

Final

TPH Action Level Derivation Report Johnston Atoll

January 21, 2004

DEPARTMENT OF THE AIR FORCE PACIFIC AIR FORCES

MEMORANDUM FOR MR JEFF SCOTT

1 8 MAR 2005

Waste Management Division U. S. Environmental Protection Agency, Region 9 75 Hawthorne Street San Francisco, CA 94105

FROM: 15 CES/CEV 75 H Street Hickam AFB HI 96853-5233

SUBJECT: Submittal of Final 2004 TPH Action Level Derivation Report, Johnston Atoll

1. The Air Force originally submitted a *Draft 2004 TPH Action Level Derivation Report* dated 21 January 2004. The draft version of the report was accepted by EPA as is, but a final version was never produced. To avoid confusion, we are submitting replacement pages to show that the document is final. The replacement pages will reflect the 21 January 2004 date as the date the report was finalized. Also included is a replacement for the CD that indicates the document on that disk is final.

2. Should you have any questions, please contact Mr. Jeffrey Klein Project Manager at (808) 449-1584, ext 225 or by email at jeffrey.klein@hickam.af.mil.

RONNIE LANIER

Acting Chief, Environmental Flight

2. Attachments:

1. Replacement pages for 2004 TPH Action Level Derivation Report

2. Replacement CD of 2004 Action Level Derivation Report

cc:

Distribution List

DISTRIBUTION LIST

Ms. Katherine Baylor US EPA Region 9 (WST-5) 75 Hawthorne Street San Francisco, CA 94105

US Department of the Interior Fish and Wildlife Service Pacific/Remote Islands NWRC Attn: Jerry Leinecke, Project Leader P.O. Box 50167 Honolulu HI 96850

US Fish & Wildlife Service Attn: Ms. Lee Ann Woodward 300 Ala Moana Blvd, Rm 5-231 Honolulu HI 96813

Mr. Dennis Poma 15 CES/CEVQ 75 H Street Hickam AFB, HI 96853-5233

Ms. Laurie Sullivan NOAA - Haz Mat USEPA SFB-8 75 Hawthorne St San Francisco, CA 94105

Dr. John Esterl DTRA/ALHK 1680 Texas Street SE Kirtland AFB, NM 87117-5669

Ms. Carol Gaudette AFCEE/IWPH 25 E Street, Ste E-306 Hickam AFB HI 96853-5330

Mr. Mark Ingoglia (CD Only) HQ PACAF/CEVQ Suite D - 306 25 E Street Hickam AFB HI 96853-5412 Mr. Jeffrey Klein (3 Hard copies, 1 CD) 15 CES/CEVR 75 H Street, Bldg 1204 Hickam AFB HI 96853-5233

Final

TPH Action Level Derivation Report

Johnston Atoll

EXECUTIVE SUMMARY

January 21, 2004

Executive Summary

This TPH Action Level Derivation Report (Report) documents the development of sitespecific action levels for total petroleum hydrocarbons (TPH) in soil and groundwater at solid waste management units (SWMUs) and areas of concern (AOCs) on Johnston Island where TPH has been identified as a constituent of concern (COC). This Report was prepared for the 15th Airlift Wing (15 AW) through the Air Force Center for Environmental Excellence (AFCEE) under Contract No. F41624-01-D-8545, Task Order No. 0051.

The approach used to develop site specific action levels for TPH was described in *Technical Memorandum No. 0051-01: Sampling and Analysis of Total Petroleum Hydrocarbons in Support of Deriving Action Levels for Johnston Island*. The TPH action levels recommended in this Report were developed using a systematic, risk-based approach on analytical data from soil and groundwater samples collected at Johnston Island between October 31 and November 2, 2003.

The *Hazardous Waste Corrective Action Permit Johnston Atoll Facility, EPA I.D. TT9 570 090 002* (the Permit) does not list an action level for TPH in groundwater. The Permit only addresses constituents associated with TPH (polycyclic aromatic hydrocarbons [PAHs] and benzene, ethylbenzene, toluene and xylenes [BTEX]) and specifies that mobile free product be removed. In addition, the U.S. Environmental Protection Agency (EPA) expressed concern that high levels of dissolved TPH constituents in groundwater other than PAHs and BTEX may pose an unacceptable risk to human and ecological receptors on Johnston Island through discharge to surface water in the lagoon.

As a result, an action level for dissolved TPH in groundwater protective of the surrounding marine environment has been developed in this Report. EPA's suggested value of 0.640 milligram per liter (mg/L) was found to be suitable for use at Johnston Island. This value has a relevant biological basis and appears to provide a sensitive indication of potential risk to the nearby marine ecosystem. Pursuant to EPA guidance, groundwater concentration data should be adjusted using a dilution attenuation factor to estimate groundwater concentrations at the shoreline. This overall approach should still be considered conservative, because it does not account for the dilution once groundwater mixes with seawater at the shoreline.

For soil, the current Permit lists TPH action levels of 2,000 milligrams per kilogram (mg/kg) in surface soil and 5,000 mg/kg in subsurface soil at SWMU No. 16/AOC No. 1. These soil TPH action levels are default values, rather than risk-based, and do not consider site-specific TPH characteristics. Recent soil investigation data indicate that the TPH action levels for surface and subsurface soil are likely overly restrictive for TPH constituents at Johnston Island. The soil data show that, although some relatively large areas of subsurface soil contain elevated TPH concentrations, the more soluble and toxic components of petroleum (that is, PAHs and BTEX) are not present in the soil or groundwater at concentrations greater than their risk-based action levels. Because of this, EPA has recently indicated that BTEX constituents may be dropped as COCs for soil on the island.

This Report recommends replacing the default TPH action levels with site-specific action levels that account for groundwater protection, potential impacts from direct soil contact by wildlife and people, and potential free product mobility. The range of site-specific TPH action levels developed for each potential migration or exposure pathway is as follows:

- Groundwater Protection 30,000 to 40,000 mg/kg
- Direct Soil Contact by Ecological Receptors 73,000 to 161,000 mg/kg
- Direct Soil Contact by Human Receptors 33,000 to 71,000 mg/kg
- Free Product Mobility Limit 13,074 to 22,560 mg/kg

The action levels based on prevention of free product migration are the lowest of the pathways evaluated. As a result of site-specific characteristics (fuel types released, soil characteristics, and fuel weathering), the TPH in soil has both low toxicity and low potential for leaching to underlying groundwater (based on synthetic precipitation leaching procedure results for soil samples collected in areas with high TPH concentrations). Considering all these issues collectively, it is recommended that the free product mobility limit serve as a protective action level for TPH in soil at Johnston Island. The free product mobility limit selected for use as the action level, **17,181 mg/kg**, is based on input parameters representative of measured and observed subsurface conditions on Johnston Island. Given that there is no ongoing release of petroleum at any of the SWMUs or AOCs and historical product recovery efforts have depleted the amount of product to the point where it is unrecoverable, it is unlikely that there is sufficient driving force (head) to cause free product to migrate even at levels above this calculated value.

The Permit does not identify the analytical method to be used to quantify TPH in groundwater or soil at Johnston Island. Historically, EPA Method 8015, which uses gas chromatograph/flame ionization detector (GC/FID) techniques, has been employed. Although this analytical method is an adequate indicator for petroleum contamination, the results are not considered reliable for use in a regulatory decision-making context (for example, comparison to a specific action level). The difficulty of reliable quantitation stems from the fact that TPH is a complex mixture of hundreds of aliphatic and aromatic hydrocarbons of widely varying molecular weights and chemical properties. Because of the number of these compounds, traditional GC/FID methods, such as EPA Method 8015, have relied on aggregate integration of all gas chromatographic peaks within a relatively broad range of retention times, using a single and somewhat coarse analytical method. As a result, the TPH results can be biased by (1) incomplete peak resolution and (2) potential interferences from polar nonhydrocarbon compounds that may be naturally occurring or that, like carboxylic acids, may be the result of degradation and detoxification of the hydrocarbons. Because risk-based action levels are now going to be used in corrective action decisions for TPH in water and soil at Johnston Island, it is important that the data compared to these values reliably represent only petroleum compounds. The NWTPHextractable petroleum hydrocarbon (EPH) and volatile petroleum hydrocarbons (VPH) analyses, which quantify petroleum as specific carbon-chain fractions linked to potential toxicity and mobility, are recommended for future sampling and data evaluation efforts.

The sum of EPH and VPH fractions in a sample would then serve as the overall TPH concentrations used in comparison to action levels.

Final

TPH Action Level Derivation Report Johnston Atoll

Prepared for:	15th Airlift Wing, Hickam Air Force Base, Oahu, Hawaii
Prepared by:	CH2M HILL Constructors Inc., Honolulu, Hawaii

Contract No. F41624-01-D-8545 Task Order No. 0051

January 21, 2004

Contents

Executive SummaryES-1		
Acronyms	and Abbreviationsiii	
1.0 Introd	uction1-1	
1.1	Background and Objectives1-1	
1.2	Report Organization1-3	
2.0 Conce	ptual Site Model2-1	
2.1	Free Product Releases2-1	
	2.1.1 SWMU No. 16/AOC No. 12-1	
	2.1.2 AOC No. 2/No. 32-2	
2.2	Exposure Pathways2-2	
	2.2.1 Sources, Release Mechanisms, and Environmental Transport Media.2-2	
	2.2.2 Potentially Complete Human Exposure Pathways and Receptors2-3	
	2.2.3 Potentially Complete Ecological Exposure Pathways and Receptors .2-3	
3.0 Field	Sampling Program	
4.0 TPH /	Analytical Methods	
5.0 Groun	ndwater Evaluation Results5-1	
5.1	Comparison of TPH Preparation/Analytical Methods for Groundwater5-1	
5.2	Evaluation of TPH Composition in Groundwater5-3	
5.3	Groundwater Action Level5-4	
5.4	Groundwater Evaluation Approach5-4	
6.0 Soil E	valuation Results6-1	
6.1	Comparison of TPH Preparation/Analytical Methods for Soil	
6.2	Evaluation of TPH Composition in Soil	
6.3	Soil Action Level	
	6.3.1 TPH Leaching from Soil to Groundwater	
	6.3.2 Direct Contact by Ecological Receptors	
	6.3.3 Direct Contact by Human Receptors	
	6.3.4 Potential Migration of NAPL to the Surrounding Lagoon	
7.0 Concl	usions and Recommendations7-1	
8.0 Refere	ences	

Figures

- 2-1 Conceptual Site Model for Potential Human Health and Ecological Receptors, Johnston Island POL Areas
- 3-1 TPH Sample Locations at SWMU No. 16/AOC No. 1
- 3-2 TPH Sample Locations at AOC No. 2/No. 3
- 5-1 Chromatograms for NWTPH-Dx (With and Without Silica Gel Cleanup) and NWTPH-EPH Analyses, T49-MW07 and SWM-MW22
- 5-2 Percent Contribution by Petroleum Hydrocarbon Fraction, SWMU No. 16/AOC No. 1 Groundwater
- 5-3 Percent Contribution by Petroleum Hydrocarbon Fraction, AOC No. 2/No. 3 Groundwater
- 6-1 Percent Contribution by Petroleum Hydrocarbon Fraction, SWMU No. 16/AOC No. 1 Soil
- 6-2 Percent Contribution by Petroleum Hydrocarbon Fraction, AOC No. 2/No. 3 Soil
- 7-1 Decision Process for Groundwater TPH
- 7-2 Decision Process for Soil TPH

Tables

- 3-1 Summary of Groundwater Sampling and Analysis Program
- 3-2 Summary of Soil Sampling and Analysis Program
- 3-3 Groundwater Sampling Field Parameters
- 5-1 Groundwater TPH Analytical Results
- 5-2 Evaluation of Groundwater TPH Analytical Results
- 6-1 Soil TPH Analytical Results
- 6-2 Synthetic Precipitation Leaching Procedure TPH Results
- 6-3 Summary of Avian Toxicity Data for Potential Surrogate Compounds and Mixtures
- 6-4 Surrogate Avian Toxicity Data for TPH Fractions
- 6-5 Risk-Based Concentrations for the Brown Booby (*Sula leucogaster*)
- 6-6 Sample-Specific Ecological Risk-Based Concentrations for TPH in Soil
- 6-7 Estimated Human Health Risk-Based Concentrations for TPH in Soil

Appendices

- A Test Pit Logs
- B Sampling Records
- C Analytical Results

Acronyms and Abbreviations

15 AW	15th Airlift Wing
AFCEE	U.S. Air Force Center for Environmental Excellence
AOC	Area of Concern
API	American Petroleum Institute
AVGAS	aviation gasoline
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
°C	degree Celsius
CAS	Chemical Abstracts Service
cm ²	square centimeter
COC	constituent of concern
CRWQCB CSM	California Regional Water Quality Control Board conceptual site model
d	Day
DAF	dilution attenuation factor
DO	dissolved oxygen
EC	elemental carbon
Ecology	Washington Department of Ecology
EFA	Engineering Field Activity
EPA	U.S. Environmental Protection Agency
ERBC	environmental risk-based concentration
FD	field duplicate
ft	foot
g/m³	gram per cubic meter
gpm	gallon per minute
IC25	growth inhibition in 25 percent of the tested organisms
kg	kilogram
kg/d	kilogram per day
LD50	dose having 50 percent probability of causing death
LNAPL	light nonaqueous-phase liquid
LOAEL	lowest observed adverse effect level
m ³	cubic meter

MADEP	Massachusetts Department of Environmental Protection
mg/kg	milligram per kilogram
mg/kg-d	milligram per kilogram per day
mg/kg bw-d	milligram per kilogram body weight per day
μg/L	microgram per liter
mg/L	milligram per liter
mĹ	milliliter
MOGAS	motor gasoline
MS	matrix spike
mS/cm	milliSiemen per centimeter
MSD	matrix spike duplicate
MV	millivolt
Ν	normal sample
NAPL	nonaqueous-phase liquid
NOAEL	no observed adverse effect level
NTU	nephelometric turbidity unit
ODEQ	Oregon Department of Environmental Quality
OHM	OHM Remediation Services Corporation
ORP	oxidation-reduction potential
%	percent
PAH	polycyclic aromatic hydrocarbon
QA/QC	quality assurance/quality control
DDC	
RBC	risk-based concentration
RCKA	Resource Conservation and Recovery Act
KFI DOM	RCRA Facility Investigation Report
KSN	Raytheon Services Nevada
SCOU	-11
	silica gel cleanup
SPLP	synthetic precipitation leaching procedure
SVVIVIU	Solid Waste Management Unit
TR	trin blank
три	tip blank
	tovicity reference value
1 IX V	ioxicity reference value
USFWS	U.S. Fish and Wildlife Service
001110	
wk	week

1.0 Introduction

This TPH Action Level Derivation Report (Report) documents the development of sitespecific action levels for total petroleum hydrocarbons (TPH) in soil and groundwater at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) on Johnston Island where TPH has been identified as a constituent of concern (COC). This Report was prepared for the 15th Airlift Wing (15 AW) through the Air Force Center for Environmental Excellence (AFCEE) under Contract No. F41624-01-D-8545, Task Order No. 0051.

The units where TPH has been identified as a COC are listed in Module III of the *Hazardous Waste Corrective Action Permit Johnston Atoll Facility, EPA I.D. TT9 570 090 002* (the Permit) (U.S. Environmental Protection Agency [U.S. EPA], April 2003 [Effective May 30, 2002]). These units are as follows:

- SWMU No. 16/AOC No. 1-Power Plant Spill Site / Motor Gasoline [MOGAS] Area
- AOC No. 2/No. 3-Swimming Pool/Taxiway Area
- SWMU No. 15 Above-Ground JP-5 Storage Tanks

The TPH action levels proposed in this report are specifically linked to TPH composition information unique to soil and groundwater at Johnston Island and are intended only to support regulatory decision-making about future corrective action at Johnston Island. The action levels are not meant for use at other locations or for other purposes.

The approach used to develop site-specific action levels for TPH at Johnston Island was presented in *Technical Memorandum No. 0051-01: Sampling and Analysis of Total Petroleum Hydrocarbons in Support of Deriving Action Levels for Johnston Island* (CH2M HILL, October 2003). The TPH action levels presented in this report were developed using analytical data from soil and groundwater samples collected at SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 between October 31 and November 2, 2003.

1.1 Background and Objectives

Petroleum products were stored and used at the three units listed above. Petroleum releases have been identified at SWMU No. 16/AOC No. 1 and at AOC No. 2/No. 3. Consequently, TPH and possibly mobile free petroleum product are of concern in soil and groundwater at these units. Conditions at SWMU No. 15 have not been fully assessed because the unit is active.

The Permit does not list an action level for TPH in groundwater. Instead, the permit addresses constituents associated with TPH (that is, polycyclic aromatic hydrocarbons [PAHs] and benzene, toluene, ethylbenzene, and xylenes [BTEX]) and specifies that mobile free product be removed. However, there is concern that high levels of dissolved TPH constituents in groundwater (other than PAHs and BTEX) may pose an unacceptable risk to ecological receptors on Johnston Island through discharge to surface water in the lagoon. As a result, EPA Region 9 has requested development of a risk-based action level for dissolved TPH in groundwater that is protective of the surrounding marine environment. In addition, because of the age and weathered nature of the petroleum at the units, EPA suggested that TPH concentrations in groundwater may be used to indicate whether elevated levels of TPH in subsurface soil are available to leach to groundwater and mobilize to the surrounding environment. To confirm this assumption, EPA suggested that soil leaching tests be conducted (that is, the synthetic precipitation leaching procedure [SPLP]), and the results compared with what is directly observed in groundwater.

The Permit does not identify the analytical method to be used to quantify TPH in groundwater or soil at Johnston Island. Historically, EPA Method 8015, which uses gas chromatograph/flame ionization detector (GC/FID) techniques, has been employed. According to Zemo and Foote (2003) and the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG, 1998), this analytical method can provide an adequate indication of the general nature and extent of petroleum contamination, but the results are not considered reliable enough for use in a regulatory decision-making context (for example, comparison to a specific action level). The difficulty of reliable quantitation stems from the fact that TPH is a complex mixture of hundreds of aliphatic and aromatic hydrocarbons of widely varying molecular weights and chemical properties. Because of the number of these compounds, traditional GC/FID methods, such as EPA Method 8015, have relied on aggregate integration of all gas chromatographic peaks within a relatively broad range of retention times, using a single and somewhat coarse analytical method. As a result, the TPH results can be biased by (1) incomplete peak resolution and (2) potential interferences from polar nonhydrocarbon compounds that may be naturally occurring or that, like carboxylic acids, may be the result of degradation and detoxification of the hydrocarbons. Because risk-based action levels are now going to be used in corrective action decisions for TPH in water and soil at Johnston Island, it is important that the data compared to these values reliably represent only petroleum compounds.

