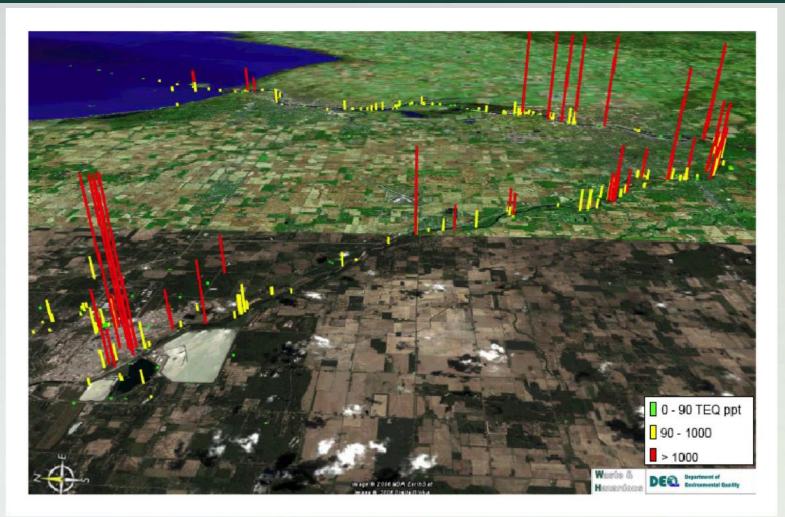
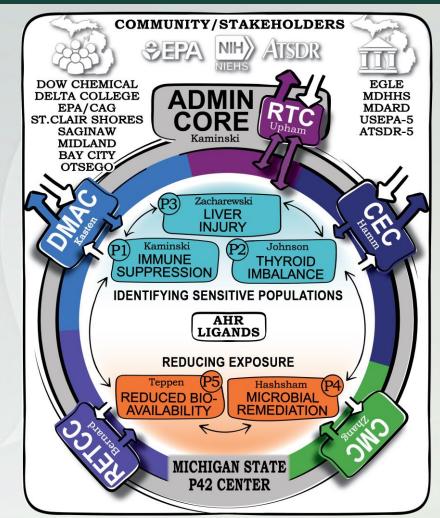
Introduction Michigan State University Superfund Research Center


Norbert E. Kaminski, Ph.D.

Professor, Pharmacology & Toxicology Director, Center for Research on Ingredient Safety Director, Institute for Integrative Toxicology


Supported by P42ES004911

Central Overarching Theme

To define environmental, microbial and mammalian biomolecular responses to environmental contaminants that act as aryl hydrocarbon receptor (AHR) agonists.

K MICHIGAN STATE UNIVERSITY

Coupled computational and bioengineered models of thyroid imbalance to support human PCDD/F risk-assessment

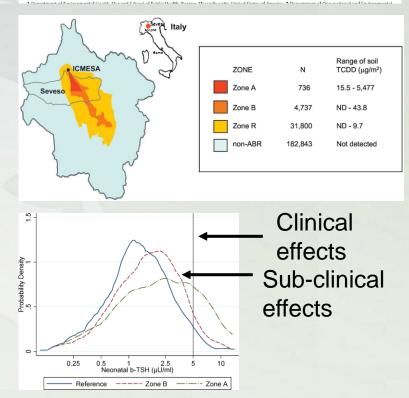
Brian P. Johnson

Assistant Professor Department of Pharmacology & Toxicology Department of Biomedical Engineering Institute for Quantitative Health Science and Engineering bjohnson@msu.edu

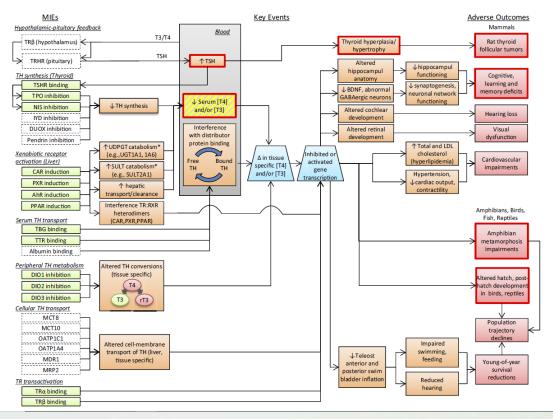
Conflict of Interest Brian Johnson owns equity in Onexio Biosystems LLC. A company that develops solutions for high-throughput toxicity testing, translational medicine and other multi-culture applications.

Are dioxin and furan pollutants harming human health? How and at what levels?

