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Outline

Overview of the experimental and computational approaches we have
developed and applied to model environmental chemicals and to predict their
long-term adverse effects from short-term transcriptomics assays.

Vignettes from two studies

v The Carcinogenome Project: Predicting Long-Term Chemical Carcinogenicity 
and Genotoxicity from Short-Term Assays.

v The Adipogenome Project: Genomics Characterization of Adipocyte 
Dysregulation by Environmental and Therapeutic Perturbagens.

Challenges and lessons learned.
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Modeling 
Chemical Carcinogenicity

Development of 
analytical/experimental framework to

predict long-term cancer risk 
from exposure to chemical compounds 
using genomic assays and computation

Cancer Prevention

Modeling 
Chemical Adverse Effects

Development of 
analytical/experimental framework to

predict long-term disease risk 
from exposure to chemical compounds 
using genomic assays and computation

Disease Prevention

Disease 
Risk
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• Constant exposure to pesticides, industrial 
pollutants, consumer products and drugs

• Less than 2% of all chemical compounds 
have been systematically tested 

• Mixtures of compounds challenging to 
evaluate

~ 85,000

~ 1,500

~ 109–1012

Chemical Exposure Understudied

Carcinogenicity Testing
approaches

Epidemiology 
studies

In vivo assays

In vitro assays

ü observational, not randomized trial
ü incomplete/unstandardized  

exposure data
ü difficult to control for confounders

ü two year rat bioassay (“gold standard”)
ü time and resource consuming
ü Imperfect mapping to  human 

carcinogenicity

ü human cell lines
ü less time and resource consuming
ü allows large sample size of chemical 

perturbations
ü Challenge: translation to in vivo 

relevance
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The Quest for
a Chemical Carcinogenicity “Crystal Ball”

Cancer Risk
Prediction Model

Carcinogen

Non-carcinogen

Chemical

The Quest for
a Chemical Carcinogenicity “Crystal Ball”

Cancer Risk
Prediction Model

Carcinogen

Non-carcinogen

ü Pathways affected
ü Driving genetic alterations
ü Biomarkers
ü …

Understand Why

Chemical
Adipogen
Toxic
Endocrine Disruptor
…
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Experimental Design Overview
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.. and mRNA 
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Experimental Design Overview
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Genotoxicity

Carcinogenicity
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Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Biology of Exposure
Exposure MoA
Pathways
“Drivers”

Carcinogenicity Prediction

“New” 
compound

Carcinogen

Non-Carcinogen

Cell lines treated w/ 
compounds …

.. and mRNA 
profiled

Project relies on high-throughput, cost-effective gene expression assays
Luminex-1000 (L1000) @ Broad Institute
(or highly multiplexed RNA-sequencing)
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Long-term 
Phenotypes

Short-term 
Assay

CENTRAL HYPOTHESIS

Long-term in-vivo exposure phenotypes
can be modeled by

short-term in-vitro transcriptomics assays
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Can Carcinogenicity be Predicted from GEP?
the answer from short-term in-vivo (rat-based) assays

…
Genotoxicity

Carcinogenicity
Com

po
un

d1

Com
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un
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un
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Com
po

un
dN…

Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Biology of Exposure
Exposure MoA
Pathways
“Drivers”
Exposure risk models

Carcinogenicity Prediction

“New” 
compound

Carcinogen

Non-Carcinogen

1000s of profiles, 100s of chemicals

Rats exposed to 
compounds …

.. and profiled on 
Affymetrix

…

Gusenleitner et al., 2014

Can Carcinogenicity be predicted from GEP?
The DrugMatrix/TG-GATEs answer

Yes it can

Prediction can be improved
with more chemicals

Helps elucidate modes of action

AUC: ~77% – 83%

~130 chemicals

MoA’s

• DNA damage
• Oxidative Stress
• Altered metabolism
• Proteasome
• …

Gusenleitner et al., 2014
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Carcinogenicity Prediction
is tissue-specific

Tissue Specific (Liver)
AUC: 77–83% 

AUC: 65%
Tissue Agnostic

C
la

ss
ifi
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on
 R

es
ul

ts

Gusenleitner et al., 2014

https://carcinogenome.org

https://carcinogenome.org/
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6 doses
3 replicates
1 cell type

