

analytical/experimental framework to

predict long-term disease risk from exposure to chemical compounds using genomic assays and computation

Disease Prevention

Project Cell line Description Liver Carcinogenicity This experiment uses 330 selected chemicals for in-vivo liver carcinogenicity testing, inclutation in the second	The Chemic	htt Carc al Carcinogenic	ty Screening using high-throughput transcriptomics assays
Liver Carcinogenicity HEPG2 This experiment uses 330 selected chemicals for in-vivo liver carcinogenicity testing, inclu 128 liver carcinogens, 168 non-carcinogens, and 34 miscellaneous chemicals (e.g. nuclear receptor ligands). Chemical carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Database (OPDB), which is the result of tissue-specific long-term animal cancer tests in rodents. In the liver carcinogene project, HepG2 (liver) cells are exposed to each individual chemical for 24 hours and their gene expression is profiled on L1000 platform. Each chemical is assayed at 6 doses (2 fold dilutions starting from the hig concentration of 40uM or 20uM) with triplicate profiles generated for each dose	Project	Cell line	Description
	Liver Carcinogenicity	HEPG2	This experiment uses 330 selected chemicals for in-vivo liver carcinogenicity testing, includin, 128 liver carcinogens, 168 non-carcinogens, and 34 miscellaneous chemicals (e.g. nuclear receptor ligands). Chemical carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Database (CPDB), which is the result of tissue-specific long-term animal cancer tests in rodents. In the liver carcinogenome project, HepG2 (liver) cells are exposed to each individual chemical for 24 hours and their gene expression is profiled on the L1000 platform. Each chemical is assayed at 6 doses (2 fold dilutions starting from the highes concentration of 40.0M or 20.0M) with triplicate profiles generated for each dose
Breast Carcinogenicity MCF10A MCF10A Selected chemicals for breast carcinogenicity testing, including breast carcinogens, 114 non-carcinogens, 114 non-carcinogens, 140 non-carcinogenicity cesting, including breast carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Databases (CPDB), wh is the result of tissus-specific long-term animal cancer tests in rodents, or breast carcinog published from Rudel et. al., 2007. In the CRCGN project, MCF10A (breast epithelial) cells exposed to each individual chemical for 24 hours and their gene expression is profiled on L1000 platform. Each chemical is assayed at 3 doses (3 fold dilutions starting from the hig concentration of 100UM, with the exception of selected BUSRP chemicals	Breast Carcinogenicity	MCF10A	This experiment uses 345 selected chemicals for breast carcinogenicity testing, including 120 breast carcinogens, 114 non-carcinogens, and 68 miscellaneous chemicals (e.g. nuclear receptor ligands, BU SRP chemicals, lung carcinogens). Chemical carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Database (CPDB), which is the result of tissue-specific long-term animal cancer tests in rodents, or breast carcinogens published from Rudel et. al., 2007. In the CRCGN project, MCF10A (breast epithelial) cells are exposed to each individual chemical for 24 hours and their gene expression is profiled on the L1000 platform. Each chemical is assayed at 3 doses (3 fold dilutions starting from the highes concentration of 100uM, with the exception of selected BUSRP chemicals

The Carcinogenome Project In-vitro Carcinogenicity Profiling Profiled >330 chemicals (~6,000 profiles) in liver cell lines with "liver-specific" carcinogenicity annotation								
	Cell line	Chemical Type	# Chemicals	# Profiles				
24h	HEGP2	Liver carcinogens	131	2358				
6 doses 3 replicates		Non-carcinogens	172	3096				
1 cell type		Others (BUSRP)	33	594				
		Total	336	6048				
24h 3 doses 3 replicates 2 cell type	MCF-10A, MCF-10A P53-	Breast carcinogens	120	2160				
		Non-carcinogens	114	2052				
		Others (BUSRP)	68	1224				
		Total	302	5436				
	MCF10A & HEPG2	breast carcinogens + others	115	2070				