Thyroid imbalance is one of the most sensitive reported effects of human exposure

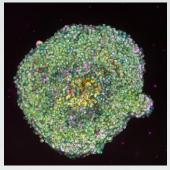

- Rodents are thought to be more (overly?) sensitive to dioxins and furans.
- Thyroid hormone effects are seen in humans (Baccarelli et al., 2008) at 30-fold <u>lower</u> exposures than for humans (Crofton et al., 2005).
- Data from other rodent models suggest glucuronidation mechanism may not be correct.
- A human biology based testing system is needed to understand risk of exposures to human populations.

OPEN OACCESS Freely available online


PLOS MEDICINE

Neonatal Thyroid Function in Seveso 25 Years after Maternal Exposure to Dioxin

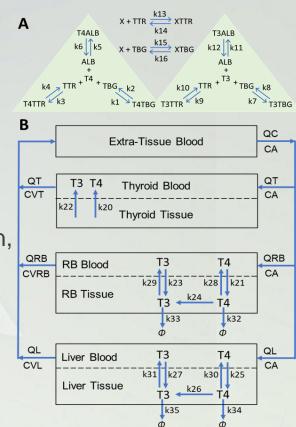
Andrea Baccarelli^{1,2,3*}, Sara M. Giacomini^{2,3}, Carlo Corbetta⁴, Maria Teresa Landi⁵, Matteo Bonzini^{2,3}, Dario Consonni^{2,3}, Paolo Grillo^{2,3}, Donald G. Patterson Jr.⁶, Angela C. Pesatori^{2,3}, Pier Alberto Bertazzi^{2,3}


Chemical disruption of thyroid signaling is complicated!

(Noyes et. al., 2019)

Computational modeling helps define what is important to include in physical model.

- Human computational physiologically based pharmacokinetic model for thyroid hormones with MSU Superfund Computational Modeling Core.
- Human derived, liver and thyroid compartments, generation/testing of metabolites, measure thyroid function, need to run lots of tests.



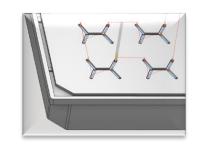
Human Hepatocytes Thyrocyte Follicles

High throughput Coculture System

Bagga M, Johnson B, Zhang Q, 2023 (in revision

Microplate Micromachining

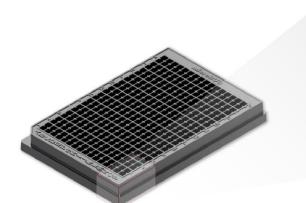
CAD/CAM



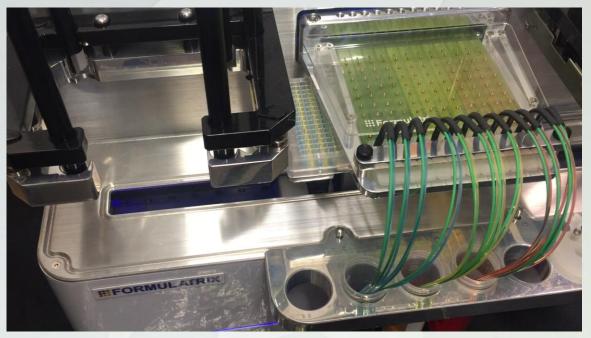
CNC Machining

HTS Devices

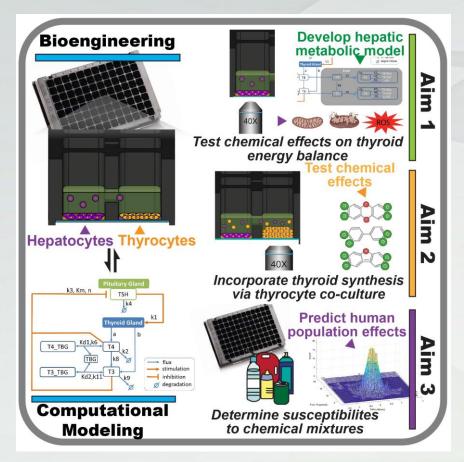
ANSI/SLAS microtiter plate

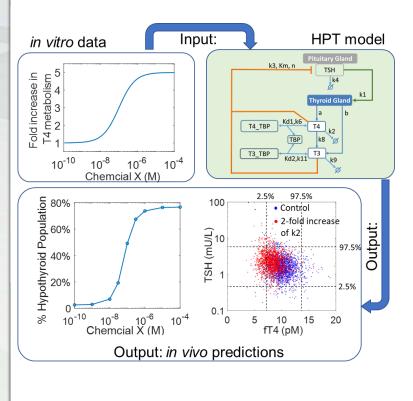


High-throughput coculture


connected wells

Cell type A


- Elegantly simple
- Fully HTS compatible
- Allows co-culture and multiculture


HTS Functionality

Standard HTS handling

Research overview

Questions answered

- What is the mechanism of PCDD/F induced TH imbalance?
- Can background PCDD/F exposure cause hepatic TH imbalance w/o affecting serum TH?
- How do in vitro findings translate to human effects of PCDD/Fs?
- Is the TEQ approach valid in determining risk of chemicals that disrupt thyroid signaling?
- Does integration of computational modeling correctly predict molecular pathway sensitivities?
- Can intercellular models identify synergism in chemical mixtures?
- What populations are most susceptible to PCDD/Fs?

