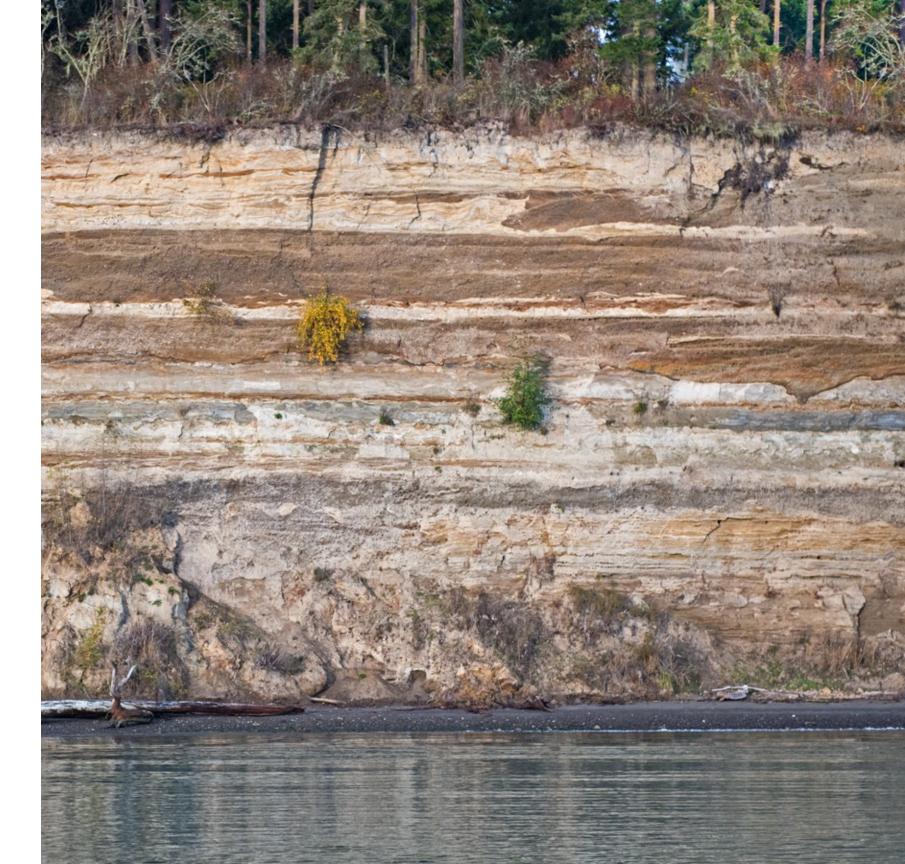


How to Evaluate Soil Vapor Extraction Remedy Performance


Guidance and a Tool from the U.S. Department of Energy

Christian Johnson

Senior Development Engineer

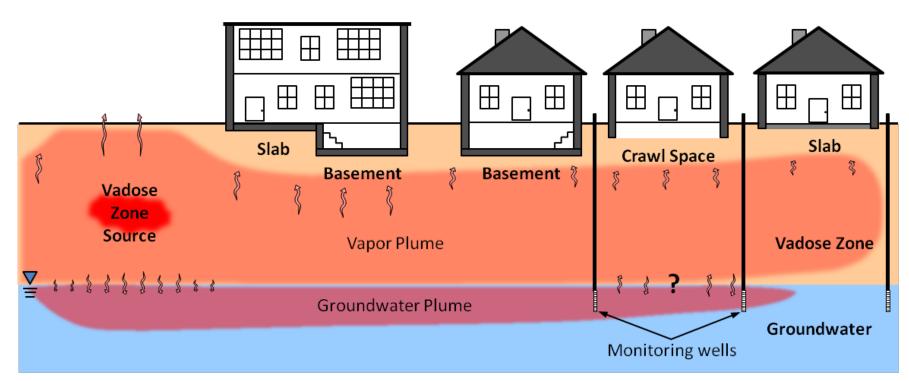
PNNL is operated by Battelle for the U.S. Department of Energy

Contributors and Funding Acknowledgement

- Christian Johnson (PNNL)
- Katherine Muller (PNNL)
- Michael Truex (PNNL, retired)
- Mart Oostrom (former PNNL)
- Guzel Tartakovsky (former PNNL)
- Amy Rice (former PNNL)
- Jun Song (former PNNL)
- Ciara Varnum-Lowry (former PNNL)

- Dave Becker (US ACE)
- Carl Harms (US ACE)
- Jovan Popovic (NAVFAC EXWC)
- Tim Appleman (NAVFAC EXWC)
- Jennifer Segura (former NAVFAC)
- Michelle Simon (US EPA)
- Rob Hinchee (retired)

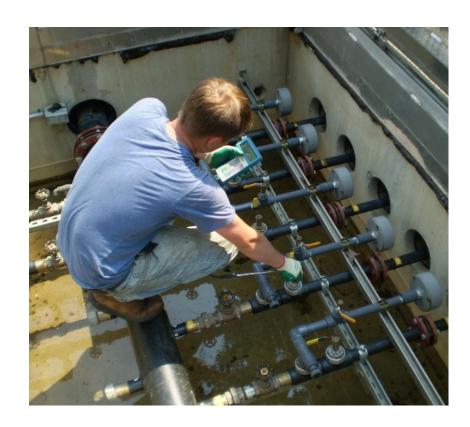
- Funding for the guidance and SVEET version 1 was provided by the U.S. Department of Energy Office of Environmental Management through the Deep Vadose Zone-Applied Field Research Initiative at Pacific Northwest National Laboratory
- Funding for SVEET2 was provided by the U.S. Department of Defense's Environmental Security Technology Certification Program (ESTCP) under project ER-201731



PNNL is operated by Battelle for the U.S. Department of Energy

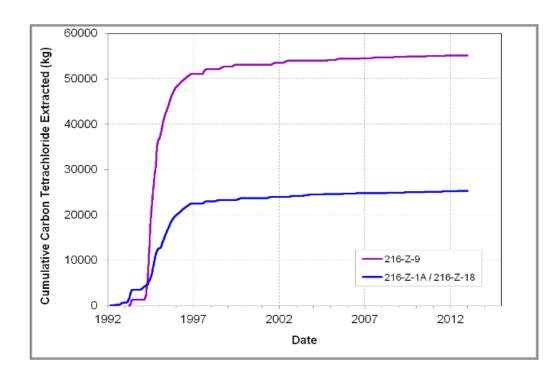
Outline for Today

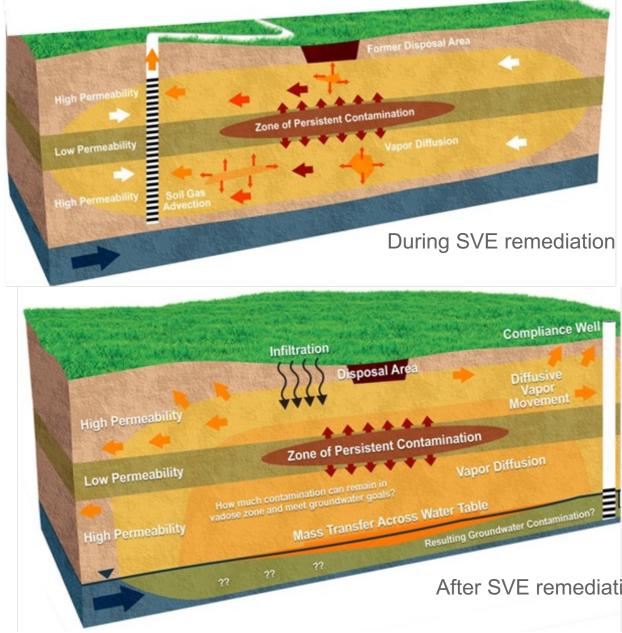
- Soil vapor extraction (SVE) performance assessment
 - Decisions about vadose zone remediation
 - Structured guidance and decision logic
- Quantifying source impacts
 - SVEET2 tool
 - ESTCP work
- Example applications
- Key takeaways


Commercial/Industrial

Residential

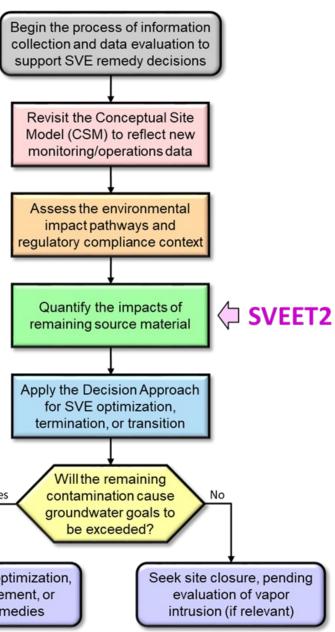
Typical Remediation Questions for Vadose Zone Contamination


- Is SVE needed?
 - Does the vadose zone source pose a risk to groundwater or via vapor intrusion?
- What are the SVE performance goals?
 - For new or currently operating system
 - What mass flux from contaminated zone or soil vapor concentration is acceptable?
- Can SVE be terminated?
 - Will the remaining mass represent a threat to receptors?
- Can alternative technologies address the remaining mass?
 - Cost effectiveness/reasonable duration of active SVE in question

