RISK**C**Learning

Computational Toxicology: New Approaches for the 21st Century

July 7th, 2009 Session 3: Chemical Prioritization / Rapid Assay Techniques

<u>Ivan Rusyn</u>, Ph.D., Associate Professor, Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill

Richard Judson, Ph.D., Bioinformatician, National Center for Computational Toxicology, U.S. EPA

Tools and Technologies for Pathway-Based Research

Ivan Rusyn, M.D., Ph.D.
Associate Professor
Department of Environmental Sciences &
Engineering
University of North Carolina
Chapel Hill, NC, USA

1. Data collection:

- •Understanding the host organism (genotyping, phenotyping, exposure assessment)
- •Measuring adverse health effects of environmental agents (technologies for screening at various scales of biological organization)
- •Deciphering the interactions between chemicals and molecules building pathways

2. Data analysis:

- •Issues with data acquisition/storage
- •Data analysis
- •Data visualization (expert-driven vs biology-driven pathways)

3. Data interpretation/applications

1. Data collection:

- •Understanding the host organism (genotyping, phenotyping, exposure assessment)
- •Measuring adverse health effects of environmental agents (technologies for screening at various scales of biological organization)
- •Deciphering the interactions between chemicals and molecules building pathways

2. Data analysis:

- •Issues with data acquisition/storage
- •Data analysis
- •Data visualization (expert-driven vs biology-driven pathways)

3. Data interpretation/applications

Disclaimer:

- •This presentation contains reference to commercial products and technologies
- •The speaker declares no conflicts of interest with regards to any commercial entity referred to herein
- •The images have been obtained from public sources and appropriate credits are given, where available
- •This presentation should not be interpreted as endorsement, or recommendation for use of any technology, approach or method mentioned herein
- •The speaker is expressing his personal views and not those of the funding agencies (NIH and EPA)

ŀ

The genomes of more than 180 organisms have been sequenced since 1995. The Quick Guide includes descriptions of these organisms and has links to sequencing centers and scientific abstracts.

Ultra High Throughput Sequencing – Enabling GWAS Studies

Epidemiological studies: hundreds of individuals could now be genotyped for ~106 SNPs

Cell Culture-Based High Content/High Throughput Screening

 $\begin{array}{c} 13 \\ \text{Image credit: R. Tice (NIEHS) and C. Austin (NCGC)} \end{array}$

Invertebrates- and Lower Vertebrate Organisms-Based Screening

Peterson et al., NeuroToxicology (2008)

Damage Recovery Pathways in *Saccharomyces cerevisiae*Revealed by Genomic Phenotyping and Interactome Mapping

Mammalian Organisms-Based Screening

Viewpoint Life Sciences, Inc.

Use of Emerging Science for Environmental Health Decisions

A Standing Committee of the National Academies

Thomas A. Gasiewicz (Chair), University of Rochester School of Medicine in New York

Tina Bahadori, American Chemistry Council

 $\textbf{Caroline L. Baier-Anderson}, \ \textbf{Environmental Defense Fund}$

Kim Boekelheide, Brown University

George P. Daston, Procter & Gamble Company **William H. Farland**, Colorado State University

Susan J. Fisher, University of California, San Francisco **Shuk-mei Ho**, University of Cincinnati

Stephen M. Rappaport, University of California, Berkeley Ivan Rusyn, University of North Carolina, Chapel Hill Martin L. Stephens, The Humane Society of the United States

Helmut Zarbl, Robert Wood Johnson Medical School **Lauren A. Zeise**, California Environmental Protection Agency

Workshops and information at http://nas.edu/envirohealth

July 30-31, 2009, Washington, DC

Use of Emerging Science and Technologies to Explore Epigenetic Mechanisms Underlying the Developmental Basis for Disease

September 21-22, 2009, Location TBD

Computational Toxicology: From Data to Analyses to Applications

December 8-9, 2009, Washington, DC

The Exposome: A Powerful Approach for Evaluating Environmental Effects on Chronic Diseases

EPA Reacts to Challenge of the NRC on the Future of Toxicity Testing

- Strategic Goals
 •Toxicity Pathway ID and Screening
- •Toxicity Based Risk Assessment
- •Institutional Transition

Figure 6. Relative (%) emphasis of the three main components of this strategic plan over its expected 20-year duration.