For soil, the Permit lists TPH action levels of 2,000 milligrams per kilogram (mg/kg) in surface soil and 5,000 mg/kg in subsurface soil at SWMU No. 16/AOC No. 1. These soil TPH action levels are default values, rather than risk based, and do not consider site-specific TPH characteristics. Recent soil investigation data for SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 indicate that the default TPH values for surface and subsurface soil are likely overly restrictive for TPH constituents at Johnston Island. The soil data show that, although some relatively large areas of subsurface soil contain elevated TPH concentrations, the more soluble and toxic components of petroleum (that is, PAHs and BTEX) are not present in the soil or groundwater at concentrations greater than their risk-based action levels (because of this, the EPA has recently indicated that BTEX constituents may be dropped as COCs for soil on the island). EPA agreed to consider replacing these default TPH values with site-specific action levels that account for potential impacts from direct contact by wildlife and people and that also consider free product mobility.

The objective of this report is to address and resolve issues that are crucial to making riskbased decisions about the need for and adequacy of remediation at Johnston Island SWMUs and AOCs where TPH is a COC. These crucial issues are as follows:

- Development of risk-based action levels and evaluation methods that take into account potential human and ecological exposure pathways on the island
- Identification of appropriate and unbiased analytical methods for quantifying TPH in groundwater and soil

1.2 Report Organization

This report is organized as follows:

- **Section 1, Introduction** Presents the report background and objectives and describes the report organization.
- Section 2, Conceptual Site Model Presents a generalized conceptual site model (CSM) that describes the potential human and ecological exposure pathways that were considered in the development of TPH action levels.
- Section 3, Field Sampling Program Summarizes the field sampling activities for the collection of the soil and groundwater data used to develop action levels.
- Section 4, TPH Analytical Methods Provides information about the sample preparation and analytical methods used to determine TPH concentrations in soil and groundwater.
- Section 5, Groundwater Evaluation Results Presents the groundwater analytical data, identifies the risk-based action level, and describes the approach for evaluating TPH in groundwater at Johnston Island.
- Section 6, Soil Evaluation Results Presents the soil analytical data, identifies riskbased action levels for relevant exposure pathways, and describes the approach for analyzing and evaluating TPH in soil at Johnston Island.
- Section 7, Recommended TPH Action Levels and Evaluation Approaches Presents the recommended action levels for TPH in soil and groundwater and the approaches for analysis and evaluation of TPH results at Johnston Island.
- Section 8, References Lists references cited in the report text and tables.
- **Tables** Presents the tables cited in Sections 1.0 through 7.0.
- **Figures** Presents the figures cited in Sections 1.0 through 7.0.
- **Appendices A and B**—Provide the test pit logs and sample records for soil and groundwater samples collected in support of TPH action level development.
- **Appendix C** Contains the analytical results, including chromatograms, for soil and groundwater samples collected in support of TPH action level development.

2.0 Conceptual Site Model

Developing protective TPH action levels requires understanding of free product releases and the potential pathways of migration and exposure that exist for free product and TPH in groundwater and soil at Johnston Island. This section provides a generalized conceptual site model (CSM) for potential human and ecological exposure pathways. A schematic representation of the CSM is presented in Figure 2-1. The CSM provides a current understanding of the sources of contamination, physical setting, future island use, and groundwater and surface water beneficial uses and identifies potentially complete human and ecological exposure pathways for these sites.

2.1 Free Product Releases

Regulatory decision-making for petroleum-contaminated sites involves not only the petroleum hydrocarbons sorbed to soil or dissolved in groundwater, but also free product, or light nonaqueous-phase liquid (LNAPL), that has accumulated in the soil on top of the water table. Given a large enough release and under the right conditions, LNAPL could spread out laterally and begin to dissolve in the groundwater, creating a dissolved plume or discharge to surface water as free product. LNAPL is of concern, both as a separate phase that could affect surface water if discharged at the lagoon, and as potential continuing source of petroleum hydrocarbon compounds that could be leached to groundwater. The following subsections describe the current understanding of releases of petroleum at SWMU No. 16/AOC No. 1 and at AOC No. 2/No. 3.

2.1.1 SWMU No. 16/AOC No. 1

According to the Resource Conservation and Recovery Act (RCRA) Facility Investigation Report (the RFI) (Raytheon Services Nevada [RSN], September 1994), between 20,000 and 100,000 gallons of hydrocarbon product, primarily diesel fuel, are estimated to have been lost to the subsurface in the Tank 49 area at SWMU No. 16. Product recovery systems, including wells, trenches, and a bioslurper system, were installed in the area to remove the product. According to the Draft Comprehensive Corrective Measures Study (OHM Remediation Services Corporation [OHM], January 2000), these systems recovered approximately 15,000 gallons of product through January 2000. Product removal slowed and eventually stopped as the amount of product in the area was depleted, even though measurable product remained in several wells at the site. Such behavior is typical of product recovery operations where there is no ongoing release; the near-zero recovery rates typically reflect depletion of free product saturation to the point at which the remaining free product is largely present as a discontinuous immobile residual with no driving force to cause it to migrate (American Petroleum Institute [API], 2003). Product was skimmed from open excavations during 2002 and 2003 soil remediation efforts, with approximately 1,678 gallons recovered during these operations. Product did not return to the excavations following skimming, providing further evidence that the driving force (head) behind the

free product is insufficient to overcome capillary pressure and allow migration. Although sheens have been observed in groundwater purged from monitoring wells on occasion, measurable free product has not been observed in wells at SWMU No. 16/AOC No. 1 since 2000.

2.1.2 AOC No. 2/No. 3

According to the RFI (RSN, September 1994), no documented spills occurred at the unit; however, evidence of releases has been observed in the soil at the site. Petroleum sheens have been observed in monitoring wells on occasion, but no evidence of a mobile or recoverable free product layer has been observed at AOC No. 2/No. 3.

2.2 Exposure Pathways

An exposure pathway can be described as the physical course that a chemical of potential concern (in this case, TPH) takes from the point of release to a receptor. For an exposure pathway to be complete, all of the following components must be present:

- Source
- Mechanism of chemical release and transport
- Environmental transport medium
- Exposure point
- Exposure route
- Receptor or exposed population

In the absence of any one of these components, an exposure pathway is considered incomplete and, by definition, there is no risk or hazard.

2.2.1 Sources, Release Mechanisms, and Environmental Transport Media

Sources of petroleum at SWMU No. 16/AOC No. 1 include releases of diesel fuel, JP-5, and possibly motor gasoline (MOGAS) from leaking above-ground storage tanks and piping. Sources of petroleum at AOC No. 2/No. 3 include possible releases of aviation gasoline (AVGAS) and diesel fuel from leaking tanks and pipelines.

The following are the suspected release mechanisms for transporting the TPH from the source, via environmental media, to potential receptors:

- Infiltration, percolation, and leaching of contaminants from each release area to shallow groundwater, with subsequent discharge to surface water (that is, Pacific Ocean lagoon areas)
- Migration of LNAPL, if present above the residual saturation levels indicative of free product mobility

• Direct contact with soil containing TPH (receptor contact with onsite surface or subsurface soil)

2.2.2 Potentially Complete Human Exposure Pathways and Receptors

Based on a current understanding of future land and water uses at Johnston Island, potentially complete human health exposure pathways considered most plausible are as follows:

- Incidental ingestion of and dermal contact with onsite surface soil¹ by future workers (for example, the Refuge Manager) that live on island year round
- Incidental ingestion of and dermal contact with onsite surface soil¹ by future site visitors, on an intermittent basis

It is not anticipated that small children (such as included in a standard default residential exposure scenario) will live on island in the future. Rather, any residents would be limited to adults (Refuge Manager and other U.S. Fish and Wildlife Service [USFWS] staff).

2.2.3 Potentially Complete Ecological Exposure Pathways and Receptors

Based on a current understanding of present and future terrestrial and marine ecosystems at Johnston Island, the potentially complete ecological exposure pathways considered most plausible for the site are the following:

- Direct exposure of aquatic resources (for example, fish and invertebrates) to TPH present in groundwater that could move and discharge to the nearby lagoons
- Incidental ingestion of and dermal contact with onsite surface soil¹ by piscivorous birds using upland areas

¹ Although surface soil exposure was assumed, analytical data from subsurface samples were also evaluated under this exposure scenario to ensure conservatism. Note that the highest concentrations of TPH occur predominantly in subsurface soil at the capillary fringe (typically 4 to 7 feet below ground surface [bgs]). Most surface soil is unaffected by TPH.

3.0 Field Sampling Program

The soil and groundwater sampling program proposed in *Technical Memorandum No.* 0051-01: Sampling and Analysis of Total Petroleum Hydrocarbons in Support of Deriving Action Levels for Johnston Island (CH2MHILL, October 2003) was conducted by CH2M HILL personnel October 31 through November 2, 2003. All samples were collected as planned (monitoring well T49-MW05 was found to be usable for sampling; therefore, no surface water sample was collected from the excavation at SWMU No. 16). Sample locations at SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 are shown in Figures 3-1 and 3-2, respectively.

Sample identification numbers, sample dates, and requested preparation and analytical methods for each groundwater and soil sample are listed in Tables 3-1 (groundwater samples) and 3-2 (soil samples). Field parameters monitored during groundwater sampling are listed in Table 3-3. Test pit logs and sample records are provided in Appendices A and B.

4.0 TPH Analytical Methods

The analytical measurement of TPH has evolved considerably in recent years. The difficulty of reliable quantitation stems from the fact that TPH is a complex mixture of hundreds of aliphatic and aromatic hydrocarbons of widely varying molecular weights and chemical properties. Because of the number of these compounds, traditional GC/FID methods such as EPA Method 8015 have relied on aggregate integration of all gas chromatographic peaks within a relatively broad range of retention times, using a single and somewhat coarse analytical method. As noted in *Guidance for Petroleum Hydrocarbon Analysis* (California Environmental Protection Agency, October 1999), any organic compound will cause an FID response and will be included in the petroleum hydrocarbon result derived from the total chromatographic peak area if it elutes in the GC retention time window (carbon range) defined by the method. Polar biogenic compounds such as carboxylic acids can be significant interferences in hydrocarbon chromatography and may be present due to biodegradation of the petroleum contamination (California State Water Control Board, April 2002).

As a result, these traditional GC/FID methods can be biased by (1) incomplete peak resolution and (2) potential interferences from polar nonhydrocarbon compounds that may be naturally occurring or that may be the result of degradation and detoxification of the hydrocarbons (Zemo and Foote, 2003). Use of such TPH data can be misleading in decisions about the need for, or adequacy of, remediation. More recent methods have attempted to address these biasing influences by using sample cleanup protocols (for example, silica gel) and better chromatographic protocols to segregate hydrocarbon fractions of interest (for example, solvent exchange methods). An added benefit of these newer approaches is that the relative abundance of carbon fractions can be quantified. Because aged petroleum contains fewer of the higher toxicity components (that is, shorter chain aliphatics and aromatics), these fractionation methods can provide more realistic and informed risk assessments to support more reliable cleanup decisions.

To evaluate applicable action levels for TPH in groundwater and soil samples at Johnston Island, the following three TPH preparation and analytical methods were used:

- 1. The traditional TPH methods for diesel and gasoline-range organics (Methods NWTPH-Dx and NWTPH-Gx) using GC/FID.
- 2. These same TPH methods, except using a silica gel cleanup protocol to remove polar nonpetroleum interferences prior to GC/FID analysis (used only for NWTPH-Dx analysis), as recommended by Zemo and Foote (2003).
- 3. TPH using a carbon-chain fractionation approach for volatile and extractable petroleum hydrocarbons (Methods NWTPH-VPH and NWTPH-EPH). The NWTPH-EPH method requires use of silica gel treatment prior to GC/FID analysis in order to separate and quantify the different carbon chain fractions.

The first of these methods was included to provide comparability with historic EPA Method 8015 TPH measurements during past Johnston Island site investigations. The second method was employed to provide a more accurate quantification of actual petroleum constituents by removing the confounding influence of polar nonhydrocarbon interferences. Recent studies by Zemo and Foote (2003) indicate that nontarget polar compounds are included in traditional measurements of TPH, due to the nonspecificity of the protocol and lack of cleanup procedures to remove these compounds. These interfering nontarget compounds include natural organic compounds and petroleum biodegradation products. Zemo and Foote showed that TPH analysis following the silica gel cleanup step provided a more technically appropriate representation of actual aliphatic and aromatic hydrocarbons in a sample.

The third type of analytical method employed (the fractionation methods VPH and EPH) was included to provide the most realistic quantification of specific carbon fractions, allowing specific application of surrogate toxicity factors for human and ecological risk assessment. Several state agencies, such as the Oregon Department of Environmental Quality (ODEQ) (September 2003), Washington Department of Ecology (Ecology) (June 1997), and Massachusetts Department of Environmental Protection (MADEP) (October 2002) use results from these fractionation methods in regulating petroleum releases. In general, these agencies consider the total sum of hydrocarbon fractions using these newer methods to serve in the same way as the historic TPH has.

5.0 Groundwater Evaluation Results

Groundwater samples from four wells were collected at SWMU No. 16/AOC No. 1 (plus one duplicate), and four wells at AOC No. 2/No. 3. Sample locations are shown in Figures 3-1 and 3-2. The samples were analyzed using the preparation and analytical methods listed in Table 3-1. Groundwater analytical results reported by the laboratory were reviewed and validated according to AFCEE protocols. The results for groundwater samples are listed in Table 5-1. Copies of the laboratory reports are provided in Appendix C.

The analytical data for groundwater were compiled and evaluated in several different ways in order to better understand the results. These evaluations provided information about the key issues related to TPH in groundwater, including the effects of different preparation/analytical methods on sample results (Section 5.1), TPH compositions at each unit (Section 5.2), action level development (Section 5.3), and the approach for evaluating groundwater data using the action level (Section 5.4).

5.1 Comparison of TPH Preparation/Analytical Methods for Groundwater

As expected, the different preparation and analytical methods yielded a variety of TPH results. The following summarizes the findings of the evaluation of methods:

- NWTPH-Dx results for diesel-range organics without silica gel cleanup were typically higher than NWTPH-Dx results for diesel-range organics with silica gel cleanup. The "background sample" collected at T49-MW05 also exhibited a reduced concentration with silica gel cleanup preparation. In one case, T49-MW06, the silica gel cleanup result for diesel-range organics (1.49 mg/L) was slightly higher than the result without silica gel cleanup (1.36 mg/L), but these two results are within normal analytical variance and therefore indistinguishable.
- NWTPH-Dx lube oil range organics were detected in all samples without silica gel cleanup preparation, but were not detected in most of the samples prepared with silica gel cleanup. In cases where lube oil was detected in samples with silica gel cleanup preparation, the values were less than the values without silica gel cleanup preparation.
- Filtering with a 0.45-micron glass filter prior to NWTPH-Dx analysis, both with and without silica gel cleanup, was conducted on samples from four monitoring wells. Although filtering tended to reduce the concentration of diesel-range organics in most samples (both with and without silica gel cleanup), the results were variable and inconclusive and are not considered further in the evaluation of groundwater TPH reported in this document.

- Total NWTPH-EPH results (calculated as the total of the detected carbon fractions in the diesel and lube oil range; see Table 5-1) for most samples were very similar to the results reported for NWTPH-Dx with silica gel cleanup. Exceptions include the sample collected at T49-MW15 (and its duplicate) and the sample collected at T49-MW06; in both cases the NWTPH-Dx with silica gel cleanup results were more than two times the total EPH values. The differences seen in these three samples can be explained by the greater efficiency of the EPH method in removing the influence from nonpetroleum interferences.²
- Total NWTPH-VPH results (calculated as the total of the detected carbon fractions in the gasoline range; see Table 5-1) varied in comparison to the NWTPH-Gx results. Gasoline-range organics were detected using the NWTPH-VPH method in all nine samples, whereas they were detected in only four of the nine samples using the NWTPH-Gx method. In some cases the VPH results were higher than the detected results for NWTPH-Gx; in other cases the values were lower, but the results were generally in the same range.
- TPH concentrations calculated as the sum of EPH and VPH (see Table 5-1) were all less than or similar to corresponding TPH concentrations calculated as the sum of NWTPH-Gx and NWTPH-Dx .

The groundwater TPH results are consistent with the findings of Zemo and Foote (2003) and indicate that some biasing interferences exist when measuring TPH in groundwater using the traditional method (without silica gel cleanup). Chromatograms for the NWTPH-Dx analyses both without and with silica gel cleanup and NWTPH-EPH analyses for groundwater samples collected at two of the wells (T49-MW07 and SWM-MW22) are presented in Figure 5-1. In both samples, the "TPH-Dx Without Silica Gel Cleanup" chromatograms include large, unresolved, complex-mixture humps. According to Zemo and Foote (2003), such humps typically indicate interference by polar nonhydrocarbons resulting from natural organics or biodegradation products. The humps are significantly reduced on the "NWTPH-Dx With Silica Gel Cleanup" chromatograms and are absent on the "NWTPH-EPH" chromatograms. The removal of the unresolved complex mixture hump through silica gel cleanup is not a phenomenon that is limited to samples collected at T49-MW07 and SWM-MW22; similar changes were observed in chromatograms for all groundwater samples collected as part of this study (see Appendix C). The humps are largest in samples collected from wells where high concentrations of TPH, but low levels of BTEX and PAHs, have been reported in the soil, indicating that significant weathering and biodegradation of the petroleum has occurred.

Diesel spike recovery results for groundwater samples analyzed under the NWTPH-Dx protocols (both without and with silica gel cleanup) were obtained from the laboratory in order to confirm that the silica gel cleanup procedure was not inadvertently removing petroleum hydrocarbon compounds that should be included in the TPH concentration for a sample. The premise behind this comparison is that, if silica gel removes target petroleum

² The silica gel cleanup step during the EPH procedure incorporates about 30 grams of silica gel, whereas the NWTPH-Dx method used less than 1 gram. The three samples noted contained the highest concentrations of "diesel and lube oil range" as measured by NWTPH-Dx, suggesting "breakthrough" of polar nonhydrocarbon compounds through the more limited amount of silica gel used for cleanup during analysis.

compounds, then the recovery of a petroleum spike will be lower when using silica gel than when not. Diesel spike recovery data for the laboratory over the last 6 months show that the mean percent recovery for 104 samples treated with silica gel (79.1 percent) was statistically indistinguishable from the mean percent recovery for 73 samples that were not treated with silica gel (80.2 percent). These results are consistent with the spike recovery results from the current investigation, where the recovery without silica gel averaged 77.0 percent and the recovery with silica gel averaged 79.5 percent. This means that the silica gel cleanup step does not remove petroleum hydrocarbons that should be measured during NWTPH-Dx analysis.