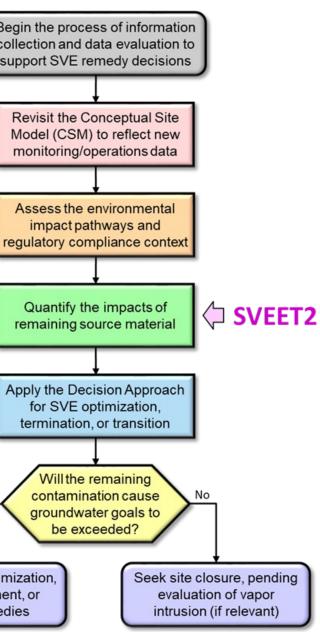


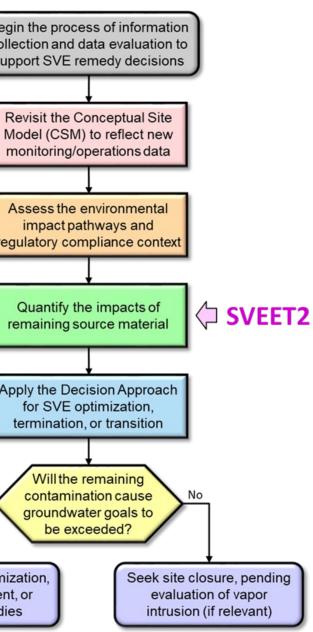
Soil Vapor Extraction (SVE)

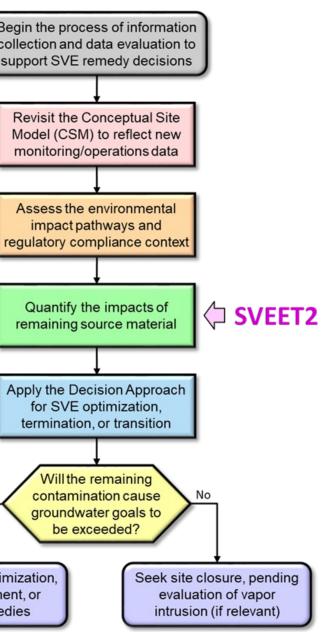
- Vacuum extraction of soil gas to remove volatile contaminant vapors
 - Effective, but typically cannot remove all contaminant mass
 - ✓ Diminishing returns

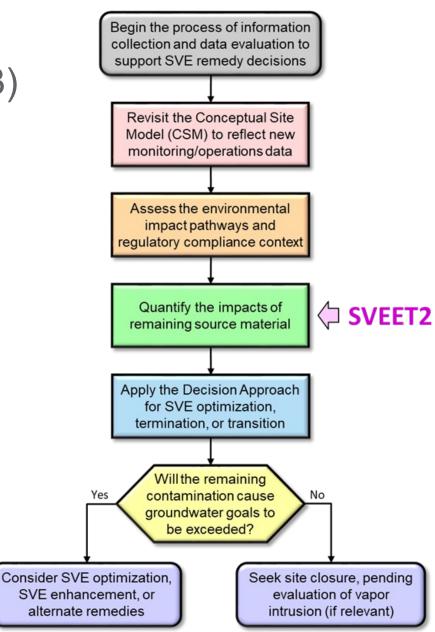


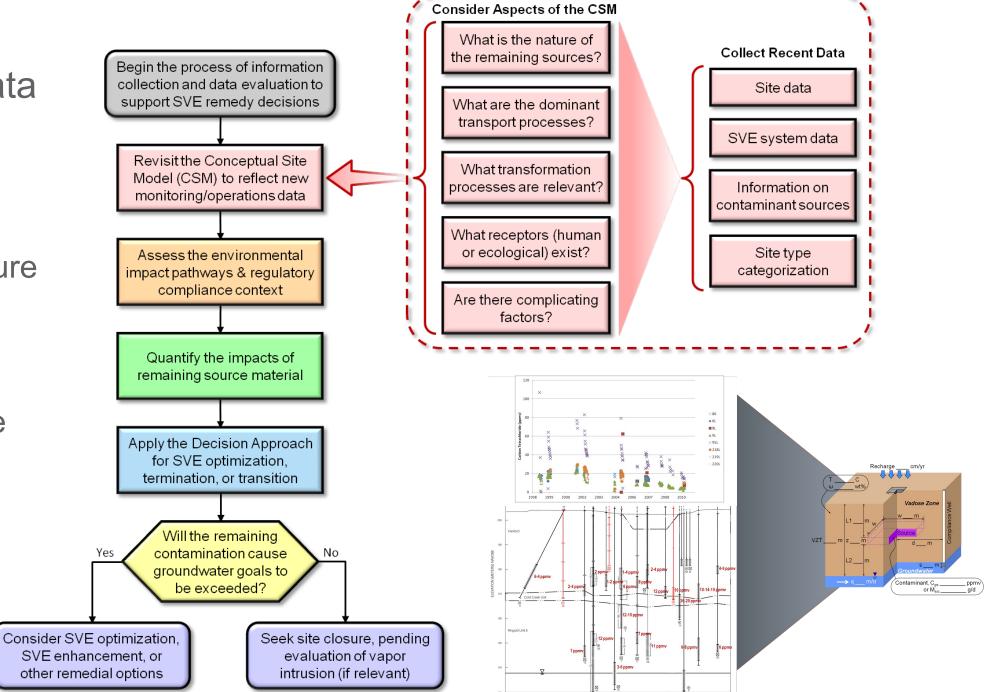
After SVE remediation

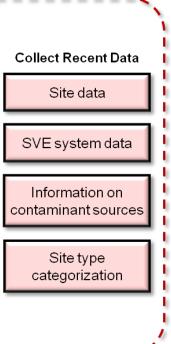



SVE Performance Assessment


- Soil Vapor Extraction System Optimization, Transition, and Closure Guidance (Truex et al., 2013)
- Structured approach
 - Gather/update information
 - Quantify impacts
 - Apply decision logic
- Helps site managers make decisions about vadose zone remediation
 - Continue operations, optimize, terminate, or transition to another remedy
 - Determine remedy goals
- SVEET2 is a companion tool for quantifying the impact of the vadose zone source

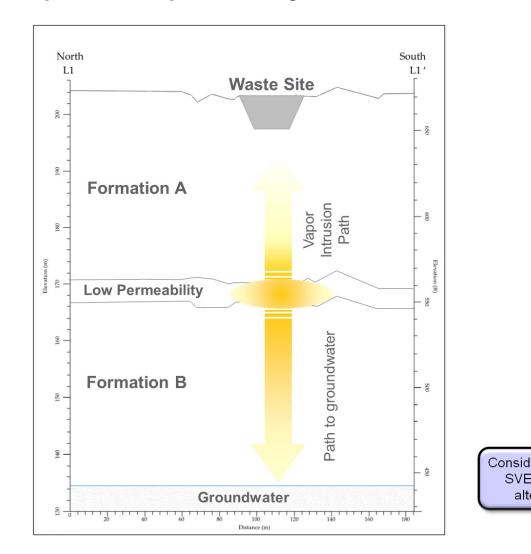


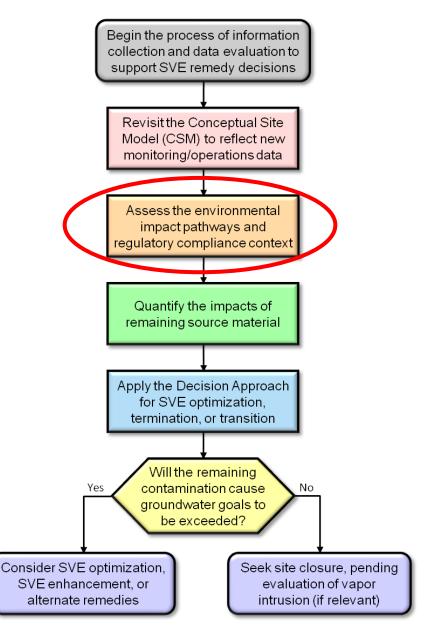




Conceptual Site Model (CSM)

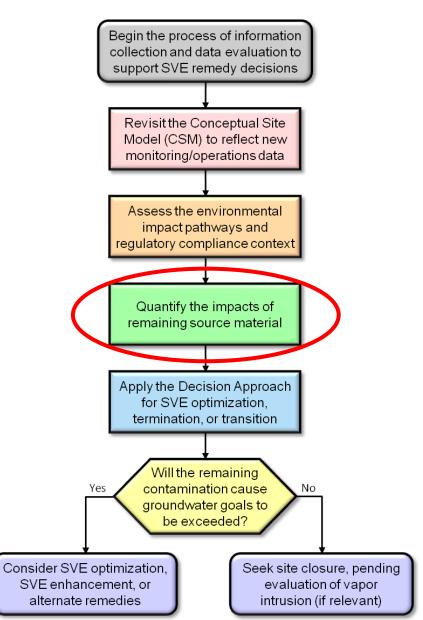
- Multiple types of data combine to build a CSM
- Key information:
 - Vadose zone structure and properties
 - Recharge and groundwater flow
 - Contaminant source information
- New site data
- Operations data



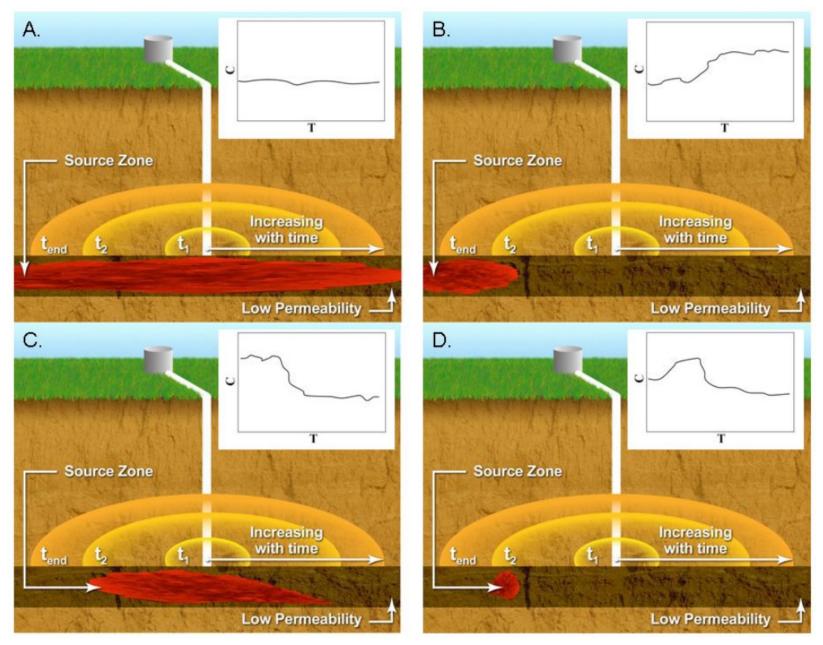


Environmental Impact and Compliance Context

- Relate remaining source strength to established remediation objectives for exposure pathways
- Exposure Pathways
 - Surface Exposure Pathway
 - ✓ inhalation, direct ingestion, dermal absorption, ingestion of produce
 - Vapor Intrusion Pathway
 - Groundwater Pathway

