phenotypes, and post-exposure time periods
-> Largely inconsistent groupings with the chemical exposure profiles (though targeted methods were employed)



Differences between Chemical vs. Biological-based Groupings is 
Consistent with Previous Studies

Example: Black Cohosh (BC) sample similarity ‘calls’ on whether or not each sample 
aliquot was similar to a NTP test article (Ryan et al. 2019)
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Though our future wildfire research will incorporate more global chemistry 
approaches (e.g., NTA) to more holistically capture exposure signatures



What are the Underlying Biological Mechanisms?
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Extracellular Vesicles (EVs) are Extremely Understudied in 
Relation to Chemical Safety and Risk
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(Carberry et al. 2022)

What are EVs?
Particles released from cells with an outer lipid bilayer that contain (and 
transport) molecules - are distinguished from cells because they cannot 
replicate

EVs carry different molecular content and then impart beneficial, neutral, 
or detrimental effects to nearby or distant target tissues



EVs as Cross-Tissue Mediators of Wildfire Toxicity
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Celeste Carberry (UNC), Lauren Koval (UNC), Gregory Smith (UNC), Yong Ho Kim (EPA), 

David Reif (NCSU), Ian Gilmour (EPA), Ilona Jaspers (UNC)



Evaluated EV-encapsulated MicroRNAs in Mouse Plasma
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Evidence Supporting Possible Transfer of miR-30b from Plasma 
to Heart after Biomass Smoke Exposure
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EVs as Cross-Tissue Mediators of Wildfire Toxicity
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Currently Developing Methods to Evaluate EVs within In Vitro
Models

In Vitro Wildfire Studies
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Shaun McCullough (EPA), Eva Vitucci (UNC), Celeste Carberry (UNC), Alexis Payton (UNC)

1. 3D Organotypic Models of 
the Airway Epithelium + 

Biomass Smoke Exposure

2. EV Isolation from 
Conditioned Media

3. Differential EV Proteomic 
Landscape



Overall Impact
• It’s impossible to test every chemical in wildfires (individually or across combinations)

• Leveraging in silico mixtures modeling has great utility towards decreasing reliance upon animal 
testing and informing future in vitro/in vivo study designs
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Real-world solutions: What can we do with these findings?

• Improve risk characterizations of these complex exposure 
conditions by identifying major toxicity drivers

• Identifying the ‘bad actors’ in these exposures can inform 
geographical regions that may be more at risk of wildfire 
smoke-induced health impacts, based on their prevalent 
biomass species

https://www.researchgate.net/figure/Spatial-distribution-of-global-natural-vegetaiton-biomes-in-the-period-1911-2000-a-T1_fig10_258956265



Collaborations and Funding
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