TPH concentrations for samples subjected to silica gel cleanup are most suitable for determining the amount of dissolved TPH in groundwater at a site. Because of the improved resolution of chromatographic peaks and the greater treatment capacity of silica gel cleanup in the fractionation method (using 30 grams silica gel versus 1 gram used for the NWTPH-Dx analysis), the results of TPH calculated as the sum of EPH and VPH likely provide the most reliable representation of TPH and should be used in comparison to action levels. Such an approach to calculating the overall TPH concentration for a sample is supported by ODEQ, Ecology, and MADEP. In general, these agencies consider the total sum of hydrocarbon fractions using fractionation methods to serve in the same way for regulating as the historic TPH has.

5.2 Evaluation of TPH Composition in Groundwater

Because the history of petroleum uses and releases are reported to be somewhat different between SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3, the TPH fractionation results were initially evaluated to define the relative composition of specific aliphatic and aromatic fractions for each of these areas. The purpose was to determine the relative uniformity of composition at a given release area. The relative composition of the groundwater TPH is influenced by the types of fuels released and the degree of weathering since release.

For each well, the analytical result for each aliphatic and aromatic fraction was plotted as the percent contribution of each fraction to the TPH (calculated as the sum of VPH and EPH). The results for groundwater samples from SWMU No. 16/AOC No. 1 (wells T49-MW05, -MW06, -MW07, and -MW15) are shown in Figure 5-2. The pattern of TPH composition was slightly variable between wells in the SWMU No. 16/AOC No. 1 area. For wells T49-MW06 and T49-MW15, the aromatic hydrocarbons comprised more than half of the TPH (ranging from 66 to 78 percent of the total), whereas for T49-MW05 and T49-MW07 the aromatic hydrocarbons comprised less than half of the TPH (ranging from 45 to 47 percent of the total). The C12-C13 aromatic fraction notably constituted the primary fraction in all wells in this area. There was a general absence of the more toxic C5-C6, C6-C8, and C8-C10 aliphatics in these wells.

The results for well samples at AOC No. 2/No. 3 are shown in Figure 5-3. The pattern of TPH composition in this area was different from that seen at SWMU No. 16/AOC No. 1, with the exception of FW-MW03D (which is located upgradient from the former tank farm at the Swimming Pool), where the pattern was very comparable (low-range aliphatics

absent, dominant contribution for C12-C13 aromatic fraction). The remaining wells (SWM-MW20, -MW21, and -MW22) all showed a greater contribution from the C5-C6 and C6-C8 aliphatic fractions than what was seen at SWMU No. 16/AOC No. 1.

The groundwater TPH fraction patterns seen indicate that the types of releases at SWMU No. 16/AOC No. 1 were somewhat different from those at AOC No. 2/No. 3 (except at FW-MW03D) and/or have undergone a different degree of degradation. The general absence of the more toxic shorter chain aliphatic hydrocarbons at the SWMU No. 16/AOC No. 1 area is fortunate, considering the proximity of this area to the lagoon shoreline.

5.3 Groundwater Action Level

During a September 17, 2003, teleconference between EPA and the Air Force, EPA suggested that a TPH concentration value of 640 micrograms per liter (μ g/L) (0.640 mg/L) could serve as a suitable action level for groundwater TPH. This value was derived as a Final Groundwater Screening Level by the California Regional Water Quality Control Board (CRWQCB), San Francisco Bay Region, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Final, July 2003. The basis of this value is marine bioassay testing conducted during investigation of the San Francisco International Airport under Regional Water Quality Board Order No. 99-045. These testing results were reviewed to determine their applicability for Johnston Island.

The toxicity testing supporting the value included a chronic 7-day exposure of the marine shrimp *Mysidopsis bahia* to six concentrations of fresh Jet Fuel A. The toxic endpoints evaluated included survival and growth over the duration of exposure. A concentration of 640 μ g/L was identified as the IC25 (growth inhibition in 25 percent of the tested organisms). Based on the bioassay endpoints and the type of fuel tested, it is believed that the derived value of 640 μ g/L provides a suitable action level for Johnston Island, based on the following considerations:

- The test organism (*Mysidopsis bahia*) is an invertebrate, representing a potentially sensitive indicator of invertebrates existing in the offshore lagoon areas at Johnston Island.
- The toxicity test used chronic conditions of exposure.
- The toxic endpoint included a sensitive sublethal effect (growth).
- The test organisms were exposed to fresh Jet Fuel A, rather than the weathered (and likely less toxic) petroleum that exists at Johnston Island.

5.4 Groundwater Evaluation Approach

Because the samples collected at the monitoring wells are groundwater and the action level is intended to be protective of surface water, evaluation of groundwater data must consider the potential effects of dilution and attenuation on the TPH concentration in groundwater as it migrates to surface water. The groundwater evaluation approach developed for Johnston Island includes use of dilution attenuation factors (DAFs) that are based on the distance between the sampled well and the nearest shoreline to approximate changes in TPH concentration as the plume travels to the shoreline. For well points that are less than 100 feet to the island shoreline, a DAF of 1 was conservatively assumed (that is, no attenuation). For those greater than 100 feet away, a DAF equal to one percent of the distance to the shoreline was assumed (for example, if a well was 300 feet from the shoreline, groundwater TPH concentrations at the sediment interface were assumed to be one-third the level measured at the well, giving a DAF of 3). This method for estimating a DAF was identified in CRWQCB San Francisco Bay Region Order No. 99-045 and recommended by EPA in an October 17, 2003, e-mail to the Air Force.

As an example of how DAF would be employed at Johnston Island, the overall TPH results for each groundwater sample collected as part of the TPH study are compared to the surface water-based action level in Table 5-2.

- Dissolved TPH values determined using the traditional TPH method (without silica gel cleanup prior to analysis) exceeded the action level in three samples (T49-MW15, its duplicate, and T49-MW07) when DAF is accounted for.
- Dissolved TPH values that were determined using the traditional TPH method including silica gel cleanup preparation prior to NWTPH-Dx analysis exceeded the action level in only one of the nine samples (the duplicate collected at T49-MW15, but not the original sample) when DAF is accounted for.
- All total dissolved TPH values that were determined using the sum of EPH and VPH results reported from fractionation analysis were lower than the action level.

As previously noted, the results of TPH calculated as the sum of EPH and VPH (that is, TPH C as listed in Table 5-2) likely provide the most reliable representation of dissolved TPH in groundwater. This is due to the improved resolution of chromatographic peaks and the more efficient silica gel cleanup used during the EPH analysis. Under the assumptions made for this evaluation (for example, action level used, DAFs used), these results show that the reported TPH concentrations in groundwater at SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 are not likely to have adverse effects on the nearby marine ecosystem.

Future groundwater monitoring for TPH at Johnston Island should use NWTPH-EPH and NWTPH-VPH for analysis of TPH and incorporate the appropriate DAF when comparing the overall TPH concentration to the recommended action level.

6.0 Soil Evaluation Results

Soil samples from four locations were collected at SWMU No. 16/AOC No. 1 (plus one duplicate), and four locations at AOC No. 2/No. 3. The SPLP extraction was conducted on two of the soil samples from SWMU No. 16/AOC No. 1 at locations near the lagoon. Sample locations are shown in Figures 3-1 and 3-2. All samples were collected at depths corresponding to the capillary fringe, the interval where most of the elevated concentrations of TPH are reported. Table 3-2 lists sample depths, preparation, and analytical methods. Soil analytical results reported by the laboratory were reviewed and validated according to AFCEE protocols. The results for soil samples are listed in Table 6-1. The results for SPLP leachate samples are listed in Table 6-2. Copies of the laboratory reports are provided in Appendix C.

The analytical data for soil were compiled and assessed using several evaluation methods. These evaluations provided information about the key issues related to TPH in soil, including the effects of different preparation/analytical methods on sample results (Section 6.1), TPH compositions at each unit (Section 6.2), action level development (Section 6.3), and the approach for evaluating soil data using the action level (Section 6.4).

6.1 Comparison of TPH Preparation/Analytical Methods for Soil

As shown by the results summarized in Table 6-1, TPH concentrations in soil were similar when measured by any of the three analytical methods used. This consistency contrasts with the results seen for groundwater, likely due to the apparent absence of significant interferences from polar nonhydrocarbon compounds in soil. Because of the weathered condition of TPH releases at Johnston Island, any polar compounds have likely already leached to groundwater; the effect of polar nonhydrocarbons on groundwater results was described in Section 5.0.

6.2 Evaluation of TPH Composition in Soil

The history of petroleum uses and releases is reported to be somewhat different between SWMU No. 16/AOC No. 1 (mostly diesel) and AOC No. 2/No. 3 (diesel and AVGAS). The TPH fractionation results were initially evaluated to define the relative composition of specific aliphatic and aromatic fractions for each of these areas. The purpose was to determine the relative uniformity of composition at a given release area, and to compare the composition between the two areas. The relative composition of the soil TPH is determined by the types of fuels released and the degree of weathering since the fuel was released to the environment.

The analytical result for each aliphatic and aromatic fraction was plotted as the percent contribution of each fraction to the TPH (calculated as the sum of VPH and EPH). The results for soil samples from SWMU No. 16/AOC No. 1 (samples T49-TP101, -TP102, -TP102 (duplicate), -TP103, and -TP104) are shown in Figure 6-1. The pattern of TPH composition is relatively consistent across the SWMU No. 16/AOC No. 1 area. As expected, the results indicate that the TPH is predominantly composed of the less mobile and less toxic longer chain fractions (C12-C16, C16-C21, and C21-C34). The aliphatics comprised 77 to 84 percent of the TPH. The patterns seen indicate that the releases at this location were heavy-range fuels and/or have undergone significant weathering. There is an absence of the more mobile and toxic short-chain fractions.

The results for soil samples at AOC No. 2/No. 3 are shown in Figure 6-2. Because two of the samples had very low concentrations of TPH (samples SWM-TP103 and -TP105), only samples with TPH concentrations exceeding 100 mg/kg (samples SWM-TP101, -TP102, and -TP104) were plotted. As seen at SWMU No. 16/AOC No. 1, the pattern of TPH composition is predominantly composed of the longer chain fractions. A notable difference is the contribution of the aromatic C12-C13 fraction in samples SWM-TP101 and -TP102 (the two highest TPH samples). In these two samples, the aliphatics comprised about 65 percent of the TPH, slightly lower than seen at SWMU No. 16/AOC No. 1.

6.3 Soil Action Level

The most plausible migration and exposure pathways for TPH in soil, as identified in the CSM (Section 2), were evaluated to identify protective action levels for soil TPH at Johnston Island. These exposure pathways are as follows:

- Potential TPH leaching from soil to underlying groundwater
- Potential direct contact by ecological receptors (seabirds) using Johnston Island in the future
- Potential direct contact by human receptors (refuge workers) living on Johnston Island in the future
- Potential migration of NAPL to the surrounding lagoon

These pathways are evaluated in the following subsections. An action level was derived for each of these pathways, and the lowest (most protective) action level was recommended as the action level for soil TPH at these sites.

6.3.1 TPH Leaching from Soil to Groundwater

The potential for leaching of TPH from soil to groundwater was empirically determined by extracting soil using the SPLP test and analyzing the extract using the same procedures as used for groundwater samples. This extraction procedure is specifically intended to evaluate the potential for leaching, under natural conditions, from infiltration of precipitation into the underlying shallow groundwater. The use of this procedure for petroleum, however, could overestimate the soluble portion of soil TPH as a result of

possible physical suspension of oil during the 18-hour tumbling of the soil sample with extraction fluid during the procedure. The results should therefore be considered for screening purposes.

The SPLP extraction was conducted on two soil samples from the SWMU No. 16/AOC No. 1 area (samples T49-TP101 and -TP104) because of the proximity of this area to the nearby shoreline. Because one of these samples (T49-TP104) was determined to contain the maximum detected soil TPH of 39,460 mg/kg (calculated as the sum of VPH and EPH), the results are considered to represent high-end conditions for Johnston Island. The results, provided in Table 6-2, indicate that the extract TPH concentrations (calculated as the sum of VPH and EPH) for both samples were below the surface water action level of 0.640 mg/L. The extract TPH concentrations were higher when analyzed using the traditional TPH method, both with and without silica gel cleanup.

The SPLP extraction results (Table 6-2) are supported by the analytical results seen from direct measurement of TPH in groundwater (Table 5-1). The range of soluble TPH in the SPLP extracts was 0.085 to 0.515 mg/L, compared to the soluble TPH levels seen in groundwater at the SWMU No. 16/AOC No. 1 area, ranging from 0.227 to 1.016 mg/L.

To estimate the extractable percentage of TPH from soil, the concentration in the extract from the maximum TPH soil at location T49-TP104 was multiplied by 20 (the liquid-to-solid ratio implicit in the extraction procedure) to calculate the mass of TPH extracted. The mass of TPH extracted was calculated to be 12.8 grams from each kilogram of soil (0.515 mg TPH/liter x 20 liter extract/kilogram soil) at this sample location. These results indicate that only a very small percentage (0.026 percent) of the TPH (calculated as the sum of VPH and EPH) in soil is extractable:

 $12.8 \text{ mg/kg} \div 39,460 \text{ mg/kg} = 0.026\%$

For the SPLP TPH result measured using the traditional TPH method (plus silica gel cleanup), the extractable amount is only slightly higher, estimated to be 0.04 percent. This low percentage of extractable TPH indicates that levels of soil TPH as high as 39,460 mg/kg are still protective of groundwater when TPH is defined as the sum of VPH and EPH. Even if the traditional method of measuring TPH (with silica gel cleanup) is considered to yield a reliable TPH result, the amount of extractable TPH (0.834 mg/L at location T49-TP104) only exceeds the surface water action level of 0.640 mg/L by 30 percent. If a soil TPH concentration of 39,460 mg/kg yields an extract TPH concentration of 0.834 mg/L, then, by prorating this result (that is, multiplying the groundwater to surface water action level of 0.640 mg/L), a soil TPH concentration of 30,000 mg/kg would be expected to be protective of groundwater (assuming that the extractable percentage is constant over a range of higher soil TPH concentrations).

6.3.2 Direct Contact by Ecological Receptors

Once buildings and other structures at Johnston Island are demolished, upland areas will become more accessible to seabird populations. Therefore, a TPH action level was calculated based on protection of these receptors. Potential ecological risk to the brown booby (*Sula leucogaster*) was used in the development of the TPH action level for ecological exposure. The brown booby was selected because this avian receptor was identified as a

receptor of ecological concern for SWMU-specific risk assessments prepared for Johnston Island.

The following equation was used to estimate the ecological risk-based concentration (ERBC) as a potential action level for TPH:

$$ERBC = \frac{BW \times TRV}{\sum \left[\left(Frac_{s} \times DFI \right) + \left(Frac_{p} \times DFI \times B_{s/p} \right) \right] \times AUF}$$

where:

ERBC	=	Ecological risk-based concentration in soil (mg/kg)
BW	=	Body weight of wildlife receptor (kg)
TRV	=	Toxicity reference value (mg/kg body weight-day)
Frac _s	=	Fraction of diet represented by incidentally ingested soil (unitless)
DFI	=	Daily ingestion rate of all food items (kg/day wet weight)
Frac _p	=	Fraction of diet represented by prey (unitless)
B _{s/p}	=	Soil-to-prey biotransfer factor (mg/kg per mg/kg wet weight)
AUF	=	Area use factor; fraction of home range occupied by site (unitless)

Because the brown booby is 100 percent piscivorous and obtains food from locations away from the upland areas, that portion of intake coming from prey items (in the denominator of the equation) was not included in the calculation of the upland soil protective concentrations. In addition, the area use factor was conservatively assumed to be 100 percent.³

The toxicity reference value (TRV) denotes the level of toxicity of TPH. Because there are no toxicity studies available from literature sources for specific aliphatic and aromatic TPH fractions, their toxicity was interpolated from structurally similar surrogate chemicals. This surrogate approach is consistent with the approach customarily used to estimate human health risk from TPH fractions. The available toxicological studies for surrogate chemicals, identified from a literature search, are summarized in Table 6-3. From these, the most representative and conservative representatives of aliphatic and aromatic fractions were selected as surrogates for the calculation of the ecological risk-based concentrations. Table 6-4 provides a list of the surrogate chemicals selected for each petroleum fraction, and the corresponding toxicity data. The ecological risk-based concentrations were calculated using these data and the above equation and are listed in Table 6-5.

Site-specific ecological action levels for each of the SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 areas were calculated by first adjusting (prorating) each of the fraction-specific ERBCs (Table 9) to account for the mass fraction of each TPH fraction relative to the total TPH. The adjustment was made as follows:

$$ERBC_{ss} = \frac{ERBC}{\left(C_{frac} / C_{TPH}\right)}$$

³ These are the same assumptions made for derivation of ecological-based action levels for nonpetroleum constituents as used in the current Permit for Johnston Atoll.

where:

ERBC _{ss}	,=	Site-specific ecological risk-based concentration in soil (mg/kg)
ERBC	=	Generic ecological risk-based concentration in soil (mg/kg)
C_{frac}	=	Soil concentration of petroleum fraction (mg/kg)
C_{TPH}	=	Sum of EPH and VPH in soil (mg/kg)

From these adjusted values, the site-specific ecological action level was calculated using the following equation:

$$Ecol.ActionLevel = \frac{1}{\left(\frac{1}{ERBC_{ss}}\right)_{frac1} + \left(\frac{1}{ERBC_{ss}}\right)_{frac2} + \dots \left(\frac{1}{ERBC_{ss}}\right)_{fracN}}$$

where:

 $(ERBC_{ss})_{frac1}$ = Site-specific ERBC for specific TPH fraction 1, 2,...,n (mg/kg)

Table 6-6 provides the results of these calculations for each soil sample analyzed.⁴ For the SWMU No. 16/AOC No. 1 area, the calculated sample-specific TPH action levels ranged from 116,000 mg/kg to 160,000 mg/kg. For the AOC No. 2/No. 3 area, the range was from 73,000 mg/kg to 131,000 mg/kg TPH.

The very high ecological action levels calculated for TPH in soil are a reflection of the generally low oral toxicity of petroleum to birds. The available toxicity studies identified where birds were exposed to petroleum mixtures (summarized in Table 6-3) indicate that, even with acute oral exposures, the toxic levels are often over 2,000 mg/kg body weight pure petroleum. One chronic study showed no adverse effects on mallards orally exposed to 5,000 mg/kg No. 2 fuel oil for 18 weeks. It is more likely that TPH concentrations as high as those calculated in Table 6-6 could be detrimental to birds from direct contact (that is, from oiled feathers) rather than causing systemic toxicity from ingestion exposure.

6.3.3 Direct Contact by Human Receptors

Under future conditions at Johnston Island, the most plausible human exposure scenarios are for workers who live on island year round (the Refuge Manager) and intermittent site visitors. The most health-conservative of these scenarios is the year-round worker (due to the maximum exposure frequency), and this scenario was used to estimate human health-based action levels for TPH. The potential routes of exposure considered include incidental soil ingestion, dermal contact with soil, and inhalation of ambient vapors or dust generated from wind. It was conservatively assumed that the potentially exposed individual would contact soil daily year round (365 days per year), and that the individual resides on the island continuously for 30 years.