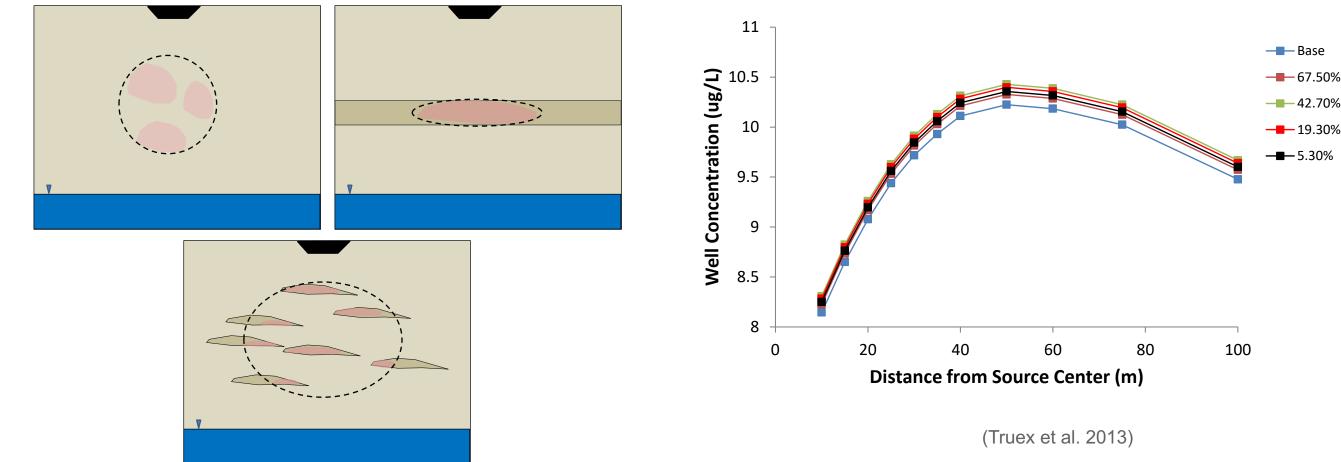


Approach for Quantifying Impact of Remaining Source Material


- Step 1: Quantify the vadose zone (VZ) contaminant source
 - Location
 - Strength (mass discharge or vapor concentration)
- Step 2a: Estimate impact to groundwater (GW)
 - Type I: Low GW concentration, mass transfer from VZ to GW
 - Type II: GW concentration impacts mass transfer from VZ to GW
 - Type III: Primarily GW contamination, mass transfer from GW to VZ
- Step 2b: Estimate impact to vapor intrusion
- Step 3: Estimate impact of source decay/depletion, sorption, and attenuation processes
 - Source depletion: estimate rate of change in mass discharge
 - Sorption: time scale
 - Attenuation processes: time scale, groundwater

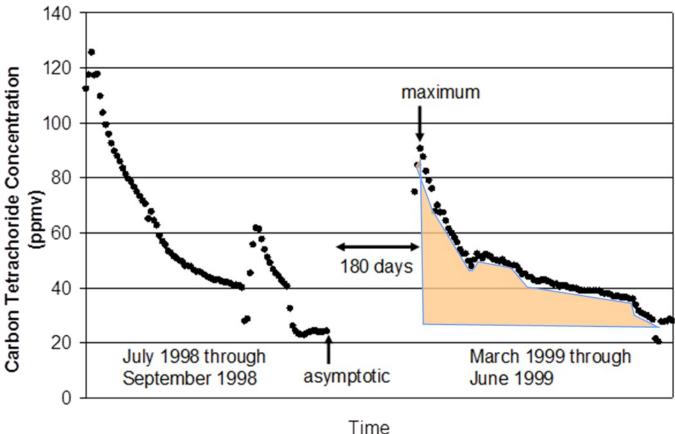
SVE Data – Source Location

- Mass discharge data to assess source location
- Evaluate data over time to interpret source location
- Use data for multiple distributed wells



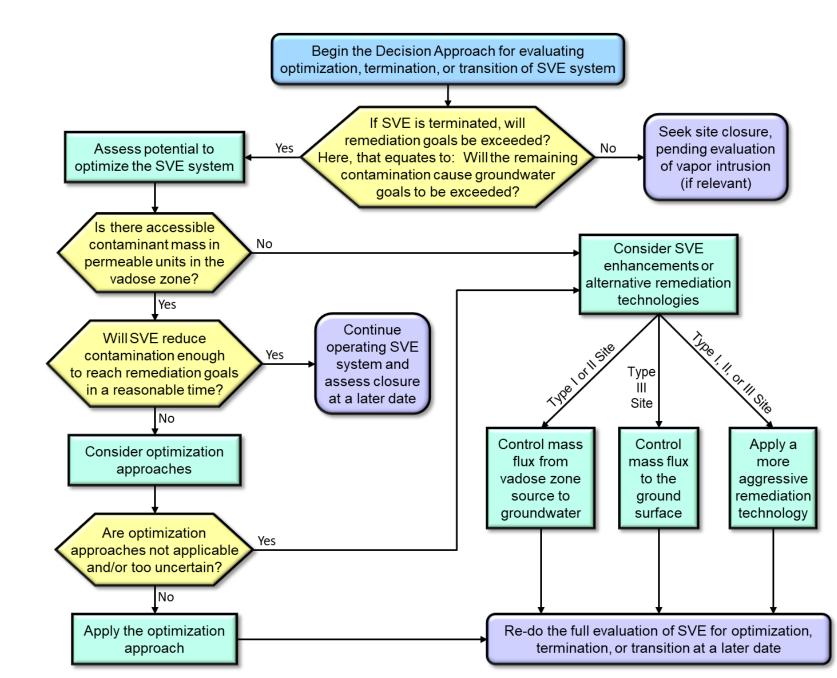
(Carroll et al. 2012, 2013; Truex et al. 2012; Mainhagu et al. 2014; Brusseau 2015)

Source Configuration


- Discrete vadose source zones (versus a uniformly distributed source)
 - Similar patterns of soil gas concentrations
 - Only a small effect on simulated groundwater concentrations

SVE Data – Source Strength

- Data from the SVE system can be used to quantify source strength Contaminant mass discharge
- Rebound analysis
 - Estimate source strength when SVE is halted
 - Can use this information to evaluate whether this source poses a risk



Brusseau et al. 2010; Carroll et al. 2012, 2013; Truex et al. 2012

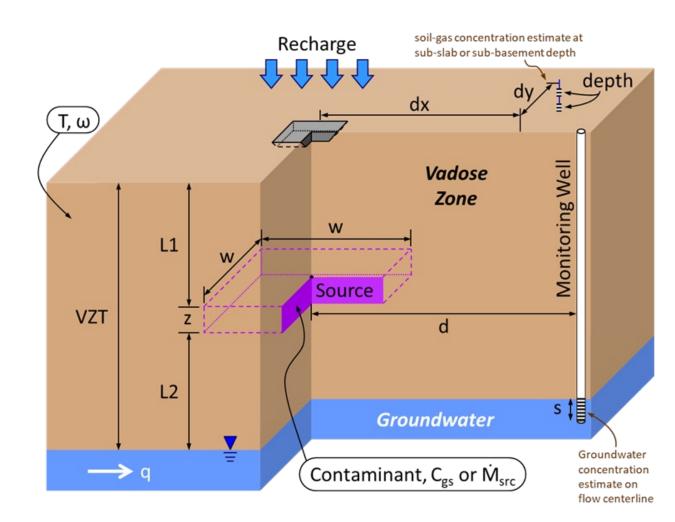
Soil Vapor Extraction Guidance Decision Logic

- Terminate?
- Continue SVE?
- Optimize SVE system?
- Enhance/Supplement SVE?
 - Targeted areas / hot spots?
- Use alternate treatment technology?
 - Mass flux control or more aggressive technology

13

Possibilities for Optimization and Supplemental Technology

- Optimization or enhancement approaches
 - Focus active extraction in areas with significant mass removal
 - Add/replace extraction wells to get better spatial distribution or screened intervals
 - Add passive/active air injection wells to help air throughput
 - Pulse the extraction system
 - ✓ May achieve the same mass removal with lower operational costs
 - Passive extraction
 - Hydraulic or pneumatic fracturing to increase permeability
- Supplemental or replacement technologies
 - Bioventing
 - Multi-phase extraction
 - In situ air sparging
 - In situ thermal treatment
 - Oil injection