Acknowledgments

- Johnson Lab @ MSU
 - Jacob Reynolds (BME), Leah Terrian, Meredith Adams (MD 3), Keri Gardner and future Postdocs like you?!?
- Zhang Lab @ Emory
 - Qiang Zhang and Max Bagga
- Chad Deisenroth and Steve Fergusson
- MSU P42 Center
 - especially Norb Kaminski, Amy Swagart, John LaPres
- Funding

P42ES004911-27A1

MSU Project 5: Bioavailability as a central concept in determining remediation goals and strategies for PCDD/F-contaminated Superfund sites

Brian J. Teppen, Cliff T. Johnston, Hui Li, and Stephen A. Boyd

A) NIEHS SRP Mandate #4: Develop and test "methods to reduce the amount and toxicity of hazardous substances."

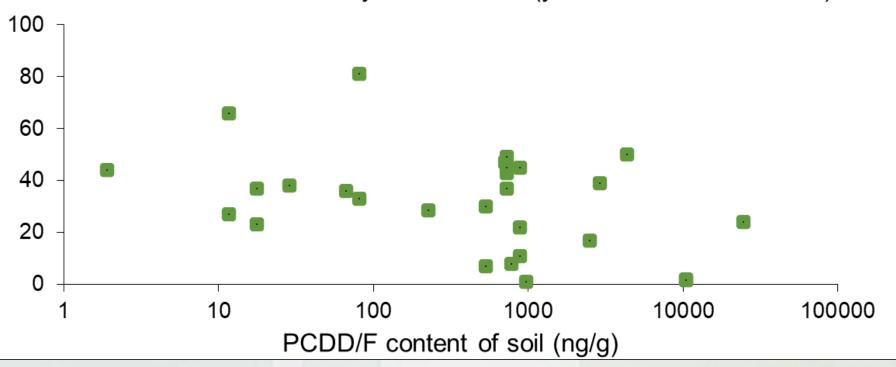
B) NIEHS SRP Mandate #2: Develop methods to "assess the risks to human health presented by hazardous substances."

What does PCDD/F mean in our title?

Gray atoms = carbon Red atoms = oxygen White atoms = hydrogen

This represents <u>dibenzo-p-dioxin</u>, DD; if any of the white H atoms are replaced by chlorine atoms, then the molecule is a (<u>poly)c</u>hlorinated DD, or PCDD. Similar jargon refers to the closely related <u>dibenzof</u>urans (DFs).

What does PCDD mean in our title?

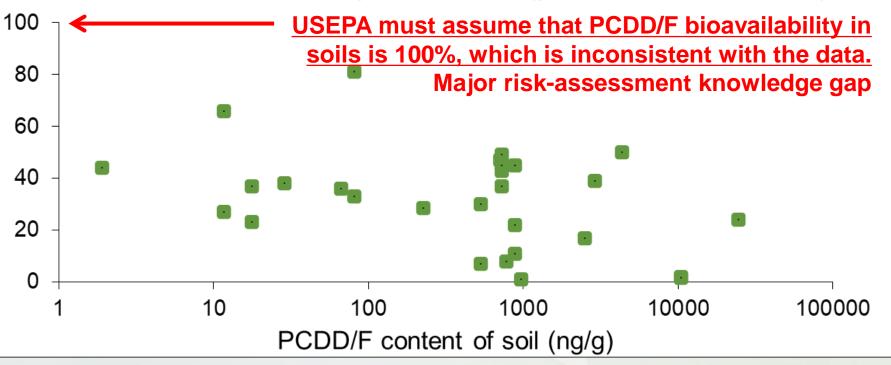

Gray atoms = carbon Red atoms = oxygen White atoms = hydrogen Green atoms = chlorine

This represents 2,3,7,8-tetrachlorodibenzo-*p*-dioxin, TCDD; this is the most toxic of the PCDD/Fs and the standard to which all others are compared. The solubility of TCDD in water is only 19 ng TCDD/L water, so essentially all TCDD is found on particles in soils and sediments.

What does "bioavailability" mean in our title?