⁴ The two samples at the AOC No. 2/No. 3 area that contained less than 100 mg/kg TPH were not included in the evaluation due to the lack of reliable precision at these low levels.

The methodology used for calculating human health-based TPH action levels for soil was consistent with methods developed by the TPHCWG (June 1999), and by several state agencies, including ODEQ (September 2003), Ecology (June 1997), and MADEP (October 2002). These approaches use surrogate toxicity factors to evaluate potential toxicity from aliphatic and aromatic fractions. The calculation spreadsheet developed by the State of Oregon was used to develop the action levels because this reflects the most current guidance: http://www.deq.state.or.us/wmc/tank/documents/TPHRisk03.xls (ODEQ, September 2003). The default "occupational scenario" exposure assumptions were modified to include an exposure frequency of 365 days per year for 30 years, and the adult residential dermal surface area was used. All of the default toxicity factors for surrogate chemicals were used, as well as the default chemical properties.

The following equation was used to calculate the risk-based concentration (RBC) for each aliphatic and aromatic TPH fraction:

$$RBC = \frac{THQ \times BW_a \times ATN \times 365 \ days / year}{EF \times ED_a \left[\left[\frac{1}{RfD_o} \times CF \times IR_a \right] + \left[\frac{1}{RfD_d} \times CF \times SA_a \times AF \times ABS_d \right] + \left[\left[\frac{1}{VF} \ or \ \frac{1}{PEF} \right] \times Inh_a \times \frac{1}{RfD_i} \right] \right]}$$

where:

ABS _d	=	Skin absorption fraction (unitless)
AF	=	Soil-to-skin adherence factor (mg/cm ²)
ATN	=	Averaging time for noncarcinogens (years)
BW _a	=	Adult body weight (kg)
CF	=	Unit conversion factor (10 ⁻⁶ mg/kg)
EDa	=	Adult exposure duration (years)
EF	=	Exposure frequency (days/year)
Inh _a	=	Adult inhalation rate (m ³ /day)
IR _a	=	Adult soil ingestion rate (mg/day)
PEF	=	Particulate emission factor (m ³ /kg)
RBC	=	Human health risk-based cleanup level for soil (mg/kg)
RfD _d	=	Dermal reference dose (adjusted oral reference dose) (mg/kg-day)
RfD _I	=	Inhalation reference dose (mg/kg-day)
RfD₀	=	Oral reference dose (mg/kg-day)
SA _a	=	Adult skin surface area exposed (cm ²)
THQ	=	Target hazard quotient (unitless)
VF	=	Volatilization factor (m ³ /kg)
Notes:		

 cm^2 = square centimeter m^3 = cubic meter

Site-specific human health action levels for each of the SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 areas were calculated in a manner similar to that described for ecological action levels, using equations similar to the last two provided in Section 6.3.2.

The results, summarized in Table 6-7, indicate that the calculated action levels using samples collected at the AOC No. 2/No. 3 area (ranging from 33,480 to 38,818 mg/kg) are somewhat lower than those calculated for the SWMU No. 16/AOC No. 1 (ranging from 43,341 to 70,837 mg/kg). As described for ecological pathways, the relatively high TPH action levels based on direct contact by humans are a reflection of the low toxicity of the residual petroleum types currently present in Johnston Island soil at these two areas. The likelihood that concentration below these human health-based action levels could result in potential migration of free product is evaluated in the next section.

6.3.4 Potential Migration of NAPL to the Surrounding Lagoon

In addition to potential direct contact exposure to birds and people, and potential leaching of TPH to groundwater, it is possible that residual petroleum in soil could be high enough to migrate as free product (that is, NAPL). Of primary concern is bulk fluid migration of free petroleum that could seep out to lagoon areas adjacent to the SWMU and AOCs. To address this concern, an action level was derived by calculating the highest soil TPH concentration that would preclude migration of NAPL. This concentration is termed the "residual saturation" of the TPH in soil. Residual saturation can vary widely depending on soil type and petroleum type.

The methodology for determining the residual saturation concentration (that is, the concentration at which petroleum product in open pore spaces in soil will be immobile) is detailed in Brost and DeVaull (June 2000). The residual saturation concentration calculation takes into account the density of the NAPL, soil porosity, soil density, and the fraction of residual nonaqueous-phase filled void space in a variety of grain size and petroleum product combinations, as measured in a laboratory. Site specific inputs to the calculation are bulk dry soil density, soil porosity, and NAPL density. These values are available in existing Johnston Island documents and have been used to calculate a residual saturation concentration.

This residual saturation concentration was determined by the following equation:

$$C_{\text{res,soil}} = ((\Theta_0 \times \rho_0) / \rho_s) \times 10^6$$

with:

$$\Theta_{o} = S_{r} \times \Theta_{T}$$

where:

C_{res,soil} = residual NAPL concentration in soil

 Θ_{o} = residual nonaqueous-phase volume fraction

- ρ_0 = density of chemical residual nonaqueous-phase liquid
- $\rho_s = dry \text{ soil density}$

 $\Theta_{\rm T}$ = soil porosity

S_r = fraction of residual nonaqueous-phase filled void

The following site-specific values were used to calculate the residual NAPL concentration for soil at Johnston Island:

Parameter	Range of Values	Sources	Selected Value	Comment
ρο	0.79 to 0.88 g/cm ³	0.79 to 0.85 = fresh jet fuel and diesel (Chevron, 1998)	0.88	Site-specific value for weathered
		0.88 = average of API gravity measurements for NAPL samples collected from wells at SWMU No. 16 as reported in the RCRA Facility Investigation (RSN, September 1994)		product
ρs	1.05 to 1.17 g/cm ³	1.05 = calculated dry bulk density (using wet density and moisture content)	1.05	Calculation specifies that dry bulk density should be used
		1.17 = measured wet bulk density (OHM, January 2000)		
Θτ	0.39 to 0.42	Estimated from grain size analysis and slug test data in RCRA Facility Investigation (RSN, September 1994)	0.41	Average value
N				

Notes:

API = American Petroleum Institute g/cm³ = gram per cubic centimeter OHM = OHM Remediation Services Corporation RCRA = Resource Conservation and Recovery Act PSN = Resthean Services Novada

RSN = Raytheon Services Nevada

The residual NAPL volume fraction, S_r, was taken from tables of laboratory measurement data provided in Brost and DeVaull (2000). These measurements are available for a number of organic liquids and soil types and represent the residual amount of hydrocarbon remaining in soil pore volume after the soil was saturated with hydrocarbon and then allowed to drain. Based on TPH analysis conducted to date, the predominant types of petroleum at Johnston Island are JP-5, diesel, and fuel oil. Sieve analysis and boring logs for Johnston Island soil indicate a range in grain size between fine sand and gravel. For the purpose of selecting a conservative S_r, the soil was assumed to be medium-grained sand. The most conservative S_r value for a medium-grained sand and middle distillate fuel combination is 0.05. This value was interpolated from information provided in Table 2 of the paper; a value for medium grained sand is not listed, but conservative values for fine-to-medium and medium-to-coarse grained sand are listed at 0.06 and 0.04, respectively.

Using the selected values identified above, the calculated residual NAPL concentration for Johnston Island is 17,181 mg/kg. If the full range of valid input values for each parameter is considered, the residual saturation concentrations range from 13,074 to 22,560 mg/kg.

Despite the calculations, it is unlikely that TPH at a concentration greater than 17,181 mg/kg in soil will actually migrate. For petroleum to migrate laterally, there must be sufficient driving force (head) to overcome capillary pressures at the margins of the NAPL plume. Current conditions at Johnston Island are not conducive to development of such a force. There is no ongoing release of petroleum to the subsurface, product recovery at

SWMU No. 16 depleted the product to the point at which recovery was no longer feasible, and measurable product has not been recently observed in any monitoring wells.

In order to calculate the driving force needed to cause LNAPL migration, there must be a measurable LNAPL gradient (API, 2003), as shown in the following equation:

Seepage velocity = $(k \times k_{\text{LNAPL}} \times m_{\text{LNAPL}} \times g)/(m_{\text{LNAPL}} \times n \times S_{\text{LNAPL}}) \times (dh_{\text{LNAPL}}/dl_{\text{LNAPL}})$

where:

k =	Permeability of porous media
$k_{rLNAPL} =$	Relative permeability of the porous media to LNAPL
_{LNAPL} =	Density of the LNAPL
g =	Gravitational constant
$_{\rm LNAPL} =$	Viscosity of the LNAPL
N =	Porosity
$S_{LNAPL} =$	Fraction of the pore space filled with LNAPL
$dh_{LNAPL}/dl_{LNAPL} =$	LNAPL head, using LNAPL thickness in 3 wells

Such a gradient does not exist at either Johnston Island SWMU/AOC. Even if one were to assume that soil at some part of the island was fully saturated with LNAPL, the maximum seepage velocity for the LNAPL would be less than one foot during the first year of saturated conditions and would be reduced every year afterward, given the conservative input parameters presented for the residual NAPL calculations.

6.4 Soil Evaluation Approach

The distribution (that is, the areal and vertical extent) of TPH in soil at SWMU No. 16/AOC No. 1 and AOC No. 2/No. 3 has been documented in numerous reports and memoranda. For the most part, the distribution was determined using Method 8015. As reported in Section 6.1, TPH concentrations in soil were similar when measured by any of the three analytical methods used in this study. This means that the existing Method 8015 results provide reasonable approximation of the amount of TPH in soil and can be used for direct comparison to the proposed action level when making decisions about the need for and adequacy of remediation; resampling and analysis using fractionation methods is not needed.

7.0 Conclusions and Recommendations

A systematic approach was used to identify site-specific action levels and evaluation approaches for TPH in groundwater and soil at Johnston Island. TPH was analyzed using three different methods. Although significant differences in these methods were not observed for soil analyses, considerable differences were observed for groundwater results. The greater beneficial effects that occurred with silica gel cleanup for groundwater was expected due to the potential interferences from polar nonpetroleum compounds cooccurring with the petroleum. Due to the greater efficiency in quantifying TPH using the fractionation methodology, it is recommended that results using this approach (calculated as the sum of EPH and VPH) be considered the most reliable representation of total TPH for both groundwater and soil.

A concentration of 0.640 mg/L dissolved TPH is recommended as a suitable action level for groundwater. Although based on fresh product toxicity, this number has a relevant biological basis and appears to provide a sensitive indication of potential risk to the nearby marine ecosystem. The approach for assessing TPH in groundwater at Johnston Island is shown in Figure 7-1. As shown in the figure, groundwater concentration data from wells greater than 100 feet from shore should be adjusted using a DAF to estimate groundwater concentrations at the shoreline. This overall approach should still be considered conservative because it does not account for the dilution once groundwater mixes with seawater at the shoreline.

For soil, action levels were estimated considering four potential migration or exposure pathways: leaching to groundwater, direct contact by birds, direct contact by people, and potential migration of NAPL. The approach for assessing TPH in soil at Johnston Island is shown in Figure 7-2. The range of site-specific TPH action levels is as follows:

- Groundwater Protection 30,000 to 40,000 mg/kg
- Direct Soil Contact by Ecological Receptors 73,000 to 161,000 mg/kg
- Direct Soil Contact by Human Receptors 33,000 to 71,000 mg/kg
- Free Product Mobility Limit 13,074 to 22,560 mg/kg

The action levels based on prevention of free product migration are the lowest of the pathways evaluated. As a result of the site-specific characteristics (that is, fuel types released and fuel weathering), the TPH in soil at these areas has low toxicity and low potential for leaching to underlying groundwater. The SPLP results indicated that a very small percentage of the soil TPH is leachable. Considering all these issues collectively, it is recommended that the free product mobility limit (that is, the residual NAPL concentration) serve as a protective action level for TPH in soil at Johnston Island. The free product mobility limit selected for use as the action level, **17,181 mg/kg**, is based on input parameters representative of measured and observed subsurface conditions on Johnston Island. Given that there is no ongoing release of petroleum at any of the SWMUs/AOCs and historical product recovery efforts have depleted the amount of product to the point of
being unrecoverable, it unlikely that there is sufficient driving force to cause free product to migrate even at levels above this concentration.

8.0 References

- Abou-Donia, M., H-A.M. Makkawy, and D.G. Graham. 1982. The Relative Neurotoxicities of n-Hexane, Methyl n-butyl ketone, 2,5-Hexanediol, and 2,5-Hexanedione Following Oral or Intraperitoneal Administration in Hens. *Toxicology and Applied Pharmacology* 62:369-389.
- American Petroleum Institute (API). May 2003. *Answers to Frequently Asked Questions about Managing Risk at LNAPL Sites*. API Soil and Groundwater Research Bulletin Number 18.
- Ainley, D.G, C.R. Grau, T.E. Roudybush, et al. 1981. Petroleum Ingestion Reduces Reproduction in Cassin's Auklets. *Marine Pollution Bulletin* 12:314-317.
- Brost E.J., and DeVaull, G.E. June 2000. Non-aqueous Phase Liquid (NAPL) Mobility Limits in Soil. *Soil & Groundwater Research Bulletin No. 9*.
- California Environmental Protection Agency, Department of Toxic Substances Control. October 21, 1999. *Guidance for Petroleum Hydrocarbon Analysis*.
- California Regional Water Quality Control Board (CRWQCB). July 2003. *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. Interim Final. San Francisco Bay Region.
- California State Water Resources Control Board. April 26, 2002. Letter No. 12. Total Petroleum Hydrocarbon (TPH) Analytes.
- CH2M HILL. October 2003. Technical Memorandum No. 0051-01: Sampling and Analysis of Total Petroleum Hydrocarbons in Support of Deriving Action Levels for Johnston Island.
- Chevron USA (Chevron). 1998. *Diesel Fuel Chemistry*. <u>http://www.chevron.com/prodserv/fuels/bulletin/diesel/L2_4_6_rf.htm</u>. Accessed November 23, 1998.
- Coon, N.C., and M.P. Dieter. 1980. Responses of Adult Mallard Ducks to Ingested South Louisiana Crude Oil. *Environmental Research* 24:309-314.
- Dunning, J.B. 1993. CRC Handbook of Avian Body Masses. CRC Press, Boca Raton, FL.
- EFA West. 1998. Development of Toxicity Reference Values as Part of a Regional Approach for Conducting Ecological Risk Assessments at Naval Facilities in California. Interim Final Technical Memorandum. Prepared for the Department of the Navy, San Bruno, CA.
- Fry, D.M., J. Swenson, L.A. Addiego, et al. 1986. Reduced Reproduction of Wedge-Tailed Shearwaters Exposed to Weathered Santa Barbara Crude Oil. Arch. Environ. Contam. Toxicol. 15:453-463.
- Hartung, R., and G.S. Hunt. 1966. Toxicity of Some Oils to Waterfowl. *Journal of Wildlife Management* 30:564-570.

- Hill, E.F., and M.B. Camardese. 1986. Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix. U.S. Department of the Interior, Fish and Wildlife Service. Fish and Wildlife Technical Report 2. Washington, D.C.
- Hudson, R.H., R.K. Tucker, and M.A. Haegele. 1984. Handbook of Toxicity of Pesticides to Wildlife. 2nd Edition. U.S. Department of the Interior, Fish and Wildlife Service. Resource Publication 153. Washington, D.C.
- Massachusetts Department of Environmental Protection (MADEP). October 31, 2002. Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach. http://www.mass.gov/dep,
- OHM Remediation Services Corporation (OHM). January 2000. Draft Comprehensive Corrective Measures Study for RCRA Part B Permit No. TT9 570 090 002, Johnston Atoll.
- Oregon Department of Environmental Quality (ODEQ). September 22, 2003. *Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites*. <u>http://www.deq.state.or.us/wmc/tank/rbdm.htm</u>.
- Patton, J.F., and Dieter, M.P. 1980. Effects of Petroleum Hydrocarbons on Hepatic Function in the Duck. *Comparative Biochemistry and Physiology* 65C(1):33-36.
- Raytheon Services Nevada (RSN). September 1994. *Johnston Island RCRA Facility Investigation Final Report*. Prepared for the Field Command Defense Nuclear Agency and Headquarters Pacific Air Forces.
- Rigdon, R.H., and Neal, H. 1963. Absorption and Excretion of Benzpyrene: Observation in the Duck, Chicken, Mouse, and Dog. *Texas Journal of Reproductive Biology and Medicine* 21(2):247-261.
- Szaro, R.C., G. Hensler, and G.H. Heinz. 1981. Effects of Chronic Ingestion of No. 2 Fuel Oil on Mallard Ducklings. *Journal of Toxicology and Environmental Health* 7:789-799.
- Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). June 1999. Volume 5: Human Health Risk-Based Evaluation of Petroleum Contaminated Sites: Implementation of the Working Group Approach. ISBN 1-884-940-12-9. http://www.aehs.com/publications/catalog/contents/tph.htm.
- Trust, K.A., A. Fairbrother, and M.J. Hooper. 1994. Effects of 7,12-Dimethylbenz[a]anthracene on Immune Function and Mixed-Function Oxygenase Activity in the European Starling. *Environmental Toxicology and Chemistry* 13(5):821-830.
- U.S. Environmental Protection Agency (U.S. EPA). 1993. Wildlife Exposure Factors Handbook. EPA/600/R-93/187.
- U.S. Environmental Protection Agency (U.S. EPA). April 30, 2002. *Hazardous Waste Corrective Action Permit, Johnston Atoll, EPA I.D. No. TT9 570 090 002.* Effective May 30, 2002.
- U.S. Environmental Protection Agency (U.S. EPA). October 16, 2003. *TPH in Groundwater Results of my Research.* e-mail from Ray Saracino, U.S. EPA, to Jeff Klein, U.S. Air Force.

- Washington Department of Ecology (Ecology). June 1997. *Analytical Methods for Petroleum Hydrocarbons*. http://www.ecy.wa.gov/biblio/97602.html.
- Wildlife International Ltd. 1985. *An Acute Oral Toxicity Study on the Bobwhite with Naphthalene*. Final Report. Submitted to W.R. Landis Associates, Inc. Valdosta, GA.
- Zemo, D., and Foote, G. 2003. The Technical Case for Eliminating the Use of the TPH Analysis in Assessing and Regulating Dissolved Petroleum Hydrocarbons in Ground Water. *Groundwater Monitoring and Remediation* 23, No. 3. Summer 2003.