Brief Description of SVEET2

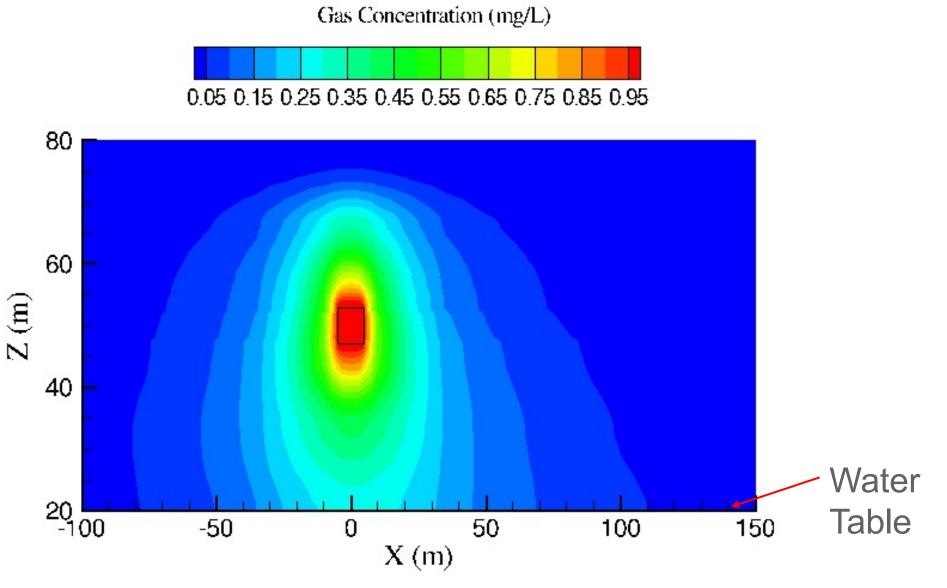
- User-friendly spreadsheet tool
 - Input a small number of parameters to describe site and vadose zone source
 - Estimates contaminant concentrations in groundwater and soil gas
- Soil Vapor Extraction End-state Tool (v. 2) updated through ESTCP project
 - Objective: provide DoD with a widely applicable tool to support assessment of volatile contaminant remediation in the vadose zone
 - Enhanced functionality and acceptability for DoD applications in support of remediation decisions
 - Provide basis for potentially significant reductions in DoD's cost to complete
- Rigorous underlying basis
 - 5760 numerical simulations (pre-modeled scenarios)
 - Contaminant transport under natural conditions (vapor-phase diffusion, recharge, & mixing into GW)
- SVEET2 itself is not a numerical model
 - Interpolates between pre-modeled scenarios
 - Scaling for parameters with linear relationship

Generalized Conceptual Framework

- Conceptual framework for describing a site
- Based on prior studies to determine controlling parameters
 - Lower permeability layers have only small effect on long-term vapor transport
 - For vapor-phase dominated transport, contaminant concentrations controlled by limited set of parameters
- Key parameters
 - Sr residual saturation
 - VZT vadose zone thickness
 - RSP relative source position
 - SA source area (footprint)
 - q groundwater flow rate
 - Source strength
 - Recharge
 - Partitioning

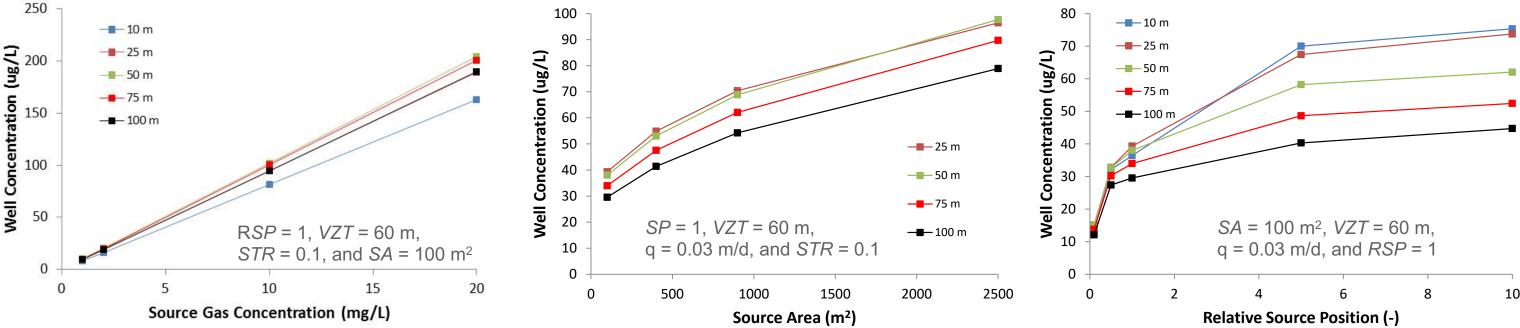
Numerical Simulations

- Used the STOMP (Subsurface Transport Over Multiple Phases) code
 - Fully-implicit, integrated finite difference model (White and Oostrom, 2006)
 - Governing equations: mass-conservation equations for water, volatile organic compounds (VOCs), and air
- 3-D domain: 2000 m long (x), 500 m wide (y), and variable height (depending on the case)
 - Emphasis of grid refinement on the region near the water table, source boundaries, and domain top
- Simulations were conducted for a base case set of parameter values and 5759 other parameter permutations
 - Carbon tetrachloride was selected as the base case VOC
 - Other VOCs are considered through variation of contaminant-specific properties
- SVE process itself was not simulated
- An immobile organic liquid phase was emplaced in the source zone at a saturation of ~2-3%
 - If needed, organic liquid was automatically replenished.
- Transport simulations were conducted for 200 years, although steady-state conditions were often reached within a few years


Numerical Model Assumptions

- Water content is maintained at uniform value throughout the vadose zone
- Mass loading from the vadose zone into the groundwater is maximized by imposing a water saturation in the range of 0.24 to 0.27 in the lowest unsaturated grid block
- Water table is assumed to be effectively horizontal over computational domain
- Gas-phase diffusion and tortuosity in source zone are not affected by organic liquid content in source zone
- Sorption may delay impact to groundwater, but has minimal impact on the overall long-term contaminant distribution for a constant strength source (Carroll et al. 2012)

Example Simulation Results

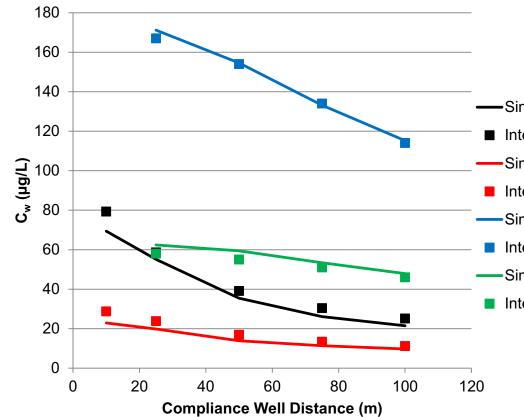

- VOC transport simulated until steady state conditions were obtained
- CT concentration

Relationship of Parameters to Groundwater

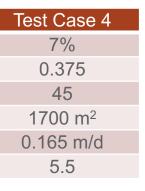
- If vapor diffusion is the dominating vadose zone VOC transport mechanism
 - Mass flux into groundwater controlled by site-specific dimensions, vadose zone properties, and source characteristics
- Relationships are either linear or nonlinear:

10

Interpolation & Scaling


- Linear interpolation
 - Start with 64 simulation results, C_{sim}
 - Interpolate between key values for each parameter
 - Final value is the unscaled groundwater concentration, C_{wu}
- Scale C_{wu} to obtain final value, C_w
 - Henry's law constant
 - Recharge
 - Source strength

C _{sim} Data	RSP Interp.	q Interp.	SA Interp.	VZT Interp.	STR Interp.	ω Interp.
24.19	33.65					
43.12	00.00	20.49				
5.26	7.33					
9.40		29.45				
56.85	63.17					
69.50						
12.25	13.65					
15.06				26.48		
15.23	28.49					
41.74		17.39				
3.36	6.30					
9.23 32.35			23.50			
64.40	48.37					
7.21		29.61				
14.49	10.85					
32.28			+		27.94	
17.05	24.67					
7.01		16.52				
9.75	8.38					
62.74			28.49			
70.33	66.54					
13.52		40.46				
15.23	14.38					
26.80				29.40		
51.03	38.92					
5.98		23.81				
11.42	8.70					
46.94		30.3	30.31			- 28.67
73.01	59.98					
10.61						
16.69	13.65					
25.06						
44.98	35.02					
5.77	0.4.1	21.58				
10.50	8.14		01.00			
59.06	05.05		31.06			
72.85	65.95	10.54				
13.39	15 10	40.54				
16.85	15.12			26.07		
14.83	27.93			26.97		
41.03	21.95	16.90				
3.06	5.87	10.90				
8.67	5.67		22.87			
31.56	47.54		22.01			
63.51	+7.34	28.85				
6.59	10.16	20.00				
13.73	10.10				29.39	
33.51	40.12					
46.74		24.73				
7.73	9.34					
10.95			33.76			
65.35	69.60					
73.84		42.80				
14.87	16.00					
17.12				31.82		
26.33	38.53					
50.74		23.42				
5.56	8.30					
11.04			29.88			
46.22	59.55					
72.88		36.34				
9.93	13.13					
16.33						


STOMP Results vs. Interpolation

 Comparison of STOMP simulations and interpolations (Oostrom et al. 2014)

Parameter	Test Case 1	Test Case 2	Test Case 3	
Ø	3%	3%	7%	
STR	0.175	0.175	0.375	
VZT	20	20	45	
SA	250 m ²	250 m ²	1700 m ²	
q	0.0175 m/d	0.165 m/d	0.0175 m/d	
RSP	0.55	0.55	5.5	

- -Simulation 1
- Interpolation 1
- ----Simulation 2
- Interpolation 2
- -Simulation 3
- Interpolation 3
- —Simulation 4
- Interpolation 4