Profiled >330 chemicals  (~6,000 profiles) in liver cell lines 
with “liver-specific” carcinogenicity annotation

Cell line Chemical Type # Chemicals # Profiles

HEGP2 Liver carcinogens 131 2358

Non-carcinogens 172 3096

Others (BUSRP) 33 594

Total 336 6048

MCF-10A,
MCF-10A P53-

Breast carcinogens 120 2160

Non-carcinogens 114 2052

Others (BUSRP) 68 1224

Total 302 5436

MCF10A & HEPG2 breast carcinogens + others 115 2070

24h

3 doses
3 replicates
2 cell type

24h

The Carcinogenome Project
In-vitro Carcinogenicity Profiling

Only a subset of samples have high 
‘bioactivity’ 

Profiles vary in Transcriptional Bioactivity

adapted from Lev Litichevskiy @ Broad

Transcriptional Activity Score (TAS)
summary of signature strength (SSngene) 

and replicate correlation (CCq75)

Signal Strength

Replicate Reproducibility
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Bioactivity vs. Carcinogenicity
no significant association

Bioactivity (TAS) 
increases with Dose

Dose response steeper with 
higher Bioactivity (TAS)

Carcinogenicity not associated 
with Bioactivity (TAS)

Difference between Acute vs. Chronic Response
short-term chemical perturbation with minimal transcriptional response cannot be assumed "safe”

Carcinogenicity Prediction
accuracy improves with higher bioactivity
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Carcinogenicity AUC

data median mean se

all 54 53.9 0.9

tas > 0.2 68.3 66.9 1.6

tas > 0.3 71.1 69.1 1.8

tas > 0.4 71.9 72.2 2.7

Genotoxicity AUC

data median mean se
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high TAS compounds

sufficient bioactivity is necessary for a chemical 
to be used for carcinogenicity prediction

Chemicals’ Modes of Action
by GeneSet Projection

Immune response (IFN signaling)
DNA repair

Cell cycle progression
Oxidative Stress

Phase II xenobiotic metabolism 
(conjugation)

Hormone biosynthesis
Cell-cell junction

Cell-cell communication
ECM organization
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Chemicals’ Modes of Action
by GeneSet Projection

Immune response (IFN signaling)
DNA repair

Cell cycle progression
Oxidative Stress

Phase II xenobiotic metabolism 
(conjugation)

Hormone biosynthesis
Cell-cell junction

Cell-cell communication
ECM organization

Evidence that these characteristics 
are observed, especially in humans 
or as intermediate biomarkers in 
human specimens can provide 
biological plausibility for 
epidemiological findings and/or 
early warning if no epidemiology 
exists

Smith MT, Guyton KZ, Gibbons CF, Fritz JM, 
Portier CJ, Rusyn I, DeMarini DM, Caldwell 
JC, Kavlock RJ, Lambert PF, Hecht SS, Bucher 
JR, Stewart BW, Baan RA, Cogliano VJ and K 
Straif. Env Health Persp., 124(6), 713, 2016.

Key characteristic:
1. Is Electrophilic or can be 
metabolically activated
2. Is Genotoxic
3. Alters DNA repair or causes 
genomic instability 
4. Induces Epigenetic Alterations 
5. Induces Oxidative Stress
6. Induces chronic inflammation 
7. Is Immunosuppressive
8. Modulates receptor-mediated 
effects 
9. Causes Immortalization 
10. Alters cell proliferation, cell death, 
or nutrient supply 

Key Characteristics of Human Carcinogens

adapted from M. Smith

https://carcinogenome.org

Gusenleitner et al., PLoS One 2014
Mulas et al., BMC Bioinformatics 2017
Li et al., Environmental Health Perspective 2019

https://carcinogenome.org/
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Outline

Overview of the experimental and computational approaches we have
developed and applied to model environmental chemicals and to predict their
long-term adverse effects from short-term transcriptomics assays.

Vignettes from two studies

v The Carcinogenome Project: Predicting Long-Term Chemical 
Carcinogenicity and Genotoxicity from Short-Term Assays. 

v The Adipogenome Project: Genomics Characterization of Adipocyte 
Dysregulation by Environmental and Therapeutic Perturbagens.