United States Air Force 15th Airlift Wing Environmental Restoration Program

Final

TPH Action Level Derivation Report Johnston Atoll

Figures

- Monitoring Well Sampled for TPH
- TPH Soil Sample (Test Pit)

0 25 50 100 150 200

TPH Sample Locations at SWMU No. 16/AOC No. 1

TPH ACTION LEVEL DERIVATION REPORT JOHNSTON ATOLL

TPH ACTION LEVEL DERIVATION REPORT JOHNSTON ATOLL

- - C Si T4

NWTPH-EPH

Figure 5-1

Chromatograms for NWTPH-DX (With and Without Silica Gel Cleanup) and NWTPH-EPH Analyses, T49-MW07 and SWM-MW22

TPH ACTION LEVEL DERIVATION REPORT JOHNSTON ATOLL

United States Air Force 15th Airlift Wing Environmental Restoration Program

Final

TPH Action Level Derivation Report Johnston Atoll

Tables

TABLE 3-1Summary of Groundwater Sampling and Analysis ProgramTPH Action Level Derivation Report, Johnston Atoli

<u>.</u>					Method/Target Analyte							
Unit	Well ID	Sample ID	Sample Date	Sample Type	NWTPH-Dx TPH-Diesel w/o Silica Gel Cleanup	NWTPH-Dx TPH-Diesel w/ Silica Gel Cleanup	NWTPH-Dx TPH-Diesel w/ Filtration ^ª and Silica Gel Cleanup	NWTPH-EPH TPH-Diesel Fractionation	NWTPH-GX TPH-Gas	NWTPH-VPH TPH-Gas Fractionation		
SWMU No. 16/AOC No. 1	T49 MW06	T49-MW06-1103	11/02/2003	Ν	Х	Х	Х	Х	Х	Х		
SWMU No. 16/AOC No. 1	T49 MW07	T-49-MW07-1103	11/02/2003	Ν	х	Х	Х	х	Х	Х		
SWMU No. 16/AOC No. 1	T49 MW15	T49-MW15-1103	11/02/2003	Ν	Х	Х		Х	Х	Х		
SWMU No. 16/AOC No. 1	T49 MW15	T49-FD1-1103	11/02/2003	FD	Х	Х		Х	Х	Х		
SWMU No. 16/AOC No. 1	T49 MW05	T49-MW05-1103	11/02/2003	Ν	Х	Х	Х	Х	Х	Х		
AOC No. 2/No. 3	FW MW03D	FW-MW03D-1103	11/02/2003	Ν	Х	Х		Х	Х	Х		
AOC No. 2/No. 3	SWM MW20	SWM-MW20-1103	11/02/2003	Ν	Х	Х	Х	Х	Х	Х		
AOC No. 2/No. 3	SWM MW 21	SWM-MW21-1103	11/02/2003	Ν	Х	Х		Х	Х	Х		
AOC No. 2/No. 3	SWM MW 21	SWM-MW21-1103	11/02/2003	MS	Х	Х		Х	Х	Х		
AOC No. 2/No. 3	SWM MW 21	SWM-MW21-1103	11/02/2003	MSD	х	Х		х	Х	Х		
AOC No. 2/No. 3	SWM MW 22	SWM-MW22-1103	11/01/2003	Ν	Х	Х		Х	Х	Х		
QA/QC	Trip Blank	SWM-TB21-1103	11/02/2003	TB					Х			
QA/QC	Trip Blank	T49-TB5-1103	11/02/2003	TB					Х			
QA/QC	Trip Blank	FW-TB3D-1103	11/02/2003	TB					х			
QA/QC	Trip Blank	T49-TB15-1103	11/02/2003	ТВ					х			

Notes:

^a Samples were filtered at the laboratory.

FD = field duplicate MS = matrix spike MSD = matrix spike duplicate N = normal sample QA/QC = quality assurance quality control sample TB = trip blank TPH = total petroleum hydrocarbons

TABLE 3-2 Summary of Soil Sampling and Analysis Program TPH Action Level Derivation Report, Johnston Atoll

						Method/Target Analyte							
Unit	Station ID	Sample ID	Sample Date	Sample Type	Sample Depth (ft bgs)	SPLP Extraction	Fraction Organic Carbon	NWTPH-Dx TPH-Diesel w/o Silica Gel Cleanup	NWTPH-Dx TPH-Diesel w/ Silica Gel Cleanup	NWTPH-EPH TPH-Diesel Fractionation	NWTPH-Gx TPH-Gas	NWTPH-VPH TPH-Gas Fractionation	Comment
SWMU No. 16/AOC No. 1	T49-TP101	T49-TP101	10/31/2003	Ν	4 to 4.5	х		х	х	х	х	х	Fresh wall, east side of excavation
SWMU No. 16/AOC No. 1	T49-TP102	T49-TP102	10/31/2003	N	4 to 4.5			х	Х	Х	х	Х	Fresh wall, southeast side of excavation
SWMU No. 16/AOC No. 1	T49-TP102	T49-TPFD1	10/31/2003	FD	4 to 4.5			х	Х	Х	х	Х	Fresh wall, southeast side of excavation
SWMU No. 16/AOC No. 1	T49-TP103	T49-TP103	10/31/2003	Ν	4 to 4.5			х	х	Х	х	х	Fresh wall, southwest side of excavation
SWMU No. 16/AOC No. 1	T49-TP104	T49-TP104	10/31/2003	Ν	4 to 4.5	Х		х	х	х	х	х	Fresh wall, west side of excavation
AOC No. 2/No. 3	SWM-TP101	SWM-TP101	11/01/2003	N	6 to 6.5			х	Х	Х	х	Х	New test pit near SP-1, west of Pool
AOC No. 2/No. 3	SWM-TP102	SWM-TP102	11/01/2003	Ν	6.5 to 7			х	х	Х	х	х	New test pit near BH06, west of Pool
AOC No. 2/No. 3	SWM-TP102	SWM-TP102-MS	11/01/2003	MS	6.5 to 7			х	х	х	х	х	New test pit near BH06, west of Pool
AOC No. 2/No. 3	SWM-TP102	SWM-TP102-MSD	11/01/2003	MSD	6.5 to 7			х	Х	Х	х	Х	New test pit near BH06, west of Pool
AOC No. 2/No. 3	SWM-TP103	SWM-TP-103	11/01/2003	Ν	7 to 7.5			х	х	х	х	х	New test pit near BH02b, north of Pool
AOC No. 2/No. 3	SWM-TP104	SWM-TP104	11/01/2003	Ν	5.5 to 6			х	х	х	х	х	New test pit near TP-18, northeast of Pool
SWMU No. 16/AOC No. 1	BKGD	T49-TP105	10/31/2003	Ν	6.5 to 7		Х						Near Salt Water Pump Station
AOC No. 2/No. 3	BKGD	SWM-TP105	11/01/2003	N	5		Х						Near TP-10
AOC No. 2/No. 3	BKGD	SWM-TP105	11/01/2003	N	7			х	х	х	х	х	Near TP-10

Notes:

bgs = below ground surface FD = field duplicate ft = foot MS = matrix spike MSD = matrix spike duplicate N = normal sample SPLP = synthetic precipitation leaching procedure TB = trip blank TPH = total petroleum hydrocarbons

TABLE 3-3 Groundwater Sampling Field Parameters TPH Action Level Derivation Report, Johnston Atoll

SWMU or AOC	Well	Purge Rate (gpm)	Total Purge Volume (gallons)	рН	Temperature (°C)	Conductivity (mS/cm)	ORP (mV)	Turbidity (NTU)	Salinity (%)	DO (mg/L)	Comments
SWMU No.	T49-MW05	0.13	4	6.98	30.60	26.7	NR	652	1.65	1.90	Sulfur odor
16/ AOC	T49-MW06	0.16	2.5	6.06	31.80	3.24	NR	-10	0.16	1.83	
No. 1	T49-MW07	0.13	2.75	6.01	31.00	42.2	NR	707	2.71	1.88	Sheen on purge water surface
	T49-MW15	0.14	2	6.16	30.40	1.59	NR	283	0.07	1.88	Slight sulfur odor
AOC No. 2/	FW-MW3D	0.14	5	6.29	30.10	12.5	NR	276	0.72	1.90	Petroleum odor
No. 3	SWM-MW20	0.11	4	7.43	31.70	5.9	NR	175	0.3	1.79	Petroleum odor
	SWM-MW21	0.12	4	7.44	31.50	7.02	NR	-10	0.4	1.86	Sulfur odor
	SWM-MW22	0.11	4.5	7.05	30.30	6.5	NR	-10	0.3	2.10	Weathered petroleum odor

Notes:

Field parameter measurements were obtained from the final purge volume immediately prior to sampling.

°C = degree Celsius DO = dissolved oxygen

gpm = gallon per minute

mg/L = milligram per liter

mS/cm = milliSiemens per centimeter

MV = millivolt

NR = not recorded

NTU = nephelometric turbidity unit

ORP = oxidation-reduction potential

TABLE 5-1 Groundwater TPH Analytical Results TPH Action Level Derivation Report, Johnston Atoll

			FW-MW03D- 1103	SWM-MW20- 1103	SWM-MW21- 1103	SWM-MW22- 1103	T49-FD1- 1103ª	T49-MW15- 1103	T49-MW05- 1103	T49-MW06- 1103	T49-MW07- 1103
Method	Analyte	Units	11/02/03	11/02/03	11/02/03	11/01/03	11/02/03	11/02/03	11/03/03	11/02/03	11/02/03
NWEPH	C10-C12 Aliphatics	mg/L	0.0228 F	0.0284 F	0.0242 F	0.0243 F	0.0272 F	0.0271 F	0.0224 F	0.0367 F	0.0329 F
NWEPH	C10-C12 Aromatics	mg/L	0.0163 F	0.0263 F	0.00558 M	0.0167 F	0.021 F	0.0178 F	0.00976 F	0.0455 F	0.00603 F
NWEPH	C12-C16 Aliphatics	mg/L	0.0407 F	0.0477 F	0.0437 F	0.0445 F	0.051	0.0519	0.0402 F	0.0639	0.0741
NWEPH	C12-C16 Aromatics	mg/L	0.0101 U	0.055	0.0106 UM	0.0101 U	0.0165 F	0.0102 F	0.0101 U	0.173	0.0101 U
NWEPH	C16-C21 Aliphatics	mg/L	0.0245 F	0.0263 F	0.024 F	0.0201 F	0.029 F	0.0304 F	0.0237 F	0.0302 F	0.0605
NWEPH	C16-C21 Aromatics	mg/L	0.0325 F	0.0698	0.0124 F	0.0365 F	0.0452 F	0.0436 F	0.0217 F	0.132	0.0561
NWEPH	C21-C34 Aliphatics	mg/L	0.02 F	0.0326 F	0.0357 F	0.0781	0.0531	0.0762	0.0349 F	0.0717	0.0508
NWEPH	C21-C34 Aromatics	mg/L	0.0101 U	0.0101 U	0.0106 U	0.0101 U	0.0101 U	0.0101 U	0.0101 U	0.0105 U	0.0101 U
NWEPH	Total Extractable Petroleum Hydrocarbons	mg/L	0.157 F	0.286 F	0.146 M	0.220 F	0.243 F	0.257 F	0.153 F	0.553	0.280 F
NWVPH	C12-C13 Aromatics	mg/L	0.0874	0.176	0.0193 F	0.144	0.285	0.269	0.0616	0.400	0.129
NWVPH	C5-C6 Aliphatics	mg/L	0.00071 U	0.0392 F	0.0632 F	0.0285 F	0.00112 F	0.00071 U	0.00444 F	0.00384 F	0.00071 U
NWVPH	C6-C8 Aliphatics	mg/L	0.00149 U	0.14	0.116	0.131	0.00149 U	0.00149 U	0.00149 U	0.01 F	0.00149 U
NWVPH	C8-C10 Aliphatics	mg/L	0.00172 U	0.00343 U	0.00343 U	0.00343 U	0.00172 U	0.00172 U	0.00172 U	0.00807 F	0.00177 F
NWVPH	C8-C10 Aromatics	mg/L	0.00635 F	0.0314 F	0.0208 F	0.0326 F	0.0486 F	0.0164 F	0.00822 F	0.0408 F	0.0047 F
NWVPH	Total Volatile Petroleum Hydrocarbons	mg/L	0.0937	0.386	0.220	0.336	0.335	0.285	0.0742	0.463	0.136
NWTPHGx	Gasoline Range Hydrocarbons	mg/L	0.0505 U	0.561 J	0.282 J	0.622 J	0.358 U	0.122 U	0.0352 U	0.341 J	0.0501 U
NWTPHDX	Diesel Range Hydrocarbons	mg/L	1.49 J	0.823 J	1.25 J	0.83 J	10.7 J	6.66 J	0.339 J	0.832 J	4.99 J
NWTPHDX	Lube Oil Range Hydrocarbons	mg/L	0.342 F	0.236 F	0.204 F	0.292 F	1.11 J	0.732 J	0.159 F	0.186 F	0.443 F
NWTPHDX	Diesel Range Hydrocarbons with SGCU	mg/L	0.261	0.308	0.123 F	0.209 F	3.83 J	1.84 J	0.213 F	1.15	0.331
NWTPHDX	Lube Oil Range Hydrocarbons with SGCU	mg/L	0.11 U	0.11 U	0.11 U	0.11 U	0.168 F	0.149 F	0.11 U	0.11 U	0.11 U
Total TPH Calc A (detects NWTPHDx + NWTPHGx) m			1.83	1.62	1.74	1.74	11.81	7.39	0.498	1.36	5.43
Total TPH Calc B (detects NWTPHDx SGCU+ NWTPHGx)			0.261	0.869	0.405	0.831	4.00	1.99	0.213	1.49	0.331
Total TPH C	alc C (detects NWEPH + NWVPH)	mg/L	0.251	0.672	0.366	0.556	0.578	0.542	0.227	1.02	0.416

Notes:

^a Field duplicate of sample T49-MW15-1103.

mg/L = milligram per liter SGCU = silica gel cleanup TPH = total petroleum hydrocarbons

U The analyte was not detected at the concentration listed.

J The analyte was positively identified; the quantitation is an estimation.

F The analyte was positively identified but the associated numerical value is below the reporting limit.

M The analyte was positively identified but with low spectral match.

TABLE 5-2

Evaluation of Groundwater TPH Analytical Results with Dilution Attenuation Factors Considered *TPH Action Level Derivation Report, Johnston Atoll*

Sample	Units	Distance to Lagoon (ft)	Dilution Attenuation Factor (distance/100)		Total TPH A divided by DAF	Total TPH B (SGCU) divided by DAF	Total TPH C (fractionation)
FW-MW03D-1103	mg/L	1114	11.14		0.164	0.023	0.023
SWM-MW20-1103	mg/L	701	7.01		0.231	0.124	0.096
SWM-MW21-1103	mg/L	638	6.38		0.272	0.063	0.057
SWM-MW22-1103	mg/L	957	9.57		0.182	0.087	0.058
T49-FD1-1103 ^a	mg/L	386	3.86		3.060	1.036	0.150
T49-MW15-1103	mg/L	386	3.86		1.915	0.515	0.140
T49-MW05-1103	mg/L	30	1		0.498	0.213	0.227
T49-MW06-1103	mg/L	306	3.06		0.444	0.487	0.332
T49-MW07-1103	mg/L	280	2.8]	1.940	0.118	0.149

Notes:

^a Field duplicate of sample T49-MW15-1103.

Bold and shading indicates value is greater than 0.64-mg/L action level.

Total TPH A = Sum of detected NWTPH-Gx, NWTPH-Dx diesel, and NWTPH-Dx lube oil Total TPH B = Sum of detected NWTPH-Gx, NWTPH-Dx SGCU diesel, and NWTPH-Dx SGCU lube oil

Total TPH C = Sum of NWTPH-VPH and NWTPH-EPH.

mg/L = milligram per liter SGCU = silica gel cleanup TPH = total petroleum hydrocarbons

Soil TPH Analytical Results TPH Action Level Derivation Report, Johnston Atoll

			SWM-TP101	SWM-TP102	SWM-TP103	SWM-TP104	SWM-TP105	T49-TP101	T49-TP102	T49-TP103	T49-TP104	T49-TPFDI ^a
Method	Analyte	Units	11/01/03	11/01/03	11/01/03	11/01/03	11/01/03	10/31/03	10/31/03	10/31/03	10/31/03	10/31/03
NWTPH-EPH	C10-C12 Aliphatics	mg/kg	126	6.45 M	0.095 U	1.42 F	0.095 U	0.62 F	70.3 J	0.095 U	2,670	159 J
NWTPH-EPH	C10-C12 Aromatics	mg/kg	1.82 F	1 M	0.94 F	0.733 F	0.768 F	0.904 F	4.52 F	0.922 F	113	4.7 F
NWTPH-EPH	C12-C16 Aliphatics	mg/kg	741	52.5 M	1 U	29.6	1 U	47.8	1,970	5.13	15,600	2,500
NWTPH-EPH	C12-C16 Aromatics	mg/kg	62.5	2.03 M	1 U	1.46 F	1 U	1 U	62.8 J	1 U	1,620	97.9 J
NWTPH-EPH	C16-C21 Aliphatics	mg/kg	546	68.2	5.71	42.8	1 U	300	5,100	45.7	10,200	4,180
NWTPH-EPH	C16-C21 Aromatics	mg/kg	229	17.7 M	2.88 F	11.7	2.63 F	28.9	1,460	5.85	4,980	1,380
NWTPH-EPH	C21-C34 Aliphatics	mg/kg	156	23.2 M	3.53 F	16.9	1 U	191	1,380	38.2	1,760	998
NWTPH-EPH	C21-C34 Aromatics	mg/kg	65.7	12.9 M	2.48 F	7.45	1.86 F	52.5	461	11.5	849	387
NWTPH-EPH	Total Extractable Petroleum Hydrocarbons	mg/kg	1,930	184 M	15.5 F	112	5.26 F	622	10,500	107	37,800	9710
NWTPH-VPH	C12-C13 Aromatics	mg/kg	366	51.7 M	3.73 F	0.754 F	0.235 F	16.2	107	1.32 F	1,540	186
NWTPH-VPH	C5-C6 Aliphatics	mg/kg	0.124 U	0.031 UM	0.031 U	0.31 U	0.0343 F					
NWTPH-VPH	C6-C8 Aliphatics	mg/kg	1.88 F	1.74 M	0.055 U	0.055 U	0.0697 F	0.055 U	0.055 U	0.055 U	0.873 F	0.055 U
NWTPH-VPH	C8-C10 Aliphatics	mg/kg	14.5 F	0.072 UM	0.072 U	38.9 F	0.072 U					
NWTPH-VPH	C8-C10 Aromatics	mg/kg	22.1	3.92 M	0.122 F	0.123 F	0.134 F	0.09 U	1.08 F	0.09 U	79	0.516 F
NWTPH-VPH	Total Volatile Petroleum Hydrocarbons	mg/kg	404 J	57.3 M	3.85 F	0.877 F	0.439 F	16.2	108	1.32 F	1,660	187
NWTPH-Gx	Gasoline-Range Hydrocarbons	mg/kg	343 U	25.6 J	4.68 U	5.68 U	1.42 F	1.08 F	29.9 U	0.634 F	1,230 U	30.1 U
NWTPH-Dx	Diesel-Range Hydrocarbons	mg/kg	2,100	188 M	12.3	116	3.08 F	715 J	11,900	116 J	40,500	11,000
NWTPH-Dx	Lube Oil Range Hydrocarbons	mg/kg	93.3 U	22.4 U	25 U	17.3 U	9.33 U	291 J	961 U	65.2 J	1,870 U	933 U
NWTPH-Dx	Diesel-Range Hydrocarbons with SGCU	mg/kg	1980	181 M	14.1	109	4.66 F	557 J	11,100	103 J	38,500	10,200
NWTPH-Dx	Lube Oil Range Hydrocarbons with SGCU	mg/kg	93.3 U	16.5 U	9.33 U	12.2 U	9.33 U	132 J	779 U	43.1 J	1,870 U	591 U
Total TPH Calc A	A (detects NWTPH-Dx + NWTPH-Gx)	mg/kg	2,100	213.6	12.3	116.0	4.5	1,007	11,900	181.8	40,500	11,000
Total TPH Calc B (detects NWTPH-Dx SGCU+ NWTPH-Gx)		mg/kg	1,980	206.6	14.1	109.0	6.1	690.1	11,100	146.7	38,500	10,200
Total TPH Calc C	C (detects NWTPH-EPH + NWTPH-VPH)	mg/kg	2,334	241.3	19.4	112.9	5.7	638.2	10,608	108.3	39,460	9,897

Notes:

^a Field duplicate of sample T49-TP102-1103. mg/kg = milligram per kilogram SGCU = silica gel cleanup TPH = total petroleum hydrocarbons

U The analyte was not detected at the concentration listed.