Effects of Parameter Variation

- GW concentration change with increasing parameter input value for a gas concentration input source type
 - (+ = Increase; = Decrease)

User Input	GW Concentration Change with Increasing User Input Value
Temperature, T	—
Average Moisture Content, ω	—
Average Recharge, R	+
Vadose Zone Thickness, VZT	—
Depth to Top Source, L1	+
Source Thickness, z	+
Source Width, w	+
GW Darcy Velocity, q	_
Distance to Compliance Well, d	configuration dependent
Well Screen Length, s	—
Source gas concentration, C_{gs}	+

SVEET2 Interface

- Excel spreadsheet (xlsm)
- Up to 5 scenarios
- Errors and warnings flagged by cell color
- No results if inputs are invalid
- Associated worksheet with contaminant data

A E	B C	D E	F		- I			L	M	N	0
					T2 (Soil Vapor Extraction End		lool)				
Parameter	Permissible	Key Values and Notes		Describ	ped in: SVEET2 User Guide (document numb	er TBD)					2020-5
Name	Range	key values and notes									
T	5-99	20		User In	nput - Source/Transport Parameter	5					
R	0.4-15	0.4			Scenario Name:	-	Case A	Case B	Case C	Case D	Case E
ω	varies ^a	Sr key value equivalents *			Contaminant	-	CT	TCE	TCE		
B total	0.1-0.5	0.3		T	Temperature:	[°C]	19.6	20	20		
Phuli	1.1 - 2.0 ^b	1.855		R	Avg. Recharge:	[cm/yr]	0.5	0.5	0.5		
VZT	3 - 150	3, 10, 30, 60, 110, 150		ω	Avg. Soil Moisture Content:	[wt %]	8	1	1		
L1	varies	-		O total	Total Porosity:	[]	0.3	0.3	0.3		
Z	varies ^d	-	~	tes Pouk	Dry Bulk Density:	[g/mL]	1.8	1.8	1.8		
w	10-100°	-		E VZT	Vadose Zone Thickness:	[m]	60	30	30		
q	0.005 - 1.0	0.005, 0.03, 0.3	-	L1	Depth to Top of Source:	[m]	40	21	21		
5	1-30	5		z	Source Thickness:	[m]	10	5	5		
d	cc1-850	cc = 1.75 to 7.5		w (= 1)		[m]	50	15	15		
		Values < 0 are upgradient		q		[m/day]	0.3	0.165	0.165		
dx	-850 - 850	of source center		5	Compliance Well Screen Length:	[m]	5	10	10		
dy	0-370			d	Distance to GW Compliance Well:	[m]	25	50	50		
dz	1.0 or 4.0	sub-slab or sub-basement		đx	Longitudinal Distance for Soil Gas:	[m]	20	30	30		
02	0.001 -	sub-stab or sub-basement		dy	Transverse Distance for Soil Gas:	[m]	20	20	20		
$C_{\mu\nu}$	100000	159		dz	Depth of Basement/Foundation:	[m]	1	4	4		
	100000	From STOMP simulations		-	Source Strength Input Type:	_	Gas Concentration	Gas Concentration	Mass Discharge		
M _{MC}	0.1 - 40000	at 3 months elapsed time		Cas	Source Gas Concentration:		159	50	this chicks gr		
ba	lad according to		in imatria				109		40		
		se residual saturation (Sr), not gr. ver, percent gravimetric moisture co		Maro	Source Mass Discharge:	[g/day]			10		
equested as t	he input paramete	r for user convenience. The key valu	es for Sr					2.571			
		Noisture content is constrained to the b imum permissible moisture contents			2.2 < particle density						
		(itotal) and dry bulk density (pbulk) va			min w0% so				0.832	80(V90	11CI/V90
re used.			-		max w0% so		12.478	12:477	12.477	80(VI0)	11CI/VI0
		iry bulk density (p _{o.x}) values are the fed. However, they are also constrain			ated Parameters/Intermediate Valu						
		- 0 _{ene}), permissible range of 2.2 to 3.0		S,	Residual Saturation:	[-]	0.481	0.060	0.060	#DIV/01	#DIV/0
		suse it is a function of the permissible	range for	STR	Source Thickness Ratio*:	[]	0.167	0.167	0.167	#D(V/01	#D(V/0
	put values of z an	d VZT. use it is a function of the permissible r	cance for	RSP	Relative Source Position*:	[]	4.00	5.25	5.25	#DIV/01	#DIV/0
	put value of VZT.	upe a to a national of one permanent		SA	Areal Footprint of Source*:	[m ²]	2500	225	225	0	0
		he permissible range for SA.		L2	Dist. from Source Bottom to GW:	[m]	10.00	4.00	4.00	0.00	0.00
he lower limit	of the permissible	e range for d depends on the smaller of the lower limit is a function of the n	SA case	н	Henry's Law Constant**:	[]	0.902	0.316	0.316	#N/A	#N/A
node grid sizer		of the lower and is a function of the n	umenca	-							
			-		s – Estimated Contaminant Concentration						
	Re	charge sol-gas concentration extinuits at sub-station sub-basement depth		C,	Final Soil Gas Concentration:	[ppbv]	340	2630	11400	#N/A	#N/A
				C.,	Final Groundwater Conc'n:	[µg/L]	13	11	46	#N/A	#N/A
_	× 1	dx dy/=	depth								
.ω	1	-	1			Color C	ode Legend				
		-			able below for permissible ranges of		Input - Primary Pa	rameter			
		Vadose §		calculated values [STR, SA, RSP, and L2].			Intermediate Calculation				
		Zone g			he "HLC" worksheet for details of the		Result - Intermedi	ate/Unscaled			
· · · · · · · · · · · · · · · · · · ·				terns	temperature-dependent calculation of H. Result – Final						
L1 W Source Vadose Zone Cujopijuogi						Input Parameter Value is Not Yet Specified					
				Parameter Permissible Key Values							
VZT	2	- d -		Name Range Key Values Parameter Value is Outside Suggested Range, But Calculations							
() () () () () () () () () ()				51	0.05 - 0.75 0.05, 0.3, 0.55, 0.75			alua is Outsida Da	mitted Range or a	- Invalid	
	2		1	STR	0.1-0.75 0.1, 0.25, 0.5, 0.75	L			is is Used (see fool		
	2			RSP	0.1 - 50 0.1, 1, 10, 50						
L				12	0.5 - 149	Error in Intermediate Calculation or Intermediate Value is Outside Permitted Range Error in Final Result (due to input problem or intermediate					
L		Groundwater			100.10.000 100.000 100.000						
			<u> </u>	SA	100 - 10,000 100, 400, 900, 2500, 10000				blem or intermedia	te	
		Contaminant C. or M.	roundeater incartitation dimate on te carterine		100 - 10,000 100, 400, 900, 2500, 10000			It (due to input pro	blem or intermedia	te	
			rounds after		100 - 10,000 100, 400, 900, 2500, 10000	-	Error in Final Resu	It (due to input pro	blem or intermedia	te	

Updates for SVEET2

- Range of updates to improve usability and applicability
 - New contaminants
 - Can do more scenarios at once
 - Flexible groundwater well locations
 - Soil gas output
 - Increased permissible ranges
 ✓ Source strength (concentration or flux)
 ✓ Recharge
 - √Sr

✓VZT

√RSP

- ✓SA
- √q
- Can specify porosity and bulk density

SVE	ET v. 1	
<i>Contaminants:</i> Chloroform Dichloromethane Chloromethane Chloroethane Vinyl Chloride Tetrachloroethene Trichloroethene 1,1-Dichloroethene	Carbon Tetrachloride cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	Added these or 1, 2-Dichloro 1,2,3-Trichlo MTBE Chlorobenze Freons (11, Note: biode v. 1.0 or SVE
Input/Output Structure. 3 concurrent scenari		Allow 5 concur
	ocations for Output: 00 m downgradient along nterline from source area	Allow any user
Vadose Zone Soil Gas Not a SVEET output	Allow user-spe direction, 0 to 3 sub-slab or bas	
Source Gas Concentra	0.001-100,000	
Source Mass Flux: 0	0.1 – 40,000 g/	
<i>Recharge∶</i> 0.4 – 7.5 cm/yr		0.4 – 15 cm/yr
Bulk Density and Poro Fixed at 1.855 g/mL	<i>sity:</i> and 30%, respectively.	Allow user-spe
Relative Water Saturat 0.05 – 0.55 (1 – 9 wi	tion (Moisture Content): %)	0.05 – 0.75 Allowable mois porosity
Vadose Zone Thicknes	ss: 10 – 60 m	3 – 150 m
Source Thickness Rati	<i>io:</i> 0.1 – 0.5	0.1 – 0.75 0.75 STR is all
Relative Source Position	on: 0.1 – 10	0.1 – 50 50 RSP is allov
Source Footprint (squa	are): 100 – 2,500 m²	100 – 10,000 n
Groundwater Darcy Ve	<i>elocity:</i> 0.005 – 0.3 m/d	0.005 – 1.0 m/d

SVEET2						
contaminants: opropane oropropane	1, 3-Dichloropropane MIBK MEK					
ene 12, 113)	BTEX constituents 1,4-Dioxane					
egradation effects are no EET2.	ot included in SVEET					
rrent scenarios						
r-specified distance ≤ 8	r-specified distance ≤ 850 m, along centerline					
ecified lateral location (-850 to 850 m in x 370 m in y direction) and depth of 1 or 4 m (for sement)						
0 ppmv						
ı/d						
ecified bulk density and	porosity values					
sture content depends o	on bulk density and					
lowed for VZT ≤ 10 m						
wed for VZT ≥ 30 m						
m²						
/d						