- Ability of a toxin to cause toxic effects in organisms (usually means ability of toxin to cross some critical biological membrane of the organism)
- The main route by which people and other animals are exposed to PCDD/Fs is by eating (PCDD/Fs in food, soil, etc.)
- What does bioavailability look like when PCDD/Fs are in soil that is eaten?

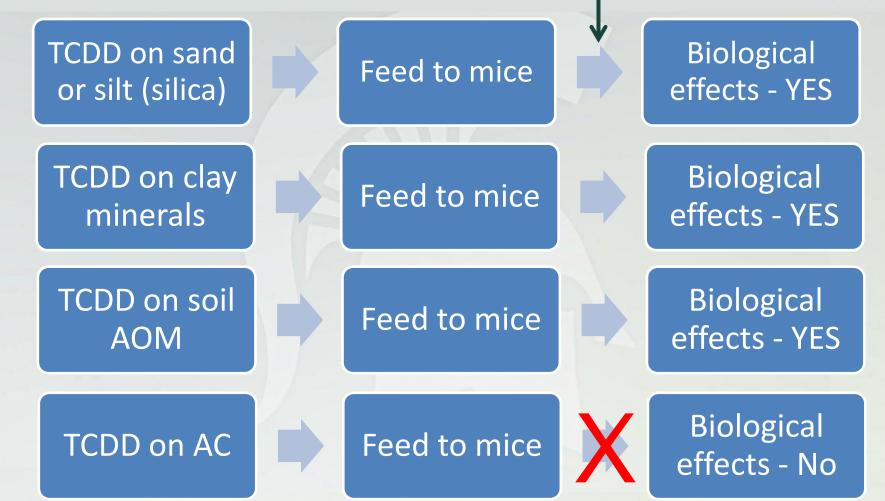
PCDD/F % bioavailability to mammals (y-axis, relative to corn oil)



This graph is a literature review of all previous controlled studies that measured bioavailabilities of PCDD/Fs in whole soils to mammals (swine, rats, guinea pigs) Kimbrough, R.D., C.A. Krouskas, M.L. Carson, T.F. Long, C. Bevan and R.G. Tardiff. 2010. Human uptake of persistent chemicals from contaminated soil: PCDD/Fs and PCBs. *Regul. Toxicol. Pharmacol.* 57: 43-54; USEPA Office of Superfund Remediation and Technology Innovation. 2010. *Final report: Bioavailability of dioxins and dioxin-like compounds in soil.* 53 p. Unfortunately, these data provide no risk-management hypotheses because almost none of these soils were well characterized.

PCDD/F % bioavailability to mammals (y-axis, relative to corn oil) PCDD/F content of soil (ng/g)

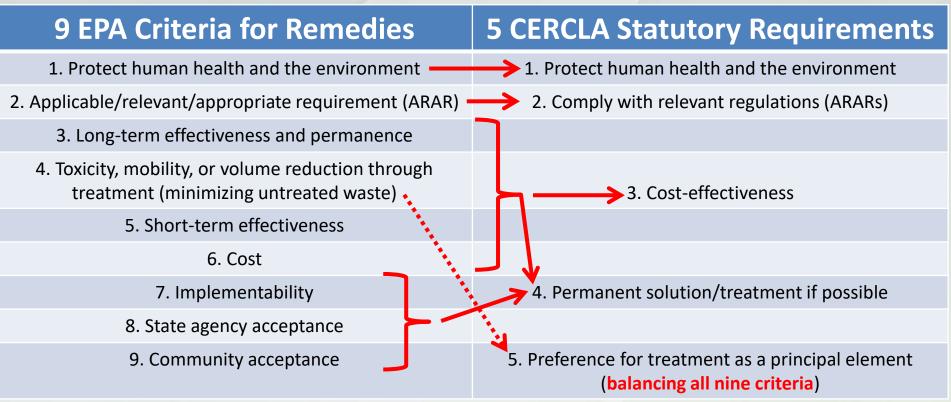
As a result of no strong risk-management hypotheses...


PCDD/F % bioavailability to mammals (y-axis, relative to corn oil)

What are the building blocks of soil particles?

- 1) Clay minerals tiny layers that can move independently and often hold toxins between the layers
- Other minerals (typically non-layered, but may be porous) the most common by far is silica (SiO₂) that makes up most silt and sand (medium and large soil particles)
- 3) "Amorphous" organic matter (AOM) that is the result of partial microbial degradation of plant/animal material in soil or water
- 4) Pyrogenic (fire-derived) carbonaceous material (PCM) that results from burning plant/animal material (e.g., grass fires, forest fires). An extreme form of PCM is activated carbon (AC)

We have been addressing the PCDD/F-soil bioavailability knowledge gap


Overall goal: To test the efficacy of activated carbon (AC) as a potentially effective, low-cost and low-impact remediation remedy for PCDD/F-contaminated soils

What does it mean to be a good remediation remedy?

