

The Evolution of Tox21: Enhancing Physiological Relevance & Interpretability with Emerging Toxicological Approach Methods (TAMs)

Stephen S. Ferguson, Ph.D.

- Numerous research programs addressing public health challenges
- EPA has >85,000 chemicals listed in Toxic Substances Control Act (TSCA)
- Tox21 Program (NIEHS, US EPA, NCATS, & FDA)
 - o Address data-poor chemicals in context with pharmaceuticals and well-studied environmental chemicals
 - o Prioritize chemicals for further study
 - ~9,000 chemicals evaluated
 - ~70 high-throughput assays
 - >125 biological targets/processes
 - >120 million data points
 - Publicly Available Resources:
 - PubChem
 - Tox21 Data Browser
 - EPA CompTox Chemicals Dashboard
 - Quantitative potency estimation through in vitro to in vivo extrapolation (IVIVE)
- Emerging technologies are providing tools estimate human bioactivity & toxicity potential using human cells and mechanistic signaling pathway interactions

https://tox21.gov/overview/about-tox21/

Tox21 (NCATS, EPA, FDA & NTP)

Limitations of Tox21 qHTS:

- -Limited capability for xenobiotic metabolism
- -Limited pathway coverage
- -Focus on 'individual' cellular pathways lacking integrated biological/tissue-like functionality
- -Use of immortalized and transformed cell lines
- -Addition-only assays with <40h exposure
- -linking chemicals to AOPs, pathologies, and disease

Evolution of Tox21: Predictive Toxicology Screening

- Physiologically-relevant in vitro screening models
 - improved cellular differentiation/functionality
 - xenobiotic metabolism & bioactivation/detoxification
 - longevity to model progressions towards apical outcomes
 - pathological outcomes
 - xenobiotic clearance and drug interactions
 - pharmacology analogue case comparisons
 - species-specific response comparisons
- Multi-dimensional assay platforms (time/concentration)
 - cellular imaging
 - high throughput transcriptomics
 - metabolomics
- Quantitative translation to humans
 - IVIVE (e.g., BMC, AC₅₀, CL_{int}, f_{ub})
- Extend approach:
 - -Extrahepatic tissues: kidney, lung, cardiovascular, intestine
 - -Susceptibility models: developmental, disease, population

	E	3D	H	ера	۱R	G	spł	ner	oid	s	
	1				•		•	•	•		
					•	-		-	•		•
		-					•				
• • • • • • • • • • • • •					•	•	•				
· · · · · · · · · · · · ·	4					•	•			-	
server in the server of the se										1	
~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~			-	-	-			1		-	-

Isolated Primary Liver Cells Rapidly De-differentiate Once Removed from Liver Tissue

Isolated Primary Liver Cells Rapidly De-differentiate Once Removed from Liver Tissue

Smith et al. J. Pharm. Sci. 2012. v.101(10):3898.

Isolated Primary Liver Cells Rapidly De-differentiate Once Removed from Liver Tissue

Smith et al. J. Pharm. Sci. 2012. v.101(10):3898.

Hanging drop (Insphero)

ULA microplate (Corning)

Emulate/ Wyss

Magnetic levitation

3D Bioprinting (e.g., Organovo)

Perfused bioreactors

Ginkgo Biloba Extract Liver Effects Modeling

• Sandwich cultures of PHHs (SC-PHHs)

- Modeling liver weight increases, enzyme Induction
- Cell Health
- CYP450 induction/receptor activation
 - mRNA (TaqMan)
 - Liver enzymatic activity
- Linking constituents to biological responses

GBE-AA | CYP3A4 | EMAX: 6.90 | EMIN: 1.01 | EC50: 0.00129
GBE A | CYP3A4 | EMAX: 1.03 | EMIN: 0.0715 | EC50: 0.00266
GBE B | CYP3A4 | EMAX: 1.11 | EMIN: 0.120 | EC50: 0.00291
GBE C | CYP3A4 | EMAX: 1.69 | EMIN: 0.0106 | EC50: 0.00291
GBE C | CYP3A4 | EMAX: 1.69 | EMIN: 0.0106 | EC50: 0.00294
GBE C | CYP3A4 | EMAX: 0.765 | EMIN: 0.115 | EC50: 0.00365
GBE C | CYP3A4 | EMAX: 0.914 | EMIN: 0.0506 | EC50: 0.00294
GBE H | CYP3A4 | EMAX: 1.47 | EMIN: 0.0228 | EC50: 0.00142
GBE L | CYP3A4 | EMAX: 4.10 | EMIN: 1.74 | EC50: 4.91E-4
GBE J | CYP3A4 | EMAX: 9.12 | EMIN: 1.00 | EC50: 0.00156
GBE L | CYP3A4 | EMAX: 5.60 | EMIN: 1.01 | EC50: 6.11E-4
GBE W | CYP3A4 | EMAX: 1.02 | EMIN: 0.0248 | EC50: 2.94E-5

