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Overview

What

Redox processes to a large extent control
subsurface groundwater composition.

Why

In redox processes that release As, a key process
is the reduction of solid mineral substrates like
iron oxides that host As. Although we know a lot
about groundwater composition from analyzing
well water, we know little about solids because
they are hard to see and not often analyzed at
any field site.

Bringing Data Science to the Table

We can characterize sediment redox states and
deposition history using X-ray absorption, and
larger integrated datasets of groundwater arsenic
to learn about these solid transformations more
broadly, including in the US



FAIR Synchrotron-Based Data Access, and Workflows

To best use synchrotron-based spectroscopic data, and thus to understand the chemical
speciation, and thus the fate, transport and toxicity of arsenic, we need automated,
integrated, improved, and standardized methods of data analysis.

Integrating Environmental Analyses of biological and environmental samples
analyzed using synchrotron-based methods. This starts at the integration of data
from different students and field projects within a group and extends across
collaborators and institutions.

Integrating reference spectra to create a uniform set for Iron, Sulfur and Arsenic
Reference Spectra (others in progress)

Developing statistical approaches of determining reference integrity and data quality

Creating unsupervised spectral analysis tools that leverage these reference datasets
to simplify the complexity of environmental complexity.

Integrating intercompatible formats to ensure uniform data collection in and
analysis with existing software.

Creating web-based workflows that (a) are easy to use, (b) ensure uniformity in data
analysis, (c) permit direct data upload to a database, and (d) conduct automated
QA/QC checks on submitted data to better understand. Submission is currentlyboth
voluntary and tedious, but probably needs to change to be most useful.



Iron reduction

Arsenic is toxic and we would like tools to
predict whether it is or will be in water. To
do so, we need to understand the solid
phase. We also need to know if this
process is generalizable.

What Data: Iron, arsenic and carbon
characterization are relevant, particularly
in environments where they changing.
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Where

We do not have dense data in most
places. Need to develop method with
dense dataset.

Field site in Vietnam (ear Hanoi), but
with the ability to link the processes
here to the other areas (Bangladesh,
the US)
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how

X-ray absorption spectroscopy of Fe, a measure of the
chemical environment of Fe.

Fitting complex data for small datasets requires
linear combination approaches (a lot of knowledge)

Often, we lack some of the information needed for
classification. Unsupervised approaches are effective
as datasets become larger. (Individual projects, grad
students = unified datasets that can grow and be
amended)

Metadata: WWWWWH the sample was collected
from, water data from the site, other information.
High standard to be useful data.
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unsupervised cluster analysis distinguishes

figure 1
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how

4. LINEAR COMBINATION FITTING

Use 10 Fe standards: ferrihydrite, goethite,
hematite, green rust sulfate, magnetite, mixed
Fe(lll)/(1l) silicate, biotite, siderite, mackinawite,
pyrite to fit sample spectra.

For each sample,
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figure 2

Fe mineral

clusters are meaningful: oxidized minerals and

minerals undergoing reduction found in Pleistocene

clusters, reduced minerals in Holocene cluster
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Need ancillary data to
determine which of the
reference materials should be
used for fitting. And you need
a complete set of possibilities
since you might not have the
proper ones.

Integrated datasets of
references are very useful.
Shared references critical
because the references are
more complex than you
expect them to be.
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how

Match the sediment cluster
with mineralogy changes in
groups (not individual
samples) and pair sediment
environment/cluster to
aqueous composition

Data: Need integrated data of other
types for comparison and scaling
activities. In this case, >1M water
samples from around the world.
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how

6. CLASSIFICATION MODEL

Run and cross-validate supervised
classification model to classify
sediment by redox sensitive aqueous
measurements
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7. APPLY CLASSIFICATION MODEL

Apply it to USGS Powell Center compiled
database aqueous measurements of As,
Mn, Fe (n= 16294)
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sediment classification of Pleistocene clusters
flgure 4 matches previously identified Pleistocene terraces
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High aqueous arsenic is found in Holocene sediments

figure 5 andinasignificant number of converted Pleistocene
sediments undergoing reduction. The widespread
occurrence of this group is worrisome.
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Overall Results

Iron mineralogical structure
useful to classify sediments
into meaningful and useful
categories relevant to
geology, hydrology and
public health.

Challenge

How far can we apply
unsupervised method?
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Figure 6. Extending the data to Minnesota
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