J The analyte was positively identified; the quantitation is an estimation.

F The analyte was positively identified but the associated numerical value is below the reporting limit.

M The analyte was positively identified but with low spectral match.

Synthetic Precipitation Leaching Procedure TPH Results TPH Action Level Derivation Report, Johnston Atoll

			T49-TP101	T49-TP104
Method	Analyte	Units	11/13/03	11/13/03
NWTPH-EPH	C10-C12 Aliphatics	mg/L	0.002 U	0.005 F
NWTPH-EPH	C10-C12 Aromatics	mg/L	0.007 F	0.069
NWTPH-EPH	C12-C16 Aliphatics	mg/L	0.010 U	0.013 F
NWTPH-EPH	C12-C16 Aromatics	mg/L	0.010 U	0.274
NWTPH-EPH	C16-C21 Aliphatics	mg/L	0.010 U	0.014 F
NWTPH-EPH	C16-C21 Aromatics	mg/L	0.010 U	0.121
NWTPH-EPH	C21-C34 Aliphatics	mg/L	0.010 U	0.011 U
NWTPH-EPH	C21-C34 Aromatics	mg/L	0.010 U	0.011 U
NWTPH-EPH	Total Extractable Petroleum Hydrocarbons	mg/L	0.071 F	0.495
NWTPH-VPH	C12-C13 Aromatics	mg/L	0.007 F	0.014 F
NWTPH-VPH	C5-C6 Aliphatics	mg/L	0.001 U	0.001 U
NWTPH-VPH	C6-C8 Aliphatics	mg/L	0.001 U	0.001 U
NWTPH-VPH	C8-C10 Aliphatics	mg/L	0.002 U	0.002 U
NWTPH-VPH	C8-C10 Aromatics	mg/L	0.003 U	0.003 U
NWTPH-VPH	Total Volatile Petroleum Hydrocarbons	mg/L	0.014 F	0.020 F
NWTPHGx	Gasoline-Range Hydrocarbons	mg/L	0.013 F	0.031 F
NWTPHDX	Diesel-Range Hydrocarbons	mg/L	0.477 J	5.51 J
NWTPHDX	Lube Oil Range Hydrocarbons	mg/L	0.309 F	0.284 F
NWTPHDX	Diesel-Range Hydrocarbons with SGCU	mg/L	0.054 U	0.693
NWTPHDX	Lube Oil Range Hydrocarbons with SGCU	mg/L	0.110 U	0.11 U
Total TPH Calc	A (detects NWTPHDx + NWTPHGx)	mg/L	0.799	5.825
Total TPH Calc	B (detects NWTPHDx SGCU+ NWTPHGx)	mg/L	0.1771 ^a	0.8344 ^a
Total TPH Calc	C (detects NWTPH-EPH + NWTPH-VPH)	mg/L	0.085	0.515

Notes:

^a Calculated assuming nondetects were present at the limit of detection.

mg/L = milligram per liter SGCU = silica gel cleanup

U The analyte was not detected at the concentration listed.

J The analyte was positively identified; the quantitation is an estimation.

F The analyte was positively identified but the associated numerical value is below the reporting limit.

Summary of Avian Toxicity Data for Potential Surrogate Compounds and Mixtures TPH Action Level Derivation Report, Johnston Atol.

												NOAEL	LOAEL
Analyte	CAS No.	Fraction	EC Range	Study	Test Species	Class	Dose Route	Endpoint	Duration	Test Duration	LD50	(mg/kg-d)	(mg/kg-d)
N-Hexane	110543	Aliphatic	>C6-C8	Abou-Donia et al., 1982	Hen	Bird	Oral Gavage	Growth, Histopathology, Neurotoxicity Index	90 d	Chronic		10	100
Paraffin (Aliphatic C10-19)	8002742	Aliphatic	>C10-C21	Patton and Dieter, 1980	Mallard	Bird	Oral Diet	Growth, Body Weight	7 mo	Chronic		813	
Paraffin (Aliphatic C10-19)	8002742	Aliphatic	>C10-C21	Coon and Dieter, 1981	Mallard	Bird	Oral Diet	Reproduction, Histopathology	26 weeks	Chronic		815	
Shell SOL 70 (98% Paraffin, 1% Naphthenes)	NA	Aliphatic	>C10-C21	Hudson et al., 1984	Mallard	Bird	Oral	Mortality	1 dose	Acute	> 2000		
Panasol AN-2 (Alkylbenzenes, Naphthalenes, Benzenes)	NA	Aromatic	>C8-C16	Hudson et al., 1984	Mallard	Bird	Oral	Mortality	1 dose	Acute	> 2000		
Xylene	1330207	Aromatic	>C8-C10	Hill and Camardese, 1986	Japanese Quail	Bird	Oral Diet	Growth, Mortality	5 d	Subacute		3,333	
Naphthalene	91203	Aromatic	>C10-C12	Wildlife International, 1985	Bobwhite	Bird	Oral Gavage	Mortality	single dose-14 d obs	Acute	2,690		
Aromatic Hydrocarbon Mixture	NA	Aromatic	>C8-C21	Patton and Dieter, 1980	Mallard	Bird	Oral Diet	Growth, Body Weight	7 mo	Chronic		325	
Benzo(a)pyrene	NA	Aromatic	>C16-C21	Rigdon and Neal, 1963	Leghorn Chicken	Bird	Oral Diet	Egg Fertility, Malformations	34 d	Subchronic		39.5	
7,12-Dimethlbenz(a)anthracene	57976	Aromatic	>C21-C44	Trust et al., 1994	Starling	Bird	Oral Gavage	Immune Function	5 d	Subacute		60	
Mixtures													
Bunker C Fuel Oil	NA	Mixture	Mixed	Ainley et al., 1981	Cassin's Auklet	Bird	Oral	Reproduction	single dose; obs through reprod.	Acute		1596	3191
Diesel Oil	NA	Mixture	Mixed	Hartung and Hunt, 1966	Mallard	Bird	Oral	Mortality	1 dose	Acute	20,448 ^a		
Diesel Oil	NA	Mixture	Mixed	Hartung and Hunt, 1966	Mallard	Bird	Oral	Mortality	1 dose	Acute	3,408 ^b		
Diesel Oil No. 1	NA	Mixture	Mixed	Hudson et al., 1984	Mallard	Bird	Oral	Mortality	1 dose	Acute	> 17,000 ^c		
No. 2 Fuel Oil	NA	Mixture	Mixed	Szaro et al., 1981	Mallard	Bird	Oral	Growth Mortality, and Behavior	18 wk	Chronic		5,000	50,000
Weathered Santa Barbara Crude Oil	NA	Mixture	Mixed	Fry et al., 1986	Wedge-Tailed Shearwater	Bird	Oral	Reproduction	single dose; obs through reprod.	Acute			5,154 ^d

Notes:

^a Reported as 24 mL/kg for birds in optimal environmental conditions. Dose converted to mg/kg assuming density of diesel to be 0.852 g/mL.

^b Reported as 4 mL/kg for birds in crowded conditions and temperatures of 0 to -10°C. Dose converted to mg/kg assuming density of diesel to be 0.852 g/mL.

^c Reported as >20 mL/kg. Dose converted to mg/kg assuming density of diesel to be 0.852 g/mL.

^d Body weights for adult shearwaters from Dunning (1993); mL crude oil converted to mg assuming density of 1,000 mg/mL.

CAS = Chemical Abstracts Services d = day EC = elemental carbon g = gram kg = kilogram LD50 = lethal dose 50 (dose having 50 percent probability of causing death) LOAEL = lowest observed adverse effect level mL = milliliter mo = month NOAEL = no observed adverse effect level obs = observation wk = week

Surrogate Avian Toxicity Data for TPH Fractions TPH Action Level Derivation Report, Johnston Atoll

TPH Fraction	Surrogate Chemical	Test Species	Body Weight (kg)	Test Endpoint	Uncertainty Factor Applied ^d	NOAEL ^e (mg/kg-d)	Toxicity Study Source
C5-C6 Aliphatics	n-Hexane ^a	white leghorn chicken	1.7	chronic LOAEL	10	10	Abou-Donia et. al., 1982
C6-C8 Aliphatics	n-Hexane	white leghorn chicken	1.7	chronic LOAEL	10	10	Abou-Donia et. al., 1982
C8-C10 Aliphatics	n-Hexane	white leghorn chicken	1.7	chronic LOAEL	10	10	Abou-Donia et. al., 1982
C10-C12 Aliphatics	Paraffin (aliphatic C10-19) ⁹	mallard duck	1.23	chronic NOAEL	1	813	Patton and Dieter, 1980
C12-C16 Aliphatics	Paraffin (aliphatic C10-19)	mallard duck	1.23	chronic NOAEL	1	813	Patton and Dieter, 1980
C16-C21 Aliphatics	Paraffin (aliphatic C10-19)	mallard duck	1.23	chronic NOAEL	1	813	Patton and Dieter, 1980
C21-C34 Aliphatics	Paraffin (aliphatic C10-19)	mallard duck	1.23	chronic NOAEL	1	813	Patton and Dieter, 1980
C8-C10 Aromatics	Benzo(a)pyrene ^c	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963
C10-C12 Aromatics	Benzo(a)pyrene	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963
C12-C13 Aromatics	Benzo(a)pyrene	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963
C12-C16 Aromatics	Benzo(a)pyrene	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963
C16-C21 Aromatics	Benzo(a)pyrene	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963
C21-C34 Aromatics	Benzo(a)pyrene	white leghorn chicken	1.5	subchronic NOAEL	10	39.5	Rigdon and Neal, 1963

Notes:

^a The reported toxicity value for n-hexane is used as a structurally similar surrogate for all aliphatic fractions less than or equal to C10.

^b The reported toxicity value for aliphatic paraffin (C10-C19) is used as a structurally similar surrogate for all aliphatic fractions > C10.

^c The reported toxicity value for an aromatic hydrocarbon mixture is used as a structurally similar surrogate for all aromatic hydrocarbons C8-C34.

^d Uncertainty factors are consistent with methods provided in EFA West, 1998; chronic LOAEL to chronic NOAEL = 10, subchronic NOAEL to chronic NOAEL = 10.

^e Final NOAEL used to calculate receptor-specific TRVs.

EFA = Engineering Field Activity LOAEL = lowest observed adverse effect level mg/kg-d = milligram per kilogram per day NOAEL = no observed adverse effect level TPH = total petroleum hydrocarbons TRV = toxicity reference value

Risk-Based Concentrations for Brown Booby (*Sula leucogaster*) TPH Action Level Derivation Report, Johnston Atoll

	TRVwild	Soil RBC
TPH Fraction	(mg/kg bw-d)	(mg/kg)
C5-C6 Aliphatics	9.39E+00	7.80E+03
C6-C8 Aliphatics	9.39E+00	7.80E+03
C8-C10 Aliphatics	9.39E+00	7.80E+03
C10-C12 Aliphatics	8.14E+02	6.77E+05
C12-C16 Aliphatics	8.14E+02	6.77E+05
C16-C21 Aliphatics	8.14E+02	6.77E+05
C21-C34 Aliphatics	8.14E+02	6.77E+05
C8-C10 Aromatics	3.80E+01	3.16E+04
C10-C12 Aromatics	3.80E+01	3.16E+04
C12-C13 Aromatics	3.80E+01	3.16E+04
C12-C16 Aromatics	3.80E+01	3.16E+04
C16-C21 Aromatics	3.80E+01	3.16E+04
C21-C34 Aromatics	3.80E+01	3.16E+04

Notes:

^a Wildlife Factors Handbook (U.S. EPA, 1993) - using allometric equation for seabirds (dry-weight basis).

Assumptions Used in RBC Calculation:

body weight (kg)	1.238
food ingestion rate ^a (kg/d)	0.075
site use factor	1
incidental soil ingestion fraction	0.02

kg = kilogram kg/d = kilogram per day mg/kg = milligram per kilogram mg/kg bw-d = milligram per kilogram body weight per day RBC = risk-based concentration TRV = toxicity reference value

TABLE 6-6 Sample-Specific Ecological Risk-Based Concentrations for TPH in Soil TPH Action Level Derivation Report, Johnston Atoll

				SWM-TP101 11/01/03			SWM-TP102 11/01/03		SWM-TP104 11/01/03		T49-TP101 10/31/03				
Method	Analyte	Units	Fraction- Specific ERBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC
NWVPH	C5-C6 Aliphatics	mg/kg	7.80E+03	0.124 U	0.005%	1.47E+08	0.031 UM	0.013%	6.07E+07	0.031 U	0.027%	2.84E+07	0.031 U	0.005%	1.61E+08
NWVPH	C6-C8 Aliphatics	mg/kg	7.80E+03	1.88 F	0.081%	9.68E+06	1.74 M	0.721%	1.08E+06	0.055 U	0.049%	1.60E+07	0.055 U	0.009%	9.06E+07
NWVPH	C8-C10 Aliphatics	mg/kg	7.80E+03	14.5 F	0.622%	1.25E+06	0.072 UM	0.030%	2.61E+07	0.072 U	0.064%	1.22E+07	0.072 U	0.011%	6.92E+07
NWEPH	C10-C12 Aliphatics	mg/kg	6.77E+05	126	5.402%	1.25E+07	6.45 M	2.671%	2.53E+07	1.42 F	1.256%	5.39E+07	0.62 F	0.097%	6.98E+08
NWEPH	C12-C16 Aliphatics	mg/kg	6.77E+05	741	31.767%	2.13E+06	52.5 M	21.744%	3.11E+06	29.6	26.172%	2.59E+06	47.8	7.478%	9.05E+06
NWEPH	C16-C21 Aliphatics	mg/kg	6.77E+05	546	23.407%	2.89E+06	68.2	28.247%	2.40E+06	42.8	37.843%	1.79E+06	300	46.936%	1.44E+06
NWEPH	C21-C34 Aliphatics	mg/kg	6.77E+05	156	6.688%	1.01E+07	23.2 M	9.609%	7.04E+06	16.9	14.943%	4.53E+06	191	29.882%	2.26E+06
NWVPH	C8-C10 Aromatics	mg/kg	3.16E+04	22.1	0.947%	3.33E+06	3.92 M	1.624%	1.95E+06	0.123 F	0.109%	2.90E+07	0.09 U	0.014%	2.24E+08
NWEPH	C10-C12 Aromatics	mg/kg	3.16E+04	1.82 F	0.078%	4.05E+07	1 M	0.414%	7.63E+06	0.733 F	0.648%	4.87E+06	0.904 F	0.141%	2.23E+07
NWVPH	C12-C13 Aromatics	mg/kg	3.16E+04	366	15.690%	2.01E+05	51.7 M	21.413%	1.47E+05	0.754 F	0.667%	4.74E+06	16.2	2.535%	1.25E+06
NWEPH	C12-C16 Aromatics	mg/kg	3.16E+04	62.5	2.679%	1.18E+06	2.03 M	0.841%	3.76E+06	1.46 F	1.291%	2.45E+06	1 U	0.156%	2.02E+07
NWEPH	C16-C21 Aromatics	mg/kg	3.16E+04	229	9.817%	3.22E+05	17.7 M	7.331%	4.31E+05	11.7	10.345%	3.05E+05	28.9	4.521%	6.99E+05
NWEPH	C21-C34 Aromatics	mg/kg	3.16E+04	65.7	2.817%	1.12E+06	12.9 M	5.343%	5.91E+05	1.45	6.587%	4.79E+05	52.5	8.214%	3.85E+05
Total sum of all fractions (including nondetects)				2,333	100.0%		241	100.0%		113	100.0%		639	100.0%	
Sample-s	pecific TPH ERBC (includes all f			83,039			73,512			131,838			160,970		

Notes:

Conc. = concentration

ERPC = environmental risk-based concentration TPH = total petroleum hydrocarbons

U The analyte was not detected at the concentration listed.

F The analyte was positively identified but the associated numerical value is below the reporting limit.

M The analyte was positively identified but with low spectral match.