Expanding Permissible Ranges

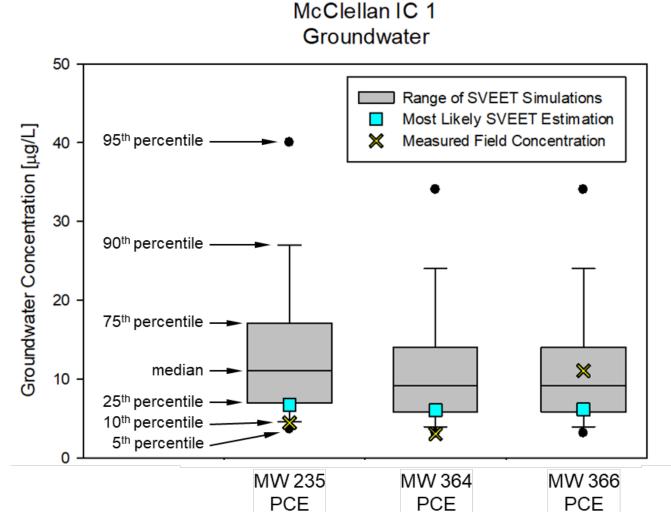
- Parameters having non-linear impacts
- Expanded from 972 simulations to 5760 simulations
- Significant effort to build and manage the simulations and output

Parameter	Ε	Evaluation Points as the Basis for Interpolation						
Residual Moisture Saturation (—)		0.05	0.3	0.55	0.75			
Source Thickness Ratio (—)		0.1	0.25	0.5	0.75			
Vadose Zone Thickness (m)	3	10	30	60	110	150		
Source Area (m ²)		100	400	900	2,500	10,000		
Groundwater Velocity (m/day)		0.005	0.03	0.3	1			
Relative Source Position (—)		0.1	1	10	50			

SVEET2 Assumptions and Limitations

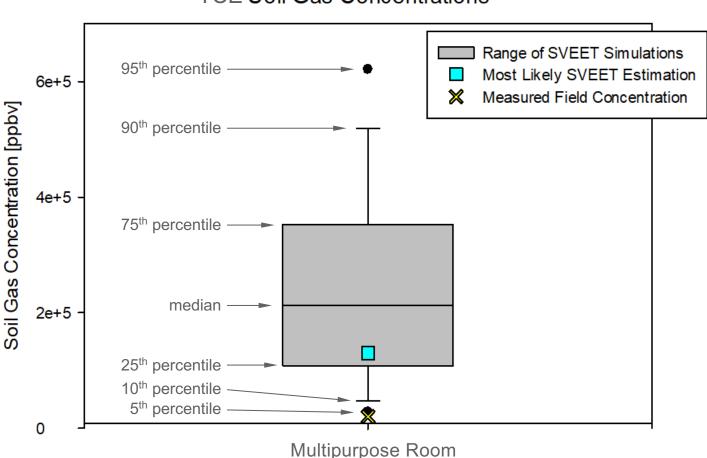
- Vapor-phase transport dominates vadose zone contaminant movement
 - But recharge-driven transport is accounted for
- Groundwater is initially uncontaminated
- Contaminant source can be represented as a single source area
- Homogeneous subsurface with uniform properties
- Steady-state / equilibrium site conditions
- Constant strength vadose zone source
 - No source depletion
- Well screen starts at the water table (i.e., the groundwater sample context)
- Does not include:
 - Adsorption
 - Biological reactions/degradation
 - Groundwater concentration estimates off the plume centerline

ESTCP Demonstration Elements


• Type 1 – SVEET2 Ground-Truthing (2+ sites)

- The site must have reached equilibrium conditions
 - \checkmark Ideally, demonstrated by long term data
- Soil gas and/or groundwater data required for comparison to SVEET2 results
- Performance metric: observed values are within 3 standard deviations of SVEET2 sensitivity results
 - \checkmark Monte-Carlo (MC) analysis (n = 2,500) with randomly selected input parameter values in defined min./max. range
- Type 2 SVEET2 Tool User Testing (2+ sites)
 - Ideally, had SVE operations approaching asymptotic removal and shutdown is being considered
 - Soil gas and/or groundwater data required
 - Qualitative feedback on usability and applicability
 - Performance metric: Applicable to \geq 80% of sites investigated

SVEET2 Demo – McClellan IC-1


- Tetrachloroethene (PCE) source impact on groundwater at McClellan AFB IC-1
 - SVE was recently terminated
 - Comparison for three monitoring wells
- SVEET2 estimates met performance objectives, matching observed data within defined metric

SVEET2 Demo – CRREL AOC 2

- Trichloroethene (TCE) source impact on soil gas for CRREL AOC 2 to assess vapor intrusion
- SVEET2 estimate met performance objectives, matching observed data within defined metric

CRREL

TCE Soil Gas Concentrations

Ground-Truthing Demo Summary

- Overall, SVEET2 provided reasonable concentration estimates
 - Six cases matched observed data, meeting the performance metric
 - Three cases had estimates less than observed data ✓ Estimates for all were within a factor of 2-3 of observed data
 - Four cases had estimates larger than observed data
 - ✓ Conservative with respect to supporting decisions about SVE termination
- Challenging to find a site meeting all SVEET2 assumptions
 - Need to distinguish between ground-truthing and application to support remedial decisions

ESTCP Demo – Usability and Applicability

- Widely applicable: 93% of DoD sites surveyed (n = 14)
 - Issues: recharge (too great) or site size (too small/thin or too large)
- Feedback: SVEET2 was appliable and helpful
 - User friendly and straightforward input requirements \checkmark Inputs are readily available from existing site data
- Easy to vary inputs and quickly run multiple scenarios or what-if analyses
 - Rapid assessment results
 - Major benefit vs. traditional approaches (site-specific numerical model) \checkmark Less labor effort, less data intensive, and lower cost to obtain estimated impacts
 - ✓ Similar level of professional judgement and assumptions
 - What-if scenarios are helpful when inputs have high degree of uncertainty \checkmark One site noted that application provided insight regarding controlling processes
 - Provides useful information for decision making

DoD Site Application for Eight SVE Systems

- SVEET2 used to assess trichloroethene (TCE) sources at each SVE system
 - Recently: operate during warmer weather, shut down in winter
 - Source strength based on soil gas concentrations at end of winter shut down period
 - Source zone geometry challenging to define
 - Multiple cases were used for assessment
- SVEET 2 results compared to:
 - Maximum contaminant level (MCL)
 - \checkmark Less than MCL implied termination of SVE would be protective of groundwater
 - Actual groundwater monitoring results
- Outcome based on comparison
 - SVEET2 estimates less than MCL for 5 systems
 - SVEET2 estimates greater than MCL for 3 systems
 - Aligned with actual groundwater monitoring data

Example SVEET2 Results

	Scenario Name:	_	Site #1	Site #5
	Contaminant:	_	TCE	TCE
Т	Temperature:	[°C]	14	14
R	Avg. Recharge:	[cm/yr]	1.6	1.6
ω	Avg. Soil Moisture Content:	[wt %]	7	7
O total	Total Porosity:	[]	0.34	0.34
P bulk	Dry Bulk Density:	[g/mL]	1.75	1.75
VZT	Vadose Zone Thickness:	[m]	110	90
L1	Depth to Top of Source:	[m]	40	37
z	Source Thickness:	[m]	45	15
w (= I)	(= I) Source Width (= Length):		50	15
q	GW Darcy Velocity:	[m/day]	0.052	0.052
S	Compliance Well Screen Length:	[m]	6	6
d	Distance to GW Compliance Well:	[m]	65	100
Cgs	Source Gas Concentration:	[ppmv]	8.75	4.3
Cw	Final Groundwater Conc'n:	[µg/L]	20	3.6
C _{meas}	Measured Groundwater Conc'n	[µg/L]	15	1.7

Potential Cost Savings for Example DoD Site

- Five locations: could terminate SVE ("Shutdown")
- Three locations: should continue SVE ("Run")
- Cost savings estimated from current SVE operational costs
 - Typical of SVE operational costs (NFESC, 2005; EPA, 2007)
 - Cost savings of roughly \$663,500 per year
 - 61.5% decrease in annual operational costs
- Two systems are moving forward with the shutdown recommendation

System	Run/Shutdown
1	Run
2	Shutdown
3	Run
4	Shutdown
5	Shutdown
6	Shutdown
7	Run
8	Shutdown

Estimated Potential Cost Savings for Shutdown Systems

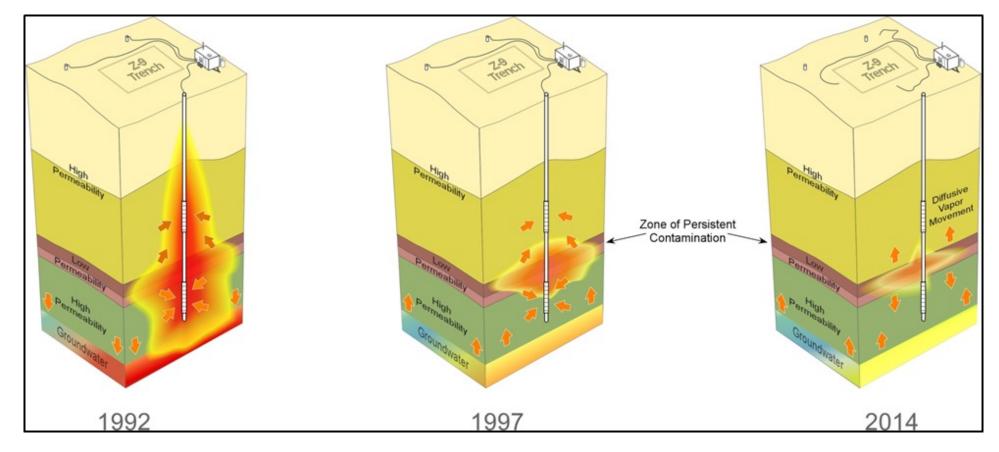
Operating Cost (\$/y)