HUM4080: Female, Caucasian (47)

Environmental Exposures with Differentiated HepaRG Cultures

PFAS & AFFFs

National Toxicology Program

NTP

6.2-FTS

benzo(a)pyrene

benzo(b)fluoranthene

HepaRG: Hepatic Progenitor Cells

Hallmarks of Hepatocyte Functionality

Jackson et. al, Drug Metab Disp, (2016) v.44(9): 1463-79.

CYP3A4/5 Metabolism

200-150-

100 I

pmol/min-million cells

iPSC-derived hepatocytes Transformed cell lines (e.g., HepG2)

AhR-, CAR-, & PXR-Mediated Liver Enzyme Induction

Ramaiahgari et al., Toxicol Sci (2017) v.159 (1): 124-136

HepaRG cells form polarized spheroids

PAS:	Glycogen storage
Poly CEA:	Glycoprotein-1 on Bile Canaliculi (BC)
MRP2:	Luminal transporter found at BC surfaces
CK19:	Marker for Cholangiocytes

Collaboration with Darlene Dixon of NTP Labs

HepaRG cells form polarized spheroids

PAS: Glycogen storage
Poly CEA: Glycoprotein-1 on Bile Canaliculi (BC)
MRP2: Luminal transporter found at BC surfaces
CK19: Marker for Cholangiocytes

Live-cell CLF

HepaRG cells form polarized spheroids

Bell et al., Sci Rep. 2016 May 4;6:25187.

Collaboration with Darlene Dixon of NTP Labs

3D HepaRG Spheroids (384-well)

oxicological

OXFORD UNIVERSITY PRESS

Dr. Sreenivasa Ramaiahgari

SOT Society of Toxicology

HepaRG spheroids sensitive to metabolically-activated aflatoxin B1 cytotoxicity National Toxicology Program

> 0--1.5

-1.0

-0.5

0.0

Concentration of Aflatoxin B1

0.5

1.0

1.5

Ramaiahgari et al., Toxicol Sci (2017) v.159 (1): 124-136

ТΡ

3D HepaRG Spheroid Responses to Drug Analogues

Ramaiahgari et al., Toxicol Sci (2017) v.159 (1): 124-136

3D HepaRG Spheroids Model Gene- and Pathway-level Transcriptomic Functionality

Omeprazole

- Elevated basal CYP1A1 expression in PROLIF HepaRG; linked to liver development
- AhR functionality in 2D & PROLIF
- Reduced xenobiotic metabolism competence impacts CYP3A4 inducibility (PXR)

Ramaiahgari et al., 2019 (Jun) Toxicological Sciences, v.169 (2), 553-566.

CYP3A4 BMC Curve

Estimation of Liver Injury Potential with Benchmark Concentration Analysis of High Throughput Transcriptomics (S1500⁺) with 2D Differentiated HepaRG

Ramaiahgari et al., 2019 (Jun) Toxicological Sciences, v.169 (2), 553-566.

trovafloxacin vs. levofloxacin

De levofloxacin-2d-run1-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-Category File_Human_Indivdual_Gene_true_true_pval0.0001_ratio40_foldchange2_conf0.5 • trovafloxacin-2d-run1-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-Category File_Human_Indivdual_Gene_true_pval0.0001_ratio40_foldchange2_conf0.5 ---- trovafloxacin-2d-run3-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_GO_BP_true_true_pval0.0001_ratio40_conf0.5

-Devofioxacin-2d-run3-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_51500_Human_GO_BP_true_true_pval0.0001_ratio40_conf0.5 -O- levofloxacin-prol-run3-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_GO_BP_true_true_pval0.0001_ratio40_conf0.5 - trovafloxacin-prol-run3-plate3_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_GO_BP_true_true_pval0.0001_ratio40_conf0.5

Ramaiahgari et al., 2019 (Jun) Toxicological Sciences, v.169 (2), 553-566.