Carcinogenicity Prediction

accuracy improves with higher bioactivity

Home About Contact	Carc cal Carcinogenicit	s://carcinogenome.org
Project	Cell line	Description
Liver Carcinogenicity	HEPG2	This experiment uses 330 selected chemicals for in-vivo liver carcinogenicity testing, including 128 liver carcinogens, 168 non-carcinogens, and 34 miscellaneous chemicals (e.g. nuclear receptor ligands). Chemical carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Database (CPDB), which is the result of tissue-specific long-term animal cancer tests in rodents. In the liver carcinogenome project, HepG2 (liver) cells are exposed to each individual chemical for 24 hours and their gene expression is profiled on the L1000 platform. Each chemical is assayed at 6 doses (2 fold dilutions starting from the highest concentration of 40UM or 20UM) with triplicate profiles generated for each dose
Breast Carcinogenicity	MCF10A	This experiment uses 345 selected chemicals for breast carcinogenicity testing, including 120 breast carcinogens, 114 non-carcinogens, and 68 miscellaneous chemicals (e.g. nuclear receptor ligands, BU SRP chemicals, lung carcinogens). Chemical carcinogenicity and genotoxicity annotations are based on the Carcinogenicity Potency Database (CPDB), which is the result of tissue-specific long-term animal cancer tests in rodents, or breast carcinogens published from Rudel et. al., 2007. In the CRCGN project, MCF10A (breast epithelial) cells are exposed to each individual chemical for 24 hours and their gene expression is profiled on the L1000 platform. Each chemical assayed at 3 doses (3 fold dilutions starting from the highest concentration of 100uM, with the exception of selected BUSRP chemicals
	The Carcinoge	enome Project: Developed by Monti Lab at Boston University 2017
		Gusenleitner et al., PLoS One 2014 Mulas et al., BMC Bioinformatics 2017 Li et al., Environmental Health Perspective 2019

The Adipogenome Project

Adipogens

Exogenous compounds that directly alter white adipocyte function via **modification of PPARy activity**

Project Goals

- 1. Create a *Classifier* to identify novel candidate adipogens
- 2. Create a *Taxonomy* to group chemicals based on their effects on PPARγ's transcriptome and downstream metabolic functions

Kim et al., Arch Tox 2018 Kim, Reed, et al., <u>biorXiv 519629</u> (under 2nd review at EHP)

PPARγ Activity Modifier Classification Results of 17 unknown compounds

Chemical Name	Abbreviated Name	Known Source/Use	PPARg Modifier Voting	
d-cis, trans-Allethrin	Allethrin	Insecticide	0.91	ן
Tonalid	Tonalid	Musk (fragrance)	0.90	
Quinoxyfen	Quinoxyfen	Fungicide	0.90	
Fenthion	Fenthion	Insecticide	0.88	
2,4,6-Tris(tert-butyl)phenol	ттвр	Antioxidant (industrial)	0.80	L High Confidence
Prallethrin	Prallethrin	Insecticide	0.78	Adipogens
Tebuconazole	Tebucon	Fungicide	0.78	
Fludioxonil	Fludiox	Fungicide	0.77	
Tris(1,3-dichloro-2-propyl) phosphate	TDCPP	Flame retardant	0.76	
Cyazofamid	Cyazofamid	Pesticide	0.72]
Perfluorooctanoic acid	PFOA	Fluorosurfactant	0.59	
Triphenyl phosphite	Triphen_Phosphite	Pesticide	0.57	
Tris(1-chloro-2-propyl) phosphate	ТССР	Flame retardant	0.54	
Triphenylphosphine oxide	Triphen_Phox_Ox	Crystallizing aid, byproduct	0.49	
Diphenyl phosphate	DPP	Metabolite of TPhP	0.47	
Dioctyl sulfosuccinate sodium	DOSS	Surfactant	0.41	
Perfluorooctanesulfonic acid	PFOS	Fluorosurfactant	0.40	

PPARγ Activity Modifier Classification Results

novel adipogens that favor white adipogenesis

Tonalid (Fragrance)

- (Reiner and Kannan, 2006)
 - 48% of perfumes
 - 29% of body lotions/creams,
 - 75% of deodorants
 - 14% of shower gel/shaving creams
 - 33% of hair products
 - 31% of sanitation products

Quinoxyfen (Fungicide)

- Fortress[™], Orka[™], Legend[™], Quintec[™]
 - Grain, Hops, Grapes
 - Low Residue
 - Bioaccumulates in Fish

Functional analyses confirmed that Quino and Tonalid **induce white, but not brite, adipogenesis** in both mouse and human preadipocyte models

The Adipogenome Project

Adipogens

Exogenous compounds that directly alter white adipocyte function via **modification of PPARy activity**

Project Goals

- 1. Create a *Classifier* to identify novel candidate adipogens
- 2. Create a *Taxonomy* to group chemicals based on their effects on PPARγ's transcriptome and downstream metabolic functions

Kim et al., *Arch Tox* 2018 Kim, Reed, et al., <u>biorXiv 519629</u> (under 2nd review at EHP)