5	Ś	663.500
	\$	208,450
	\$	151,075
	\$	161,325
	\$	46,675
	\$	118,650
	\$	122,700
	\$	128,400
	\$	142,025

34

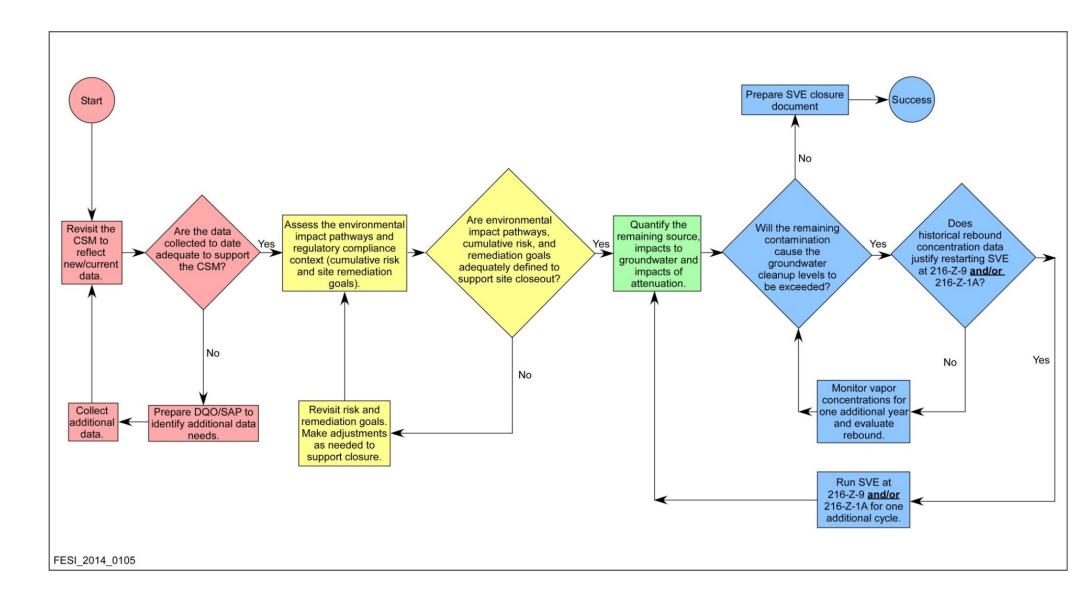
DoD Site Application Notes

- Personnel unfamiliar with the SVEET2 software:
 - Expect roughly 16 hours of labor to run site-specific scenarios
 - ✓ Download/install
 - ✓ Learning SVEET2
 - ✓ Gathering site data
 - \checkmark Performing data analysis and interpretation
 - Most time will be spent in gathering site data and assessing scenario variations to support remedy decisions
 - Overall, less labor costs than traditional approaches

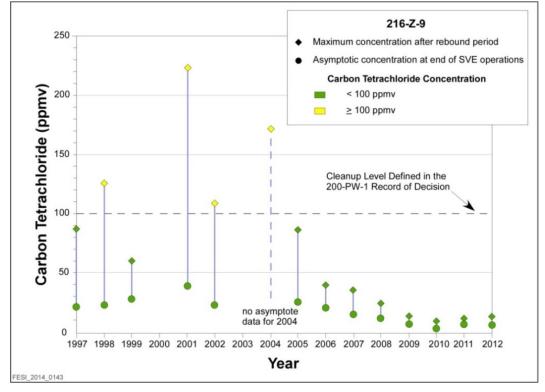

Integrating Calculations into a Remedy Decision

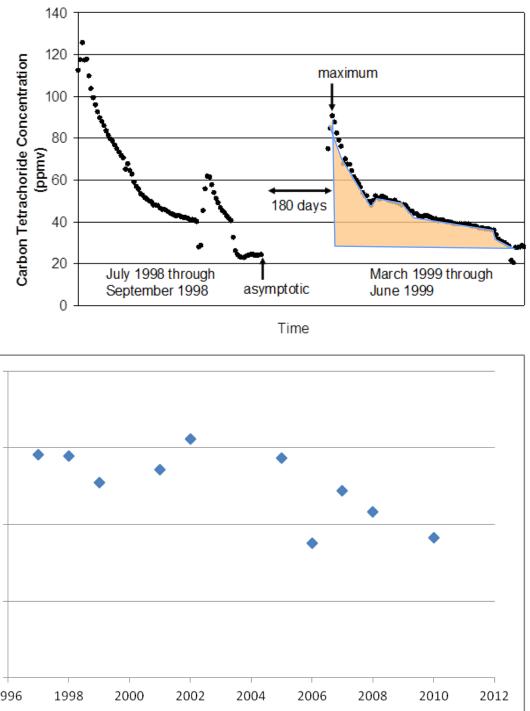
- Two examples
 - DOE Hanford Site SVE Performance Assessment
 - Private Site Setting SVE Performance Targets

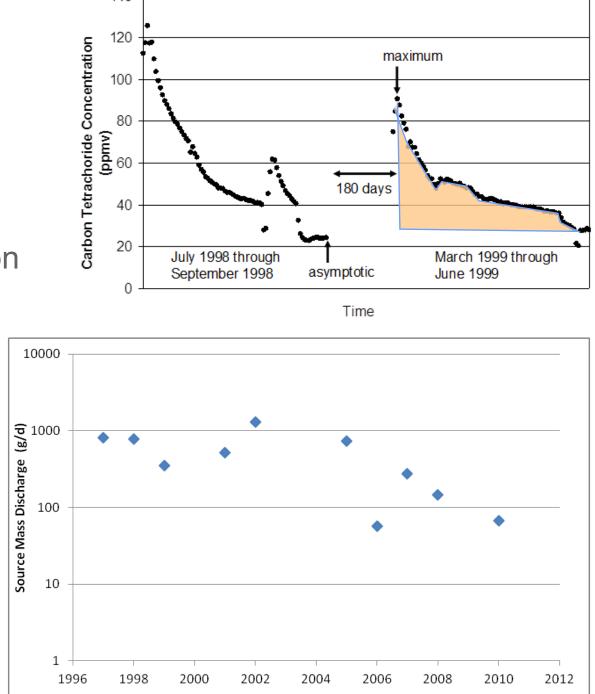
Hanford Site Conceptual Model


- Carbon tetrachloride (CT) disposal to cribs/trenches
 - Waste from historical plutonium separations activities
- SVE initiated in 1992
- Evolving CSM
 - Diminishing returns from SVE
 - Residual CT in lower permeability zone

Hanford Site Approach


- Based on SVE performance assessment guidance
- Included some site-specific adaptations to decision logic
- Provided an approach for presentation to and concurrence by regulators

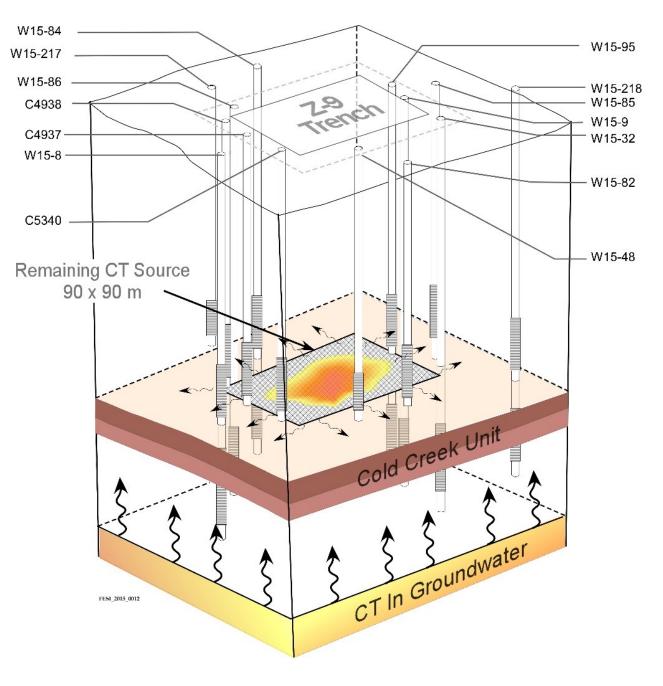




Source Strength

- Data from cyclic operation and soil gas informed the source strength
 - Concentrations used in SVEET
 - Mass discharge important for long-term evaluation




(DOE 2014, 2016)

Hanford Site

- CSM at the time of the evaluation
 - Low soil gas concentrations
 - Only remaining source of CT is contained within the CCU
 - Existing groundwater contamination

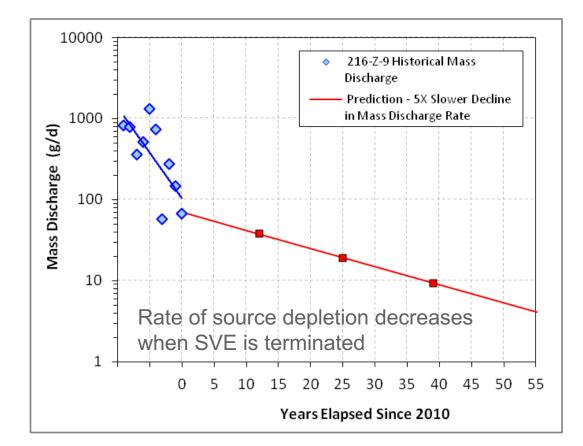
(DOE 2014, 2016)