Therapeutic Target ID via BMC Modeling

PPARγ report gene assay potencies: Troglitazone: $EC_{50} = \sim 550$ nM Rosiglitazone: $EC_{50} = \sim 18$ nM Chen, R. et al. Pharm Biol 55, 503-509 (2017).

NOT all genes within a historical 'pathway' (i.e., gene set) are diagnostic, correct relative potency for FABP4 and ADIPOQ

rosiglitazone-2d-run1-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 rosiglitazone-2d-run3-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 rosiglitazone-2d-run1-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 troglitazone-2d-run1-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 troglitazone-2d-run1-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 troglitazone-2d-run2-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 troglitazone-2d-run2-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5
 troglitazone-2d-run3-plate1_williams_0.05_NOMTC_foldfilter1.5_BMD_S1500_Human_DEFINED-HG-U133_Plus_2_C2_msigdb_v5.0_true_true_pval0.0001_ratio40_conf0.5

Ramaiahgari et al., 2019 (Jun) Toxicological Sciences, v.169 (2), 553-566.

BMC Median Accumulation Plot

Cyclophosphamide

(2-fold filter)

- **3**D HepaRG Spheroids
- O 2D-DIFF HepaRG
- ▲ PROLIF HepaRG
- Plausibly-relevant response pathways including:
 - Lipid hydroxylation
 - P450 metabolism
 - Cell cycle
 - ROS
 - DNA damage
 - Hypoxia

Unpublished Data

Valproic Acid-3D HepaRG Spheroids

- C_{max} ~240 µM (human plasma)
- Extensively metabolized (P450s)
- Cytotoxicity @ 1000 µM (3D only)
- Alters lipid & fatty acids levels
- Therapeutic target GABAergic receptor
- Hepatic mitochondrial toxicity & hyperammonemia
- Idiosyncratic liver injury compound

Valproic Acid HTT in 3D HepaRG Spheroids

³D VPA_williams_0.05_foldfilter2.0_BMD_CPDB Human_true_true_pval0.001_ratio40_conf0.5

--- 2D VPA (Run1)_williams_0.05_NOMTC_foldfilter2.0_BMD_S1500_Plus_Human_DEFINED-Category File_CPDB Human_true_true_pval0.001_ratio40_conf0.5

PROLIF VPA (Run 1)_williams_0.05_NOMTC_foldfilter2.0_BMD_S1500_Plus_Human_DEFINED-Category File_CPDB Human_true_true_pval0.001_ratio40_conf0.5

3D Spheroids & Biological Pathway Enrichment

3D 2D Prolif

	Г	p53 Signaling	
	Ц	Molecular Mechanisms of Cai	
-	┨┍	Aryl Hydrocarbon Receptor Si	
	Ч	Xenobiotic Metabolism Signa	
	ľ	LPS/IL-1 Mediated Inhibition	
	1	PXR/RXR Activation	
	ı	Hepatic Fibrosis / Hepatic Ste	
	Ц	Acute Phase Response Signal	
٢	-	FXR/RXR Activation	
l	4	Superpathway of Melatonin I	
l	ł	Nicotine Degradation II	
l	1	Melatonin Degradation I	
1	г	Estrogen-mediated S-phase E	
l	rh -	Pancreatic Adenocarcinoma S	
l		Role of CHK Proteins in Cell C	
l	11	Neuroinflammation Signaling	
Ľ	1,	GADD45 Signaling	
		Glucocorticoid Receptor Sign	
	U1	Hereditary Breast Cancer Sigr	
	I	Cell Cycle: G1/S Checkpoint R	
	4	Cyclins and Cell Cycle Regula	
		Cell Cycle Control of Chromo	
	1	ATM Signaling	
	Г	Sirtuin Signaling Pathway	
		Mitotic Roles of Polo-Like Kin	
	٦	PPARα/RXRα Activation	
	I	Ovarian Cancer Signaling	

Benzo(a)pyrene (Group 1 carcinogen (IARC)) exposure on HepaRG cell culture models

