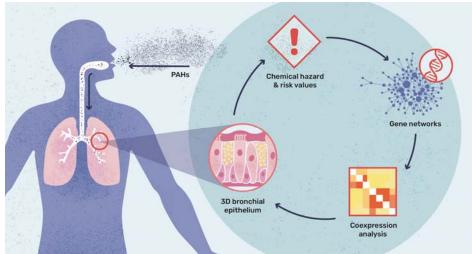


Linking PAH Exposure to Health Outcomes Using a Primary Human In Vitro Respiratory Model

Susan C. Tilton

Project Lead

Team D. Williams W. Altemeier S. Randell Y. Tesfaigzi

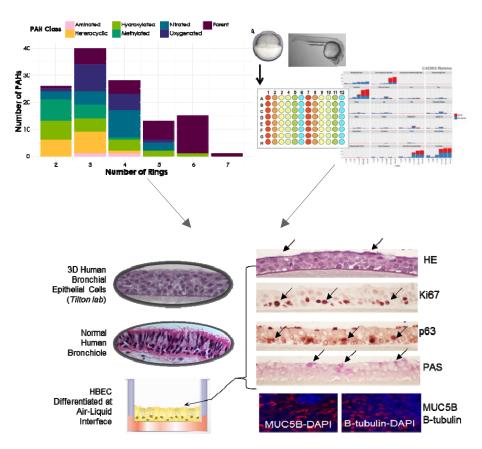


Linking PAH Exposure to Health Outcomes Using a Primary Human *In Vitro* Respiratory Model

Overall objective:

To understand how PAHs contribute to toxicity in mixtures and establish a relationship between chemical exposure and toxicity in a human lung model.

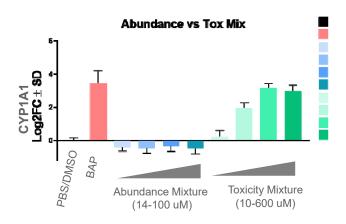
- Quantify the toxicity of individual PAHs and PAH mixtures in the 3D human lung model.
- Assess the role of metabolism on the toxicity of individual PAHs
- Elucidate the mechanisms of PAH toxicity in the 3D human lung model.



Assessing Toxicity of PAHs and Mixtures

Goals:

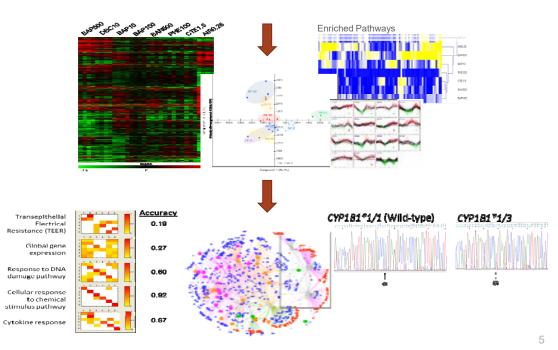
- Assess the toxicity of diverse PAHs and mixtures using benchmark dose modeling and threshold dose analyses.
- Determine whether individual PAHs contribute to the toxicity of PAH mixtures in an additive manner.
- Determine whether remediation reduces the threat that PAHs and complex PAH environmental mixtures pose to human health.



Developing sufficiently similar mixtures for testing

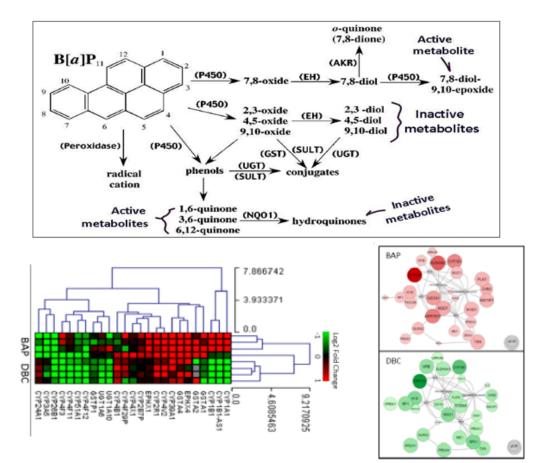
- Comparison of mixture formations from legacy creosote site sampling formed at environmentally relevant ratios
- Determine whether individual PAHs contribute to toxicity in additive manner

	Tox Mix Components	Abundance Mix Components
	retene	naphthalene
	benzo[a]fluorene	acenaphthene
	benzo[b]fluorene	2-methylnaphthalene
-	benzo[c]fluorene	1-methylnaphthalene
	triphenylene	fluorene
	benzo[e]pyrene	phenanthrene
7	benzo[g,h,i]perylene	



Assessing Toxicity of PAHs and Mixtures

- Identify gene and metabolite signatures linked to toxicity.
- Model signatures predictive of cancer risk
- Assess mechanisms of chemical toxicity
- Evaluate contributors to disease susceptibility



Assess the role of metabolism on PAH toxicity in the 3D human lung model

Goals:

- Measure uptake and metabolism of biologically active PAHs in 3D human lung model.
- Determine how geneenvironment interactions influence the toxicity of PAHs in the 3D human lung model.
- Assess human health hazards associated with environmental PAH exposures measured at Superfund sites.

Pacific Northwest

Thank you

Oregon State University

More Information: https://superfund.oregonstate.edu/