TABLE 6-6 Sample-Specific Ecological Risk-Based Concentrations for TPH in Soil TPH Action Level Derivation Report, Johnston Atoll

				T49-TP102 10/31/03			T49-TP103 10/31/03		T49-TP104 10/31/03			T49-TPFDI* 10/31/03			
Method	Analyte	Units	Fraction- Specific ERBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC	Conc.	% of total	Adjusted RBC
NWVPH	C5-C6 Aliphatics	mg/kg	7.80E+03	0.031 U	0.000%	2.67E+09	0.031 U	0.028%	2.77E+07	0.31 U	0.001%	9.92E+08	0.0343 F	0.000%	2.25E+09
NWVPH	C6-C8 Aliphatics	mg/kg	7.80E+03	0.055 U	0.001%	1.51E+09	0.055 U	0.050%	1.56E+07	0.873 F	0.002%	3.52E+08	0.055 U	0.001%	1.40E+09
NWVPH	C8-C10 Aliphatics	mg/kg	7.80E+03	0.072 U	0.001%	1.15E+09	0.072 U	0.065%	1.19E+07	38.9 F	0.099%	7.91E+06	0.072 U	0.001%	1.07E+09
NWEPH	C10-C12 Aliphatics	mg/kg	6.77E+05	70.3 J	0.662%	1.02E+08	0.095 U	0.086%	7.83E+08	2670	6.768%	1.00E+07	159 J	1.607%	4.21E+07
NWEPH	C12-C16 Aliphatics	mg/kg	6.77E+05	1970	18.555%	3.65E+06	5.13	4.665%	1.45E+07	15600	39.543%	1.71E+06	2500	25.270%	2.68E+06
NWEPH	C16-C21 Aliphatics	mg/kg	6.77E+05	5100	48.037%	1.41E+06	45.7	41.559%	1.63E+06	10200	25.855%	2.62E+06	4180	42.251%	1.60E+06
NWEPH	C21-C34 Aliphatics	mg/kg	6.77E+05	1380	12.998%	5.21E+06	38.2	34.738%	1.95E+06	1760	4.461%	1.52E+07	998	10.088%	6.71E+06
NWVPH	C8-C10 Aromatics	mg/kg	3.16E+04	1.08 F	0.010%	3.10E+08	0.09 U	0.082%	3.86E+07	79	0.200%	1.58E+07	0.516 F	0.005%	6.06E+08
NWEPH	C10-C12 Aromatics	mg/kg	3.16E+04	4.52 F	0.043%	7.42E+07	0.922 F	0.838%	3.77E+06	113	0.286%	1.10E+07	4.7 F	0.048%	6.65E+07
NWVPH	C12-C13 Aromatics	mg/kg	3.16E+04	107	1.008%	3.13E+06	1.32 F	1.200%	2.63E+06	1540	3.904%	8.09E+05	186	1.880%	1.68E+06
NWEPH	C12-C16 Aromatics	mg/kg	3.16E+04	62.8 J	0.592%	5.34E+06	1 U	0.909%	3.47E+06	1620	4.106%	7.69E+05	97.9 J	0.990%	3.19E+06
NWEPH	C16-C21 Aromatics	mg/kg	3.16E+04	1460	13.752%	2.30E+05	5.85	5.320%	5.94E+05	4980	12.623%	2.50E+05	1380	13.949%	2.26E+05
INVERTICZT-C34 Aromatics mg/kg 3.16E+04				401	4.342%	1.27E+05	11.5	10.458%	3.02E+05	849	2.152%	1.47E+06	38/	3.912%	8.07E+05
I otal sum of all fractions (including nondetects)				10,617	100.0%		110	100.0%		39,451	100.0%		9,893	100.0%	
Sample-specific TPH ERBC (includes all fractions)						134,411			136,297			115,861			128,981

Notes:

Conc. = concentration

ERPC = environmental risk-based concentration TPH = total petroleum hydrocarbons

U The analyte was not detected at the concentration listed.

F The analyte was positively identified but the associated numerical value is below the reporting limit.

M The analyte was positively identified but with low spectral match.

Estimated Human Health Risk-Based Concentrations for TPH in Soil *TPH Action Level Derivation Report, Johnston Atoll*

Unit	Station ID	Risk-Based Concentration (mg/kg)
SWMU No. 16/AOC No. 1	T49-TP101	70,837
SWMU No. 16/AOC No. 1	T49-TP102	59,943
SWMU No. 16/AOC No. 1	T49-TP102 Dup.	53,509
SWMU No. 16/AOC No. 1	T49-TP103	46,843
SWMU No. 16/AOC No. 1	T49-TP104	43,341
AOC No. 2/No. 3	SWM-TP101	38,010
AOC No. 2/No. 3	SWM-TP102	33,480
AOC No. 2/No. 3	SWM-TP104	38,818

Notes:

mg/kg = milligram per kilogram

United States Air Force 15th Airlift Wing Environmental Restoration Program

Final

TPH Action Level Derivation Report Johnston Atoll

Appendix A Test Pit Logs

Appendix A: Test Pit Logs

This appendix presents the test pit logs that were recorded during soil sampling at AOC No. 2/No. 3. All samples collected at SWMU No. 16/AOC No. 1 were taken from fresh walls exposed in an existing excavation.

,		С	H2	MHILL	PROJECT NUMBER		TEST PIT NUMBER Sheet: 1 of 1			
•					ТЕ	ST PIT L	OG T49TP105			
F	PROJECT JA-TOSI-TOH Sampling LOCATION SWAW 16 LOGGER THEORY.									
С	CONTRACTOR PCT DATE EXCAVATED 10/31/03									
E	EXCAVATION EQUIPMENT Excavator WATER LEVEL AND DATE 7' 10/3/ APPROX.DIMENSIONS: Length 5 Width 7 Max Depth 7'									
Γ		SAM	PLE	SOIL	DESCRIPTION		COMMENTS			
	DEPTH BELOW	INTERVAL	TYPE AND	SOIL NAME, USC MOISTURE CONT CONSISTEN M	S GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY OR CY, SOIL STRUCTURE, IINERALOGY	DIFFICUL GRAVEL COI SAND HE/ WATER CONTACT	TY IN EXCAVATION, RUNNING NDITION, COLLAPSE OF WALLS, AVE, DEBRIS ENCOUNTERED, & SEEPAGE, GRADATIONAL S, TESTS, INSTRUMENTATION			
	-0-				Ground Surface					
	- 1- 2-			cheamy white sand to 1' sit	ernshed coral. fine red coral chunks.					
	3- - 4-			lange chunk of test pit. . pulled up old pil the test pit.	concrete on North Side off	Ofpm =	BZ Breathing Zone.			
	5- - 6-			Creamy white et	Ukhed corril. Fine gand il chunks. orange in malr.x. moist.	32 = 0 ppm				
	7- 8- 9-			same os abor	e. wet.	sample (.749	ollected TP105 14:05			
	10-	1								

PROJECT NUMBER

TEST PIT NUMBER

Sheet: 1 of 1

TEST PIT LOG SWM - TPIOI

PROJECT JA TOSI TPH Inreadigation LOCATION ADC NO. 2

_____ DATE EXCAVATED____///03

LOGGER <u>7460</u>

CONTRACTOR <u>PCL</u> EXCAVATION EQUIPMENT Backhoe

WATER LEVEL AND DATE

APPROX.DIMENSIONS: Length 7! ____Width 2.5 ___Max Depth 6, 5

	SAM	PLE	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW	INTERVAL TYPE AND		SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTATION
			Ground Surface	
			Asphall - (3-index) crushed creamy white coral. tire sands to 10-inch minus gravel same as above same . we t Bottom	Sample @ 10:50
ţ	{			

		С	H2	MHILL	PROJECT NUMBER		TEST PIT NUMBER Sheet: 1 of 1			
		2 5			TE	ST PIT LO	OG SWM - TPIDA			
PI	ROJEC	OJECT JA TOSI TPH Investigation LOCATION ADC 2 LOGGER RHCaly								
C	ONTRA	NTRACTOR RCI DATE EXCAVATED 14/1/03								
E) W	(CAVATION EQUIPMENT Backboe									
						······································				
	ļ	SAM	PLE	SOIL	DESCRIPTION		COMMENTS			
	DEPTH BELOW	INTERVAL	TYPE AND	SOIL NAME, USC: MOISTURE CONTI CONSISTEN M	S GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY OR CY, SOIL STRUCTURE, INERALOGY	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTATION				
F					Ground Surface					
				gravel fill to	۵°.					
	1-									
	_ 2-			creamy white cl fire sands to	Riched gravel corel 6" diameter gravel. dry.					
	3-									
	4-			same as above						
	5									
	-									
				<u>same wet.</u> Brt	tom	sample co	llected. 0910			
	8									
	9-									
1	10-	4								

A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CO

	CH2MHILL
\diamond	
\sim	

PROJECT NUMBER

TEST PIT NUMBER

TEST PIT LOG

PROJECT JA TOSI TPH Investigation LOCATION ADC 2

_____ DATE EXCAVATED 11/103

LOGGER RHeat

CONTRACTOR <u>2CT</u> EXCAVATION EQUIPMENT <u>Backhoe</u>

WATER LEVEL AND DATE 7' 1/1/03 APPROX.DIMENSIONS: Length 9 Width 2.5 Max Depth 7.5

	SAMPLE		SOIL DESCRIPTION	COMMENTS		
DEPTH BELOW	INTERVAL	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY		DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTATION		
			Ground Surface			
- -			2" grass + roots.			
			sands to 6" minus angular gravel. dry.			
2-						
3-			same as above.			
4-				·		
5-						
6-			sume	sample collected 0955		
7-						
8-			Betlom			
9-						
10-	1					

PROJECT NUMBER

SWM - TPO4 Sheet: 1 of 1

TEST PIT LOG

Apr 2

PROJECT JA TOSI TPH Investigation LOCATION

DATE EXCAVATED 11/03

__LOGGER_TCHeal

6

CONTRACTOR ______

EXCAVATION EQUIPMENT Buckhoe WATER LEVEL AND DATE 6

APPROX.DIMENSIONS: Length 8 Width

Width<u>2,5__</u>Max Depth___

	SAM	PLE	SOIL DESCRIPTION	COMMENTS						
DEPTH BELOW	INTERVAL	TYPE AND	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTATION						
			Ground Surface							
			usphall - (3 inches)							
2-			creamy white crushed corel. fine send to 6-inch gravel. dry.							
3-										
4-			same							
5-										
6-			Bottom	sumple collected 11:25						
7-				, , , , , , , , , , , , , , , , , , ,						
8-										
9-										
10-	-									
	С	H2	MHILL	PROJECT NUMBER		TEST PIT NUMBER Swm - TPIOS Sheet: 1 of 1				
--------------------	----------	--------------	--	--	--	--	--	--	--	--
	•			ТЕ						
	т JA	1 To	51 TOH In	restigation LOGGER 2460						
CONTRA	CTOR	چا۔۔۔۔۔ ا	PCT		DATE EX	KCAVATED 4/1/03				
EXCAVA	TION E		IEN <u>T Backho</u>	<u>e</u>		Allah 11 May David D.C.				
WATER	LEVEL			APPROX.DIMENSIONS: Len	gtn <u> (0 </u>	Midtin <u>7.9</u>				
	SAM	PLE	SOIL	DESCRIPTION		COMMENTS				
DEPTH BELOW	INTERVAL	TYPE AND	SOIL NAME, USC MOISTURE CONTI CONSISTEN M	S GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY OR CY, SOIL STRUCTURE, INERALOGY	DIFFICULTY IN EXCAVATION, RUNNING GRAVEL CONDITION, COLLAPSE OF WALLS, SAND HEAVE, DEBRIS ENCOUNTERED, WATER SEEPAGE, GRADATIONAL CONTACTS, TESTS, INSTRUMENTATION					
				Ground Surface						
- 1- - 2-			creamy white d fine sand to	iren crushed coral 1' coral chunks. dry.						
3-			Same as a	ibove						
- 5- - 6-			same.		Foc ser 5'4	mple Collected at 95				
7- 8-	-		same wet	3ottan	sample col	lected at 13:30.				
9- 10-										

United States Air Force 15th Airlift Wing Environmental Restoration Program

Final

TPH Action Level Derivation Report Johnston Atoll

Appendix B Sampling Records

Appendix B: Sampling Records

This appendix contains the field sampling records for soil and groundwater samples collected as part of the TPH investigation. The records provide information about sample locations, sampling methods, and field conditions at the time the samples were collected.

$\mathbf{\lambda}$	Sample Log		Development Log	Purge Log
--------------------	------------	--	-----------------	-----------

				-		T			_			
Project:	JA TOSI	TPH In	restigatu	m		Site: Aoc	2					
Project N	lo:					Well ID: ≤u	m-m	ພວລ				
Field Cra	ew: `					Date: ul.	103					LOGDATE
Screen I Well Dia	nterval (ft): meter (in.)	2 inc	to Ler		BEGDEPTH	Climatic Con Purge Metho	ditions: d:	I sunny I peristaltic	☐ cloudy : ☐ bailer	☐ rainy ☐ waterra	submersible	· · · · ·
Water Le	evel Indicator:	Oil/Water P	robe (INRFC)		MEASMETH	Pump Rate (gal/min):	#DIV/0!				
		K Probe (PRC	DBE) L	Tape (TAPE))	Length of Sa	turated	° 8	18			
Total We	ell Depth (π):	14.98			SOUNDING	Zone (ii):	/l},		······································			
Depth to	water (II):	6 00			DEVISTOODE	Pore volume	(yai):		16			
	ciquià ili men			L (L) Y)	DRIFTCODE			490	28	[au	2	
Denth to	Product (ft.):		<u> </u>			- v.h		818	2		21	
					Cial	Peremoters		1200	5 6	K. Tasti (1941)		
					Г			1200				
Time	Depth to Water (ft.)	Purge Rate (gpm)	Gallons Removed	pH	Temp (C)	Cond. (mS/cm)	ORP (mV)	Turbidity (N.T.U.)	Salinity (%)	D.O. (mg/L)	Comi	ments
15:42	6.80	· Pum	1 m				1		r	<u></u>		
15:46	6.85	#DIV/0!	0.5	7,52	30.3	6.01		-10	0,31	2.2		
15:51	6.86	#DIV/0!	1.0	7.05	30,3	6.07		1-10	6.32	2.12		
15157	6.87	#DIV/0!	1.5	6.5+	50,2	6.11		-10	0.32	a.13		•••••••
16:01	687	#DIV/0!	<u>b</u> õ	132	30.2	6.12	·	-10	0.52	2.((
16:05	6.87	#DIV/0	2.5	7.60	20.2	6.72		-10	10.50	2.11		
16:07	6+88	#DIV/0!	20	7.94	20.2	6.10		-10	0.30	20		
16:16	6.1200	#DIV/0!	3.8	7.37	30.2	6.15		-10	0.32	210		· · · · · ·
16:20	6.89	#DIV/0!	4.5	7.05	30.3	6.15		-10	0.32	2.10	pH not	stabilize
		#DIV/0!										ť
		#DIV/0!										
							ļ				Talah Katalah Katal	25.2
								 				
										NE CENTRALITA		
				Sample	, Developmen	t, or Purge Wa	ter Intorm	ation				
Color		alen										
Odor		weathered	oetro	lean								
Turbidity		Ø	75									
Laborator	y Analysis	UVOCs SW82	260B 🗆] TPH-e SW8(015m	PAHs SW8310	, [] Pest SW808	1 🗆	Metals SW6 Field Filtered	010/7000 ?□ ^Y □ ^Y	
		SVOCs SW	8270C [TPH-p SW8	015m 194 - Dr. cale	C FRH	. [NWTPH - 1]Herb SW815 ない マクル	1 L	Lead SW742 Field Filtered	21 ?	
				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- UK W/-	<u>, , , , , , , , , , , , , , , , , , , </u>	• wr_13 [1 - 1			T	-	
Sample ID)	SWM-N	122-1	103				Total No.	of Bottles	4 K	+ 6 400	rl V
Sample D	ate/Time	11/103	:	16:2	5							
Notes												
Analytica	Laboratory							Transpo	orted via	Hand	Overnight	
	- 1	76.9	65	2/01	Cu			. I		I		

.

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65; 6"-1.47; 8"-2.61; 10"-4.08

CH2MHILL	-

nnlo I or	Πονο	lonment	loa	Purde I	

			Sampl	e Log		opment Lo	g 🗆	Purge I	Log			
Project:	JA TOSI	TPH I	vertigati	, én l		Site:	toc 2-	-				
Project I	No:					Well ID:	Swm.	. Mws	-1			
Field Cr	ew: Rob Hea	ly, M	ike Ke	lley		Date: ງເ/ວ	2/03					LOGDATE
Screen I	nterval (ft):		to		BEGDEPTH	Climatic Con	ditions:	🗙 sunny 🛔		🗌 rainy		
Well Dia	meter (in.)					Purge Metho	d:	X peristaltic	: 🗋 bailer	waterra	submersible	
PID read	ling (ppm):	NA			•	Pump placen	nent (ft):	7'				
Water Lo	evel Indicator:	Oil/Water P	robe (INRFC)		MEASMETH	Pump Rate (g	gal/min):	#DIV/0!				
		Probe (PR	OBE)	Tape (TAPE)		Length of Sat	turated	0 11	1.4 1.7			
Total We	ell Depth (ft):	11.4			SOUNDING	Zone (ft):		5	7			
Depth to	Water (ft):	5.70	4.70		STATDEPTH	Pore Volume	(gal):		Valla I			
	Liquid in Well	WATER (W)		. (L)	DRY/FTCODE			6.17				
		LI DNAPL (D)		0	AND CONTRACTOR AND	~		16				
	Product (ft.):							127		1		(Assign the
					Field	Parameters		101 a 1		1	r	
Time	Depth to Water (ft.)	Purge Rate (com)	Gallons Removed	ъH	Temp (C)	Cond. (mS/cm)	ORP (mV)	(N.T.U.)	Salinity (%)	D.O. (ma/L)	Comment	s.
8.06	4.70		1							1	· · · · · · · · · · · · · · · · · · ·	
8 10	4. 71	#DIV/0!	0.25	7.08	31.2%	6.95		94	0.37	224		
8:16	4.72	#DIV/0!	0. 10	6.70	31.4	7.04		-10	0.38	1.92		
8:20	4.72	#DIV/0!	1.5	7.01	31.5	1.04		-10	0.38	1.88		
8:24	4.72	#DIV/0!	2.0	6.24	31.5	7.04		-10	0.38	1.87	5. 2.2	
9:28	4.72	#DIV/0!	2.5	6.89	31.5	7.03		-10	0,38	1.87		
8:32	4.72	#DIV/01	3.0	7,12	31.6	7.03		-10	0.38	1.86		
8:35	4.72	#DIV/0:	4.5	1.55	316	7.03		-10	0,38	1.86	pH net stat	alized
9:39	4.72	#DIV/0!	17.0	1.44	21.7	(.0~		-10	0.58	1.06	collecting so	emple
	<u> </u>	#DIV/0!	<u> </u>									
		#DIV/0!	1	¢.					<u> </u>		·····	
			<u> </u>				ļ					
cient and a				Samula	Development	or Durna Wat	 	l tiàn			<u> </u>	
Calar				oanpie	- Development	, vi ruige indi	er nuernu					
		Clean									· · · ·	
		Sultin :	<u>smell</u>							· · · .		
Turbidity	a. Baabaala	0										
Laborato	ry Analysis		260B	TPH-e SW80	15m [PAHs SW8310		Pest SW808	1 🗖	Metals SW6	010/7000	
							-			Field Filtered	? 	
			82700	IPH-p SW80	15m L	_] PCBS SW8082	L	JHEND SW815		Field Filtered	?	
		Other M	UNTPH-DX	NWTPH	· Ox w/sG,	NWTPH-DX 4	u/SG & Fi	Hation, 1	EPH, NI	UTPH-GX,	VPH	
Sample II)	SUM-N	งผลเ-	1103,	SWM-MU SULM-MU	121-1103-1	us, As D	Total No.	of Bottles	Sample MS MSD	= 10 [4]L = 10 4 = 10 4	+ 6 K)A
Sample D	ate/Time	ulosta	3	Que.								
Notes		efferve se	me in	VOA di	vie to HCI	Color whe	antim					
		1st bail .	- ball val	ve didn.	t seal a	hopped be	niter the	· Lin m	ell to a	set a s	coud bail.	÷ .
Analytica	I Laboratory						-	Transpo	orted vla	Hand	Overnight	
		•						• • · · · · • • • • • • •		·		
Signatur	e/Sampler:											

.