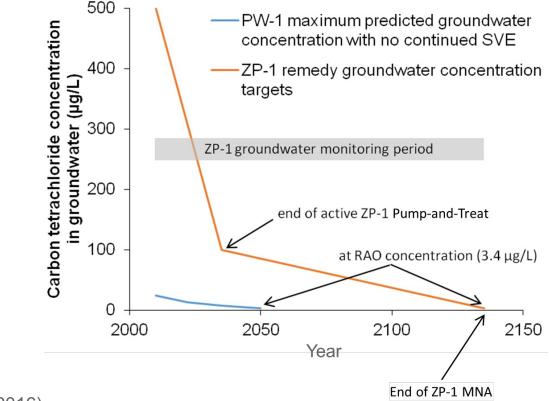
Estimated Impact to Groundwater

- SVEET was used to calculate soil vapor impacts to groundwater
 - Assumes underlying aquifer is clean and no CT sources in the groundwater
 - Assumes that vadose zone source remains constant over time
- Estimated groundwater impact for source based on current vadose zone **CT** concentrations
 - Impacts are consistent with 216-Z-9 Trench treatability test estimates (PNNL-21326)

Waste Site:	216-Z-9	216-Z-1A
Source gas concentration (ppmv)	24.7	13.9
Estimated groundwater concentration (µg/L)	27	17
ppmv = parts per million by volume		

216-Z-18


9.65


12

Impact In Context and Over Time

- Context: groundwater pump-and-treat (P&T) + monitored natural attenuation (MNA)
 - 3.4 µg/L CT goal
- Calculated the estimated impact over time with source depletion
- By 2050, remaining vadose zone CT will NOT cause groundwater concentration above 3.4 μg/L
- However, existing groundwater CT levels are not expected to drop below 3.4 µg/L until year 2135

(DOE 2014, 2016)

- Superfund site in the Southwest US
 - Liquid disposal in pits in 1979-80 timeframe
 - 80-ft vadose zone: Sands/gravel over silt and silty sand, buried basalt flow within silty zone
 - Remedy: Cap, P&T, SVE
 - Installed SVE system in early 1990s
 - ✓ Operated for several years with thermal oxidizer
 - ✓ Restarted in 2006 with pressure condensation treatment
 - Cumulative SVE mass removal over 200,000 lbs, mass removal still >1000 lb/quarter
 - Recent shift to carbon treatment for SVE offgas

- SVE goals reset several times
 - Initial goals based on SESOIL modeling
 - Revised goals in 2009 based on leaching and State soil screening levels
 - Didn't account for vapor transfer to water table
 - Vapor concentrations in soil gas close to 2009 goals, but still large mass recovery
- Project team decided to revisit goals in 2015 using SVEET
 - Adjustments made to SVEET for site specific factors (e.g., contaminants)
 - Collaborative effort between regulatory agencies and responsible parties
 - SVEET tool was instrumental in resolving this difficult issue

STR

SA

RSP

L2

0.1 - 0.5

100 - 2500

0.1 - 10

0.5 - 49

contaminant

specific

0.1, 0.25, 0.5

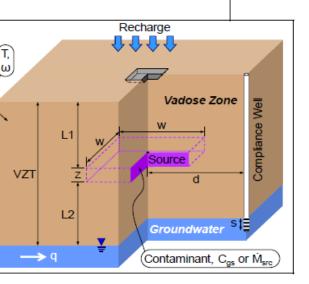
100, 400, 900, 2500

0.1, 1, 10

_

0.89

- Example
 - 1,1-dichloroethane
 - MCL = 6 µg/L
- Essentially backcalculating the source strength to achieve MCL goal


	Scenario Name:	—	Case A	Case B	Case C
	Contaminant:	_	1,1-DCE	1,1-DCE	
Т	Site-Specific Temperature:	[°C]	25.7	25.7	25.7
	Site-Specific Porosity:	[]	0.38	0.38	0.38
	Site-Specific Dry Bulk Density:	[g/mL]	1.63	1.63	1.63
ω	Site-Sp. Avg. Moisture Content:	[wt %]	8.4	8.4	8.4
R	Avg. Recharge:	[cm/yr]	0.4	0.4	
VZT	Vadose Zone Thickness:	[m]	25	25	
L1	Depth to Top of Source:	[m]	11.36	11.36	
z	Source Thickness:	[m]	12.5	12.5	
w (= l)	Source Width (= Length):	[m]	26	26	
q	GW Darcy Velocity:	[m/day]		0.0122	
d	Distance to Compliance Well:	[m]	25	50	
S	Compl. Well Screen Length:	[m]	5	5	
	Source Strength Input Type:	_	Gas Concentration	Gas Concentration	
C _{gs}	Source Gas Concentration:	[ppmv]	10.2	14.6	
M _{src}	Source Mass Discharge:	[g/day]			
alculat	ted Input				
STR	Source Thickness Ratio*:	[]	0.500	0.500	#DIV/0!
SA	Areal Footprint of Source*:	[m²]	676	676	0
RSP	Relative Source Position*:	[]	9.96	9.96	#DIV/0!
L2	Distance – Source to GW:	[m]	1.14	1.14	0.00
Н	Henry's Law Constant**:	[]	1.3220	1.3220	#N/A
lesult -	- Estimated Groundwater Contamin	ant Conc	entration at Sele	cted Compliance	Well
Cw	Final Groundwater Conc'n:	[µg/L]	6.961	6.970	#N/A
	* See below for permissible ranges of inte	ermediate o	alculated values		ь -
	** See the 'HLC' worksheet for details abo			7 80 1- 41 1	

SVE Endstate Tool (SVEET)

make sure that the value makes sense with the SVEE	T assumption
of diffusion-dominated transport (i.e., no density-driver	n advection).

arameter Name	Permissible Range	Key Values	
R	0.4 - 7.5 ^b	0.4	
VZT	10 - 60	10, 30, 60	
L1	varies ^c	-	
z	varies	_	
w	10 - 50 °	_	
q	0.005 - 0.3	0.005, 0.03, 0.3	
d	10 ¹ , 25, 50, 75, 100	10, 25, 50, 75, 100	
s	5 - 30	5	
Cgs	0.000 1 - 2000 (see note)	159	
<i>M</i> src	0.1 - 5000	from STOMP simulations at 3 months elapsed time	
	See footnotes below.		

he applicability of the estimation approach used here should be onfirmed for sites with recharge between 2.5 and 7.5 cm/yr. See Section 2.2.1 of the PNNL report entitled Soil Vapor Extraction System ptimization, Transition, and Closure Guidance for further discussion.

he range for L1 is variable (with a maximum range of 0.5 - 49 m) because is a function of the permissible range for RSP and the input values of z

The range for z is variable (with a maximum range of 1 - 30 m) because it is a function of the permissible range for STR and the input value of VZT. * The range for w is a function of the permissible range for SA and the square footprint of the source area.

The source width must be less than or equal to 20 m to use d = 10.

- Soil Vapor Performance Standards report
 - Described calculation process and selected performance targets
- Explanation of Significant Difference
 - Used to incorporate remedy adjustments and updated soil vapor performance targets
- Performance Monitoring Plan
 - Defined how site data will be used to evaluate vadose zone source strength for comparison to the identified soil vapor performance targets

Conclusions Regarding SVEET2

- SVEET2 is easy to use, makes use of readily available data
 - Gives spreadsheet-fast estimates of vadose zone source impacts on groundwater and soil gas concentrations
- SVEET2 provides reasonable concentration estimates
 - Estimates are generally conservative with respect to decision making
 - ✓ Favors higher concentration estimates
 - \checkmark Appropriate for predictive applications in support of decision making
- SVEET2 provides a defensible estimate of contaminant transport as a basis for supporting remedy decisions
 - Endpoint analysis
 - Remedial performance goals
 - Assess potential vapor intrusion concerns

Broad Perspective Key Takeaways

- PNNL guidance offers useful structured approach for SVE performance assessment
- Need to update CSM and regulatory context
- Quantify impacts of remaining contamination • SVEET2
- Use the results and the site context to walk through decision logic to determine an appropriate outcome
 - Outcomes may include SVE termination, but may point at optimization or a need to consider a supplemental or replacement technology
- Can be applied and communicated with regulators to facilitate decision making

Key References

- Project web page (with reports, the SVEET2 software, and a link to the ESTCP project)
 - https://www.pnnl.gov/projects/remediation-performance-assessment/soil-vaporextraction
- Truex, M.J., D.J. Becker, M.A. Simon, M. Oostrom, A.K. Rice, and C.D. Johnson. 2013. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance. PNNL-21843, Pacific Northwest National Laboratory, Richland, WA.
- Oostrom, M., M.J. Truex, A.K. Rice, C.D. Johnson, K.C. Carroll, D.J. Becker, and M.A. Simon. 2014. "Estimating the Impact of Vadose Zone Sources on Groundwater to Support Performance Assessment of Soil Vapor Extraction." Ground Water Monitoring and Remediation. 34(2):71-84. https://doi.org/10.1111/gwmr.12050
- Johnson, C.D., K.A. Muller, M.J. Truex, G. Tartakovsky, D.J. Becker, C.M. Harms, and J. Popovic. 2022. "A Rapid Decision Support Tool for Estimating Impacts of a Vadose Zone Volatile Organic Compound Source on Groundwater and Soil Gas." Groundwater *Monitoring & Remediation*, 42(1):81-87. http://doi.org/10.1111/gwmr.12468

CENTER FOR THE REMEDIATION OF COMPLEX SITES @ PNNL

remplex@pnnl.gov https://www.pnnl.gov/projects/remplex

Thank You

https://www.pnnl.gov/projects/remediationperformance-assessment/soil-vapor-extraction

Contact: Christian Johnson cd.johnson@pnnl.gov