Challenges and lessons learned.

Adipocytes Function
...

adapted from Guertin Lab @ UMass

Maintaining Energy Homeostasis

“Obesity is a disorder of the energy homeostasis system, rather than just a  
passive accumulation of adipose, and that environmental factors, including 
chemicals, confer obesity risk.” 
– Endocrine Society’s latest scientific statement

https://umassmed.edu/guertinlab/research/adipocytes/
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adapted from Guertin Lab @ UMass

Chemical Exposure
Disruption of Metabolic Balance?

Adipocytes Function
How is it affected by Exogenous Compounds?

PPARγ

Int J Mol Sci. 2018 Jun; 19(6): 1738.
Published online 2018 Jun 12. doi: 10.3390/ijms19061738

Ligand 
Binding

Post-
translational
Modification

Adipogens
PPARγ Activity Modifying Compounds

https://umassmed.edu/guertinlab/research/adipocytes/
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The Adipogenome Project

Adipogens
Exogenous compounds that directly alter white adipocyte function 
via modification of PPARγ activity

Project Goals

1. Create a Classifier to identify novel candidate adipogens

2. Create a Taxonomy to group chemicals based on their effects on 
PPARγ’s transcriptome and downstream metabolic functions

Kim et al., Arch Tox 2018
Kim, Reed, et al., biorXiv 519629 (under 2nd review at EHP)

Experimental Design

10-Day 
Exposure .

Mature 
Adipocyte

Differentiation

Pre-
Adipocyte

Highly Multiplexed RNAseq

Cell Line
Mouse NIH 3T3-L1 Cells

Exposure
76 Compounds
o 38 Adipogens
o 21 Non-Adipogens
o 17 Unknown

“Adipogenicity”

Com
po

un
d1

Com
po

un
d2

Com
po

un
d3

Com
po

un
dN…

Manual Curation

PPARγ Activity Modification 

https://www.biorxiv.org/content/10.1101/519629v3
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Experimental Design

“Adipogenicity”
Com

po
un

d1

Com
po

un
d2

Com
po

un
d3

Com
po

un
dN…

Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Data-Driven Chemical Taxonomy

Adipogenicity Prediction

“New” 
compound

Adipogen

Non-Adipogen

10-Day 
Exposure .

Mature 
Adipocyte

Differentiation

Pre-
Adipocyte

Highly Multiplexed RNAseq

Manual Curation
Cell Line
Mouse NIH 3T3-L1 Cells

Exposure
76 Compounds
o 38 Adipogens
o 21 Non-Adipogens
o 17 Unknown

New Machine Learning (ML) Algorithms
tailored to the experimental design (multiple replicates/condition)

Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Adipogenicity Prediction

“New” 
compound

Adipogen

Non-Adipogen

Data-Driven Chemical Taxonomy

Amended Random Forest

K2 Taxonomer

Novel ML Approaches
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New Machine Learning (ML) Algorithms
tailored to the experimental design

Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Adipogenicity Prediction

“New” 
compound

Adipogen

Non-Adipogen

Data-Driven Chemical Taxonomy

Amended Random Forest

K2 Taxonomer

Novel ML Approaches

PPARγ Activity Modifier Classification Results
by Amended Random Forest

1 
 

 

 

Figure 2. Amended random forest classification performance and gene importance of final 
classification model. 
(A) Performance of random forest classification procedure based on 10-fold cross validation. (B) 
Gini Importance versus ranking of genes used in the final random forest model. The names of the 
top 2 genes are highlighted.  Compound-specific gene expression of Rpl13 and Cidec are shown 
in Figure S4. 
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PPARγ Activity Modifier Classification Results
of 17 unknown compounds

Final Prediction Results

High Confidence
Adipogens

PPARγ Activity Modifier Classification Results
novel adipogens that favor white adipogenesis

Quinoxyfen (Fungicide)
• FortressTM, OrkaTM, LegendTM, 

QuintecTM

• Grain, Hops, Grapes
• Low Residue
• Bioaccumulates in Fish

Tonalid (Fragrance)
• (Reiner and Kannan, 2006)

• 48% of perfumes
• 29% of body lotions/creams, 
• 75% of deodorants
• 14% of shower gel/shaving creams
• 33% of hair products 
• 31% of sanitation products