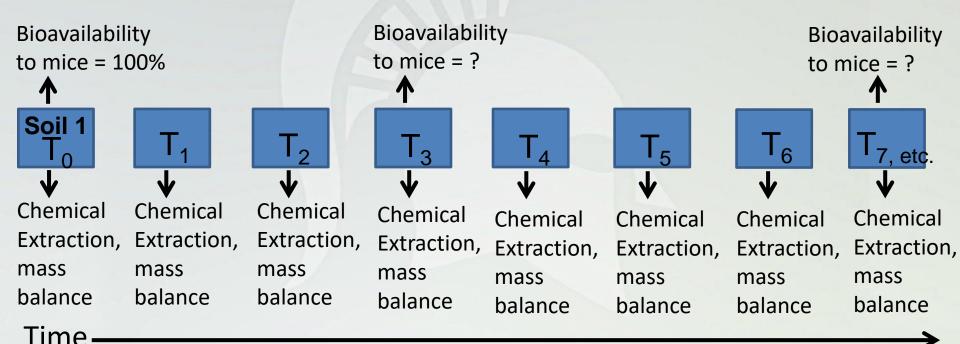
🐔 MICHIGAN STATE UNIVERSITY

Rules of thumb for Superfund remedy selection

(EPA 540-R-97-013; OSWER 9355.0-69; PB97-963301), August 1997

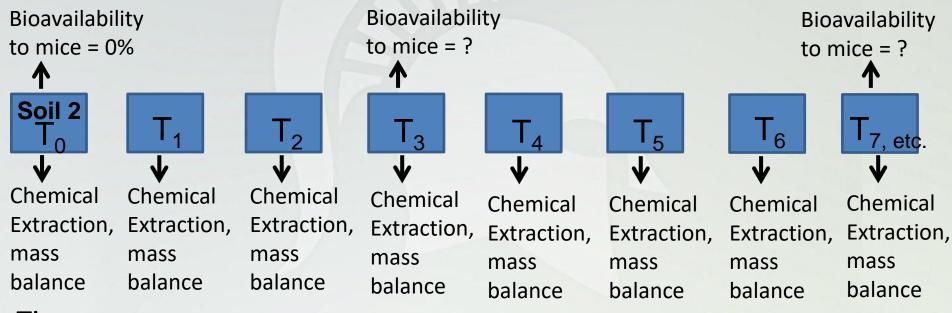
Red arrows indicate how EPA says it maps its criteria onto the statutory requirements

Rules of thumb for Superfund remedy selection (EPA 540-R-97-013; OSWER 9355.0-69; PB97-963301), August 1997


9 EPA Criteria for Remedies	5 CERCLA Statutory Requirements
SA3 1. Protect human health and the environment	1. Protect human health and the environment SA3
2. Comply with relevant regulations (ARARs)	2. Applicable/relevant/appropriate requirement (ARAR)
SA2b,3b 3. Long-term effectiveness and permanence	
SA2,3 4. Toxicity, mobility, or volume reduction through treatment (minimizing untreated waste)	3. Cost-effectiveness SA2,3
SA2a,3a 5. Short-term effectiveness	
6. Cost	
7. Implementability	4. Permanent solution/treatment if possible SA2,3
8. State agency acceptance - Work with RTC (Admin. Core, Upham) to share our bioavailability data.	
9. Community acceptance - Work with CEC (Hamm) to determine, using their annual surveys.	 5. Preference for treatment as a principal element (SA2,3)

Soils will be constructed of the same building blocks, with particle size small enough for reproducible mouse feeding

- 1) Clay minerals 10% by weight
- 2) Silica (SiO₂), silt-sized (approx. 0.05 mm diameter) about 80%
- 3) "Amorphous" organic matter (AOM) Zero to 5% by weight
- 4) Activated carbon Zero to 5%


🐔 MICHIGAN STATE UNIVERSITY

Specific Aims 2a and 3a: Initially (T_0) , TCDD is sorbed to clay minerals, then AC is added. Measure the kinetics of TCDD sorption by AC and the kinetics of bioavailability.

🐔 **MICHIGAN STATE** UNIVERSITY

Specific Aims 2b and 3b: Initially (T_0) , all TCDD is sorbed to AC, then age the soil for years to test the long-term stabilities of TCDD-AC complexes and of bioavailability reduction.

Time