

Remediation and Critical Mineral Recovery from Mining Wastewaters Using Sorbent-Based Systems

Brooklyn, New York, USA

Critical minerals: a >\$800B bottleneck to U.S. energy and security

80%

of critical minerals are imported into USA

6x

increase in critical mineral demand by 2040

44%

of toxic chemical release in U.S. is from mining

New U.S. mines take ~29 years from discovery to production

We produce domestic, high-purity critical minerals at low costs and emissions

Critical minerals: a >\$800B bottleneck to U.S. energy and security

Catalytic converters

Spent solar panels

Wastewaters

Electronic waste

Batteries

Metal separation challenges limit critical mineral recovery from wastes

Solution: We process critical minerals at low costs & footprints

2-3X LOWER COST

projected for mineral recovery than mining

99% LOWER CO₂, ENERGY, & WATER

ROBUST

to numerous feedstocks, acids, bases, etc.

MODULAR

rapid installation and processing; low CapEx

Tech: Our sorbent filters separate wastes into high-purity metals

Metal-loaded ChemFinity sorbents

Recovered minerals

High selectivity

Tailored to individual metals

Record capacity

>10x higher recovery than incumbents

Fast throughput

Robust

Resistant to heat, acids, solvents

Reusable

<u>Tech</u>: Our membranes separate wastewater into purified water and high-purity metals

Ion-capture electrodialysis

- ✓ Electrochemical metal extraction (99% recovery)
- ✓ Purifies water instead of consuming
- ✓ Reduces toxic waste

Based on: Uliana, Bui, Kamcev, Taylor, Urban, Long *Science* **2021**, *372*, 296

NIEHS: We scaled our systems, recovered copper, and purified water

First pilot stack systems

Pre-NIEHS prototype

Selective copper recovery (blue) on sorptive membranes

Post-recycling of membranes

>95% selective copper recovery and >98% desalination of acid mine drainage wastewater

Next Steps:

- Expand testing to other wastewaters
 and minerals, such as precious metals
 and rare earth elements
- Scale up of sorbent materials and separation systems to larger pilots
- Hiring a hydrometallurgist (for solution processing), commercial lead, and other potential hires

- Asks: We'd love to engage with...
- Feedstock providers: if you have critical minerals you want to recover from your wastes, please reach out!
- Potential customers and users: always looking to address real needs
- Experts and advisors in mining and critical mineral recovery from wastes

Other sponsors:

Connect with us!

chemfinitytech.com

AUliana@chemfinitytech.com

linkedin.com/company/chemfinitytech

Grant Information	Dr. Adam Uliana, Remediation of acid mine drainage water using selective metal-harvesting membranes, ChemFinity Technologies, Inc., R43ES037224, Project link: https://tools.niehs.nih.gov/srp/programs/Program_detail.cfm?Project_ID=R43ES037224
Presenter	Adam Uliana, Remediation and Critical Mineral Recovery from Mining Wastewaters Using Sorbent-Based Systems
Technology Name and Description	Porous Polymer Network Sorbents and Membranes Selective membrane technology that uses advanced sorbent materials to recover high-purity critical minerals at the same time as purifying polluted water streams.
Innovation	Our sorbent technologies show record-breaking recovery performances for both valuable minerals and deleterious pollutants and, leveraging the ultrahigh atom-scale tunability of these materials, has been validated for over 20 different minerals or pollutants. If successfully scaled, our technology projects 2-3x lower cost and 99% lower water consumption, CO ₂ emissions, and energy use for extracting critical minerals than incumbent mining technologies.
Contaminant and Media	Contaminants/targets: critical minerals (e.g., copper, rare earth elements), PFAS, neutralization and desalination of acidic water Media: acid mine drainage, other mining wastewaters, and other waters with these contaminants or minerals Target contaminant level: Parts-per-million, though lower concentrations (e.g., parts-per-billion or below) can also be removed for problematic pollutants like PFAS
Technology Readiness Level	4-5
Site Work	Testing in-house at our headquarters in Brooklyn, NY
Main Point of Contact and Social Media	Email: info@chemfinitytech.com Website: https://chemfinitytech.com/ LinkedIn: https://www.linkedin.com/company/chemfinitytech