Functional analyses confirmed that Quino and Tonalid induce white, but not 
brite, adipogenesis in both mouse and human preadipocyte models
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The Adipogenome Project

Adipogens
Exogenous compounds that directly alter white adipocyte function 
via modification of PPARγ activity

Project Goals

1. Create a Classifier to identify novel candidate adipogens

2. Create a Taxonomy to group chemicals based on their effects on 
PPARγ’s transcriptome and downstream metabolic functions

Kim et al., Arch Tox 2018
Kim, Reed, et al., biorXiv 519629 (under 2nd review at EHP)

New Machine Learning (ML) Algorithms
tailored to the experimental design

Prediction Evaluation
Classification Accuracy
Sensitivity/Specificity
ROC curve
…

Adipogenicity Prediction

“New” 
compound

Adipogen

Non-Adipogen

Data-Driven Taxonomy

Amended Random Forest

K2 Taxonomer

Novel ML Approaches

https://www.biorxiv.org/content/10.1101/519629v3
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K2 Taxonomer
hierarchical taxonomy discovery from (transcript)omics data

1. Top-down (Divisive) Clustering
ü Unsupervised Decision Tree

2. Aggregation of repeated 
perturbations
ü Generate robust subtypes

3. Feature selection for each split
ü Hierarchical clustering 

algorithms use one set of 
features

4. Robustness assessment
ü Based on eigendecomposition

of aggregate cosine matrix

Reed et al., Manuscript in Preparation

A Data Driven Adipogen Taxonomy
identifies subgroups of PPARγ ligands/modifiers

Environm
ental 

Chem
icals

T2D
 

D
rugs
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In-Silico Validation of (mouse-based) Taxonomy
confirms its human relevance

Signature Projection
onto 

METSIM
subcutaneous adipose tissues

770 subjects
12 clinical measurements
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Signature Projection
onto 

METSIM
subcutaneous adipose tissues

770 subjects
12 clinical measurements

association with
Plasma Adiponectin

In-Silico Validation of Human Relevance
in-vitro signatures significantly associated with clinical endpoints in primary tissues

Adiponectin

Insulin 
Sensitivity
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Plasma adiponectin (ug/ml) gene set projection

Association
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Mouse-based, in vitro-derived signatures 

capture salient functional aspects of 
healthy and unhealthy metabolic functions in human subjects

In-Silico Validation of Human Relevance
in-vitro signatures significantly associated with clinical endpoints in primary tissues

Experimental Validation

Stephanie Kim and Jennifer Schlezinger



8/2/20

25

Experimental Validation

Stephanie Kim and Jennifer Schlezinger

Human Adipocyte Cell lines

Tonalid and Quinoxyfen
Lipid Accumulation Fatty Acid Uptake

Rosiglitazone
Lipid Accumulation Fatty Acid Uptake

Mitochondrial Biogenesis

Disruption

Promotion

The Adipogenome Portal
https://montilab.bu.edu/adipogenome
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Summary

v Identified (new) PPARγ agonists/modifiers

v Sorted agonists into likely white or brite adipogens

v Developed new classification and taxonomy discovery methods

v Computational & Experimental framework with general 
applicability to the classification of as-yet uncharacterized 
chemicals 

Kim et al., Arch Tox 2018
Kim, Reed, et al., biorXiv 519629 (under review at EHP)

Bringing it altogether: The Xposome Portal
https://montilab.bu.edu/Xposome

Carcinogenome Adipogenome

with
…

(under construction)

https://www.biorxiv.org/content/10.1101/519629v3
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Lessons Learned and Challenges
v ”Logistics” (chemical procurement, profile generation, etc.)

v Dose for hazard determination: high enough to elicit “bioactivity”

v Acute vs. Chronic exposure 
ü Low transcriptional response cannot be assumed "safe”

v Models more adequate for hazard prediction than MoA’s
ü However, rich MoA information can still be parsed from data

v Wealth of results not adequately sharable through publications 
ü Interactive online Portals a necessary complement

v Difficulty in funding these efforts 
ü “hypothesis testing” bias
ü misplaced request for “in vivo validation” of results
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