Office of Research and Development
National Center for Computational Toxicology

United States Environmental Protection Agency The Chemical Landscape Project

- What is the unique set of chemicals EPA is most concerned with?
- Targets for the overall ToxCast Program
- How much is know about these chemicals?
- Where are the data gaps?
- Collaboration across EPA
 - -ORD, OPP, OPPT, OW, GLNPO, EDSP
- Running this study required building a database
 - Origin of the ACToR project

Office of Research and Development National Center for Computational Toxicology

Summary of Chemical Landscape Analysis

• Total Count: 9,912

• Fraction of chemicals evaluated for specific classes of toxicity:

-General Hazard (usually acute data)	59%
-Carcinogenicity	26%
-Genotoxicity	28%
-Developmental Toxicity	29%
-Reproductive Toxicity	11%

EHP Electronic Publication, December 2008

Office of Research and Development

United States Environmental Protection ACTOR Definitions

- Substance
 - -A chemical from one source
 - -Name(s), CASRN
 - -Source-specific unique ID
 - -Assay Data
- Compound
 - -Chemical structure from one source
 - -Source-specific unique ID
- Generic Chemical
 - -CASRN
 - -Link to many substance (each with same CASRN)
 - -Link to at most one compound
 - -Links to all assay data from susbtances with same CASRN

Office of Research and Development National Center for Computational Toxicology

United States Environmental Protection ACTOR Definitions Agency

- Assay
 - -A collection of data on one or more substances
 - -Comes from one data source
 - -Can have several types of data included
 - -Looks like and Excel spreadsheet
- Assay Component
 - -One column of an assay table
- Assay Result
 - -A data value for one substance and one assay component

Office of Research and Development National Center for Computational Toxicology

United States Environmental Protection ACTOR Definitions

- Assay Phenotype
 - -Type of disease associated with the assay
 - Carcinogenicity, GeneTox, ...
- Assay Category
 - -Type of data: tabular, links to the web, human exposure
 - -Allows assays to be grouped together
- Data Collection
 - -A source of data
 - -Substances
 - -Compounds
 - -Assays

Office of Research and Development National Center for Computational Toxicology

- Search by names, CASRN, Structure
- View lists of chemicals
- View lists of assays
- View list of assay collections
- View data associated with a generic chemical

Office of Research and Development National Center for Computational Toxicology

Statistics

Category	Count
- Cutogo. y	Oddin
Data Collections	261
Substances	1,578,922
Compounds	955,016
Generic Chemicals	531,517
Generic Chemicals with Structure	418,191
Assays	1,357
Assay Components	3,910
Assay Results	3,553,507

Office of Research and Development
National Center for Computational Toxicology

ToxRefDB

- Relational phenotypic/toxicity database
- Provides in vivo anchor for ToxCast predictions
- · Three study types
 - Chronic/Cancer rat and mouse (Martin, et al, EHP 2008)
 - Rat multigenerational Reproduction (Martin, et al, submitted)
 - Rat & Rabbit developmental (Knudsen, et al, internal review)
- Two types of synthesis
 - Supervised (common individual phenotypes)
 - Unsupervised (machine based clustering of phenotype patterns)

Office of Research and Development National Center for Computational Toxicology

- More Data Collections
 - -Development version >400
 - -Current Focus on exposure / biomonitoring / food residues
- ToxRefDB
 - -Compiling tabular information from guideline studies
 - EPA
 - NTP
 - Literature
- Cleanup of chemical structures
- Enhance generic chemical page

Office of Research and Development National Center for Computational Toxicology