	Significantly changed genes							
		2D_DIFF	2D_PROLIF					
Canonical Pathways	3D_3 μΜ	_3 μΜ	_3 μM					
P53 Signaling	39	14	14					
Molecular Mechanisms of Cancer	71	32	40					
AhR Signaling	38	23	23					
Xenobiotic Metabolism Signaling	52	35	39					
PXR/RXR Activation	27	16	20					
Hepatic Fibrosis	38	24	28					
Acute Phase Response Signaling	36	22	28					
Pancreatic Adenocarcinoma	30	19	18					
GADD45 Signaling	12	7	7					
ATM Signaling	26	12	14					

Dietary Intake of Heterocyclic Amines and Benzo(a)Pyrene: Associations with Pancreatic Cancer

Kristin E. Anderson,¹ Fred F. Kadlubar,² Martin Kulldorff,³ Lisa Harnack,¹ Myron Gross,¹ Nicholas P. Lang,⁴ Cheryl Barber,¹ Nat Rothman,⁵ and Rashmi Sinha⁵

School of Public Health, University of Minnesota, Minneapolis, Minnesota; ³National Center for Toxicological Research, Jefferson; ³Department of Ambulatory Care and Prevention, Harvard Medical School and Harvard Pilgrim Health Care, Boston, Massachusetts; ⁴Central Arkansas Veterans Healthcare System and Department of Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and ⁵National Cancer Institute, Rockville, Maryland

Opportunities

- Enhanced hepatocyte functionality
 & population of transcriptomic pathways
- Long-term differentiation for repeated exposure, time-course, & reversibility
- Simple model system readily compatible with most cell culture labs
- Efficient use of hepatocytes
- In vitro pathology to image microtissues for toxicological outcomes (e.g., steatosis, cholestasis, fibrosis)
- Explore potential mechanisms linked with in vitro pathology characteristics

Biliary Efflux Transporter MRP-2 Immunostaining of HepaRG Spheroids (21d)

<u>Challenges</u>

- Changing culture media without liquid handling, aspirating floating spheroids
- High throughput imaging of 3D spheroids
- Recent plate manufacturing issues
- Insufficient knowledge of spheroid maturation & context of use (e.g., phenotypes & outcomes)
- Allometric scaling & biomass challenges (e.g., metabolite profiles over time)
- Inadequate optimization of cell culture media largely adopted from 2D (e.g., DMSO, hydrocortisone)

Upcoming Research with 3D HepaRG Spheroids

Tox21 Cross-partner Project #5

- Develop robust chemical reference dataset for interpretation of high-throughput transcriptomic data: 3D HepaRG spheroids (NTP), MCF-7 (EPA)
- Exposures to >300 pharmaceuticals & chemicals with established high affinity linkages to specific molecular targets (e.g., agonist, antagonist, inhibitor)
- Define signatures of transcriptomic response to reference chemicals to contextualize environmental chemicals

1				-		 		1000		_				 			 -	-	
			1	٠	1									 					
					*										-				
																-			3
	1				20											1.			
																			1
				-	1					20									
	20		1																
			1.		4			-											
						-												1	
	6					1				1	2								1
	2	80							2.				-					1	
										1			1						-
							4									6			1
													4			4		-	
20			-	1					2	1		10			100				

- NTP interspecies parallelogram evaluation of 20 historical chemicals
 - -Chronic in vivo bioassay results (e.g., 2-year carcinogenicity)
 - -5-day in vivo rat liver/kidney transcriptomics
 - -3D in vitro rat hepatocyte spheroids
 - -3D in vitro human HepaRG spheroids
- Histo- and clinical-pathology modeling of liver and renal proximal tubule

NIEHS/NTP Colleagues & Collaborators

Biomolecular Screening Branch

Rick Paules

Trey Saddler

Alison Harrill

NIEHS

Georgia Roberts Jennifer Fostel **Brad Collins** Suramya Waidyanatha Windy Boyd

Numerous colleagues CellzDirect & Life Technologies

Sciome

Ruchir Shah

Deepak Mav

Dhiral Padke

Jason Phillips

NTP Labs

Alex Merrick (Branch Chief) Paul Dunlap Julie Rice **David Crizer** Wei Qu Will Gwinn Nancy Urbano Janice Harvey Sreenivasa Ramaiahgari **Stephen Ferguson**

BioSpyder

Jo Yeakley Harper VanSteenhouse **Bruce Seligman** Jason Downing

US EPA Josh Harrill **Rusty Thomas** John Wambaugh

US FDA Weida Tong

> ICF Joanne Trogovich