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65; 6"-1.47; 8"-2.61; 10"-4.08

•

AFCEE Groundwater

	Sample Log	🗆 Developm	ent Log	🗆 Purge Log
--	------------	------------	---------	-------------

						<u>.</u>	<u> </u>					
Project: Project N	JA TOS 10:	I TPH -	Invest	igation		Site: 🖌 Well ID:	focz Swm-	mwa	Ð			
Field Cre	ew: TRob He	ely				Date:	11/2/0	<i>9</i> 3				LOGDATE
Screen I Well Dia PID read Water Le Total We Depth to Depth to	nterval (ft): meter (in.) ling (ppm): evel Indicator: ell Depth (ft): Water (ft): Liquid In Well Product (ft.):	2 ¹ √ ○ Oil/Water Pri Probe (PRC 13.10 4.70 Ø WATER (W) □ DNAPL (D)	to robe (INRFC) DBE)	Tape (TAPE) . (L) Y)	BEGDEPTH MEASMETH SOUNDING STATDEPTH DRY/FTCODE	Climatic Con Purge Method Pump placen Pump Rate (g Length of Sat Zone (ft): Pore Volume	ditions: d: nent (ft): jal/min): turated (gal):	E sunny [Peristation 7.5' #DIV/0! 0 8.4 -16 50.4	□ cloudy □ bailer 6 ToC 4.70 4.70 8.40 1.3	☐ rainy ☐ waterra	submersible	
					Field	Parameters		84				
Time	Depth to Water (fl.)	Purge Rate (gpm)	Gallons Removed	pH	Temp (C)	Cond. (m\$/cm)	ORP (mV)	Turbidity (N.T.U.)	Salinity (%) D.O. (mg/L)	Comme	nts
7:54	4.70	Starte	d Pus	mp			<u> </u>			_		
1.58	4.70	#DIV/0!	0.55	17.22	31.5	6.00		360	0.31	3722	196	
10:02	4.70	#DIV/0!	1.0	6.88	31.6	6.01		350	0.32	1.87	. ·	
10:06	4.65	#DIV/0!	1.5	7.13	31.6	6.01		291	0.32	1.84		
10:11	4.66	#DIV/0!	2.0	7.27	31.6	6,00		045	0.31	1.82		
10:15 10:15	4.65	#DIV/0!	2.5	6.64	51.6	561		211	0.51	1.80		
10:17	4.64	#DIV/0!	3.0	7.77	31,0	5.94		200	0.31	1.80	• • •	
10:29	4.62	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	4,0	7.43	31.7	5.90		175	0.3/	1.79		· · · · · · · · · · · · · · · · · · ·
				Sample	, Developmen	t; or Purge Wa	er Inform	ation				
Color	·····											
Odor		Petroleus	<u>n Odo</u>	n								
Turbidity Laborator	y Analysis	□VOCs SW82 □SVOCs SW8 □Other	60В [] 1270С [] <i>МыТРН-</i>]] TPH-e SW80] TPH-p SW80] **)15m)15m <u>4 дх. из/5<i>С</i>,</u>	□ PAHs SW8310 □ PCBs SW8082 	[w/sc.¢]Pest SW808]Herb SW815 filtratia	1 [1 [<i>, [59], N</i>	Metais SW6 Field Filtered Lead SW74 Field Filtered	010/7000 ?	
Sample t)	SWM-M	nu120 -	1103				Total No.	of Bottles	6 (4	IL + 6 VOA	k)
Sample D	ate/Time	11/2/03		0:30							· · · · · · · · · · · · · · · · · · ·	
Notes								•			<u> </u>	
Analytica	I Laboratory				A			Transp	orted via	Hand	Overnight	
Signatur	e/Sampler	Jake	\$ -	Hal	2				_			

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65; 6"-1-1-2-, 8"-2.61; 10"-4.08

(⊠ Sample Log □ Development Log □ Purge Log

						<u> </u>	-				
Project: Project I	JA TOS 10:	(IPH	Inve	ligation	<u>.</u>	Site: A Well ID: S		. / Air MW3D	·strip		
Field Cre	w: EHea	by ,	MKel	ley		Date: //	12/03				LOGDATE
Screen I Well Dia PiD read Water Le Total We Depth to	nterval (ft): meter (in.) ing (ppm): evel Indicator: evel Indicator: bl Depth (ft): Water (ft): Liquid in Well	2'' NA OliWater P Probe (PRC 35.56 5.49 XWATER (W) DNAPL (D)	to Probe (INRFC) DBE)] Tape (TAPE) - (L) Y)	BEGDEPTH MEASMETH SOUNDING STATDEPTH DRY/FTCODE	Climatic Con Purge Metho Pump placen Pump Rate (Length of Sa Zone (ft): Pore Volume	ditions: d: nent (ft): gal/min): turated (gal):	Ø sunny □ peristatilo #DIV/0! 0 <i>4.8</i> 30.05] cloudy :] bailer gal(on	□ rainy □ waterra \$	☐ submersible 35.56 <u>5.49</u> 30.05
Dehill (0				S	Field	Parameters		48080	S		
	And										
Time	Depth to Water (ft.)	Purge Rate (gpm)	Gallons Removed	pH	Temp (C)	Cond. (mS/cm)	ORP (mV)	Turbidity (N.T.U.)	Salinity (%)	D.O. (mg/L)	Comments
11:12	5.49	Start	ted Pin	np		1-6.	T	1		I :	
11:17	5.49	#DIV/0!	0.5	6.98	30.2	11.4		443	0.65	1.93	
11.00	5.49	#DIV/0	10	7.06	20.2	160		200	0.65	1.91	
11:23	7.49 5.47	#DIV/0!	120	1 49	20.1	11 0	1	271	0.60	1.90	e en en avan en
11:32	514	#DIV/0!	20	716	20.1	100		2101	0.68	190	
11:37	5.46	#DIV/0!	32	772	201	121		244	0.69	1.90	{
11:40	5.45	#DIV/0!	40	7.86	3011	122	1	286	0.70	1.9	
11:45	545	#DIV/0!	4.5	6.27	30.0	12.4	1	242	0.71	1.94	Dune he hat
11:40	5.45	#DIV/0!	5.0	6.29	30.1	12.5		276	0.72	1.9	sump succer.
		#DIV/0!									
		#DIV/0!									
								and providences where	1971 M 1 # 1 # 1 # 1 M 1 C 17 - 1 (2010)	FOR 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
				Sample	, Development	, or Purge Wa	ter Inform	ation			
Color											
Odor		petroleum	oden								
Turbidity											
Laborator	y Analysis	UVOCs SW82	260B [8270C [<u>NWTPH-D</u>] TPH-e SW80] TPH-p SW80)15m [)15m [-D <u>x w/se , r</u>	□ PAHs SW8310 □ PCBs SW8082 МистРН -Dx и	[/56 8 G ¹]Pest SW808]Herb SW815 alin, El	1 🗆 1 🖬	Metals SW6 Field Filtered Lead SW742 Field Filtered <u>24 - Ck. V</u>	D10/7000 ? ЦҮС N ? СҮС N Н
Sample ID)	FW SwA-1	4W30-	103				Total No.	of Bottles	10	141L + 6 VOAS)
Sample D	ate/Time	1.1210	3	11:50							
Notes					-						
Analytica	Laboratory							Transpo	orted via	Hand	Overnight
Signatur	e/Sampler:	Johnt	1 74	w							

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65; 6"-1.47; 8"-2.61; 10"-4.08

Ø	Sample Log		Development Log	🗆 🗆 Purge L	.og
---	------------	--	-----------------	-------------	-----

Project:						Site: 20	NWA-1	6			
Project N	0.					Well ID:	T49 -	MWIC	5		
		/	1 11			Data:		••••			LOGDATE
	KHeal	y M	Kelley		.		703				
Screen In Well Dian PID readi Water Le Total We Depth to	iterval (ft): neter (in.) ng (ppm): vel Indicator: Il Depth (ft): Water (ft): Liquid in Well	2-incl NA OIWater Pri Probe (PRC 9.93 5,44 Dawater (W)	to robe (INRFC) DBE)] Tape (TAPE	BEGDEPTH MEASMETH) SOUNDING STATDEPTH DRY/FTCODE	Climatic Con Purge Methon Pump placen Pump Rate (g Length of Sat Zone (ft): Pore Volume	ditions: d: nent (ft): gal/min): turated (gal):	€ sunny □ peristatio #DIV/0! 0 0.7	Cloudy	☐ rainy ☐ waterra [9.4 <u> 5.5</u> 9.4 <u> 9.4</u> <u> 9.4</u>	submersible
		DNAPL (D)	DRY (Y)						۹۰ من	16
Depth to	Product (ft.):										
					Field	Parameters				- 21	
Time	Depth to Water (fl.)	Purge Rate (gpm)	Gallons Removed	pH	Temp (C)	Cond. (mS/cm)	ORP (mV)	Turbidity (N.T.U.)	Salinity (%) D.O. (mg/L)	Comments
13:00	Pump	01		r			1	1			
13:05	5.50	#DIV/0!	0.5	6.18	30.3	1.59		352	0.07	1.92	
13:08	5.49	#DIV/0!	1.0	6,17	50,3	1159	<u> </u>	1311 1394	0.01	1,90	
13:11	5,49	#DIV/0	1.>	6.16	30.4	1,60		283	1.07	188	
13:14	5.97	#DIV/0!	0.0	0,10	<u> </u>				0/01	1.00	erenanis summer an element
		#DIV/0!						1			
		#DIV/0!	1								
		#DIV/0!									······································
		#DIV/0!									
		#DIV/0!									
		#DIV/0!	ļ								n an a su chuir ann an 11 an 11 an 11 an 11 anns an Anns an Anns 2000.
			ļ				ļ				an ragarrana an an an ar eenaad
							1				
				Comel	Developmen	t or Durge We	L ter Inform	ation			
		1 1		Sampu	e, Developilien	u, or rurge ma			1997297000.1.		
Color			. 07	<u> </u>					_		
Odor		slight ;	Sultar ,	smell.						······	
Turbidity Laborator	y Analysis	UOCs SW82	260B [8270C [<u>Nwt<i>e</i>H-i</u>] TPH-e SW&] TPH-p SW& >>, NW 1PH	3015m 3015m (- Dx w/sa , M	□ PAHs SW8310 □ PCBs SW8082 штрн-ох. и/sc) [: : : : fitat] Pest SW808	31 [51 [51 //// ////////////////////////////////	Metals SW60 Field Filtered Lead SW742 Field Filtered EPH, VPI-	D10/7000 ? Y H ? Y H ? Y N
Sample ID) 	T49- Ми T49- FD	015-1103 01-1103	~	13:20 12:45			Total No	of Bottles	мыя - FD1 - 1	10 (4\$L, 6 4 VOA) 10 M
Sample Da	ate/Time	ulalon	12.2	າ							
Notes		··· <i>•</i> -105	12.0								
Analytical	Laboratory							Trans	oorted vla	Hand	Overnight
Signatur	e/Sampler	Tob	le	IM							

.

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65, 6"-1.47; 8"-2.61; 10"-4.08

Sample Log		Development Log	Purge Log
------------	--	-----------------	-----------

		<u>ka</u>	Samp	le Log		opment Lo	ng □	Purge	Log		
Project:	JA TOSI	TPH I	westig	itim		Site: 5	when i	16			
Project N	lo:					Well ID:	T49-	Μω6			
Field Cre	W: ZHeak	y MK	den			Date: //	2/03				LOGDA
Screen Interval (ft): Well Diameter (in.) PID reading (ppm): Water Level Indicator: Total Well Depth (ft): Depth to Water (ft): Liquid in Wel Depth to Product (ft.):		2 - 14 NA Di/Water F Probe (PRC 8.04 4,11 WATER (W) DNAPL (D)	to Probe (INRFC) DBE) [] Tape (TAPE) - {L) Y)	BEGDEPTH MEASMETH SOUNDING STATDEPTH DRY/FTCODE	Climatic Conditions: Purge Method: Pump placement (ft): Pump Rate (gal/min): Length of Saturated Zone (ft): Pore Volume (gal):		x sunny □cloudy □ peristaltic □ bailer #DIV/0! 0 3.93 0.6		$\begin{bmatrix} rainy \\ waterra \\ submersible \\ \hline 9.84 \\ \hline 4.11 \\ \hline 3.93 \\ .16 \\ 03.440 \end{bmatrix}$	
Depth to	Product (ft.):									393	
					Field T	Parameters					
Time	Depth to Water (ft.)	Purge Rate (gpm)	Gallons Removed	pH	Temp (C)	Cond. (mS/cm)	ORP (mV)	Turbidity (N.T.U.)	Salinity (%)	D.O. (mg/L)	Comments .
1416	4.11	#DD (/0)					· · · ·			r	
1419	4.41	#DIV/0!	0.5	6.03	31.8	3.28		425	0.09	1.83	
1422	4,36	#DIV/0!	1.0	6.04	31,8	3.28		360	0.16	1.80	Turned pump dow
1128	4.38	#DIV/0!	10	6.04	31.8	375		550	0.16	1.79	
1431	4.38	#DIV/0!	2.5	1.06	31.8	3.24		~ 10	0.16	1.83	····· ····· · ···· · ····
		#DIV/0!	E	10.00							
		#DIV/0!						1	1		
		#DIV/0!				•					
		#DIV/0!									
		#DIV/0!						· .			
		#DIV/0!									
							<u> </u>				
				· · · · · · · · ·							and the second second second
				Sample	Development	or Purge Wat	er Informa	tion			
Color		1970 <u>9</u> - 2172072 - 64007	11111511121113119							<u> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	
Odor									•		
Turbidity											
Laboratory	y Analysis	VOCs SW82 SVOCs SW8 Other	260B [] 3270C []	ТРН-е SW80 ТРН- р SW80	115m [115m [PAHs SW8310 PCBs SW8082]Pest SW808]Herb SW815	1	Metals SW60 Field Filtered? Lead SW742 Field Filtered?	210/7000 1 Ч С N 1 С Ч С N
Sample ID	Sample ID T49 - MW6 - 1003			- (1 03				Total No.	of Bottles	10 (4 16 0 6 VOAS)
Sampie Da	ite/Time	uldo	3	14:35							
Notes		1010	,	1, 22		<u></u>					
Analytical	Laboratory							Transpo	orted via	Hand	Overnight
Signature	/Sampler:	Tob to	Ferty	/				L			

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16, 4"-0.65; 6"-1.47; 8"-2.61; 10"-4.08

Sample Log Development Log Development Log	Log	Log
--	-----	-----

		·····					. J				<u></u>	
roject:	JA TOS	I TPH	Inves	tigation		Site: St	DMUI	5				
oject	No:					Well ID:	T49 -	MW7	2			
eld Cr	ew: Rila		1.0n			Date:	112/0-	2				LOGDATE
	K Hav	1 /	ecury				1010)				
creen	Interval (ft):		to		BEGDEPTH	Climatic Con	ditions:	🔲 sunny	Cloudy	rainy		
ell Dia	imeter (in.)	2-1	nch		·····	Purge Metho	d:	peristalti	c 🔲 bailer	🗌 waterra	submersible	
ID read	ding (ppm):	NA				Pump placer	nent (ft):	~9'				
ater L	evel Indicator:	Oil/Water F	Probe (INRFC)	MEASMETH	Pump Rate (gal/min):	#DIV/0!				
		Probe (PR	ОВЕ) 🗌	Tape (TAPE)	Length of Sa	turated	0				
otal We	ell Depth (ft):	10.80 sounding			Zone (ft):		5	11.1				
epth to	Water (ft):	5.71			STATDEPTH	Pore Volume	(gal):	0.5	5 0.8	32		
	Liquid in Weli	WATER (Ŵ)	LNAP	L (L)	DRY/FTCODE				-	- 5	AI 5.1	1
	57199917-21115-35-86 million and a state of the second	DNAPL (D)	🗆 DRY (Y)							the 14	0
epth to	Product (ft.):									- TI	66 3060	6
Č S /					Field	I Parameters				11	-24	
										1774	10 .8(1)	
	Depth to	Purge Rate	Gallons			1		Turbidity				
Time	Water (ft.)	(gpm)	Removed	pН	Temp (C)	Cond. (mS/cm)	ORP (mV)	(N.T.U.)	Salinity (%)	D.O. (mg/L)	Comme	nts
514	5.71	Star	ted pu	mp								
517	6.67	#DIV/0!		10.03	30.9	33,2		758	209	2.97	decreased	pung SI
20	6.95	#DIV/0!	1.5	6.02	30.9	37.3		756	2.10	2.05	particulate a	atter in
24	7.48	#DIV/0!	2.0	600-	31.0	35.6	h		2.26	2.04	decreaned of	and speed
29	1.12	#DIV/0!	225	Flow	through co	eff not ful	<u>k yet</u>	766			Enplied Fl	on thom
32	7.15	#DIV/0!	2.4	6.02	31.0	40.6		700	2.60	1.94		
55	-1.41	#DIV/0!	2.75	6.0	31.0	42.2		701	2.71	1.88		
		#DIV/0!									•	
·		#DIV/0!	···							<u> </u>		· · · · ·
		#DIV/01				-				-		· ·
		#DIV/0!					<u> </u>				.	
							····				and a state of the sector of the sector	
					1					[
5 7 dk 7			10.000	Sample	. Developmen	t. or Purge Wat	er Informa	ilion /		532467724		
A BOR (I)	n an					CONTRACTOR		MODIALIVERI		MURRELIAU		1999년 1998년 1997년 - 1997년 19 1997년 1997년 199
		10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1								
or		perroleur	n smell	<u>.</u>								
bidity											···· · · · · · · ·	
Dorator	y Analysis		INDER IT		115m			Beet SW/8081		Motole SWG	010/7000	
				1111-0 01100		PAIls Shorto	L	Feat Swado		Field Filtered		l.
		SW8	3270C	TPH-p SW8	015m	PCBs SW8082	C	Herb SW815	1 🛛	Lead SW742 Field Fittered	21 ?	
		Other									~	1
mple ID		T49_	MW7-	1103				Total No.	of Bottles	10 1	416+61	vA.)
177-105									. <u> </u>			/
ample Date/Time 11/2/03 15:40												
otes		sheen on	water	Surface	••			1	pumpel	out we	Il monument	t
				. <u></u> .		·····			prior to a	pening	j-prug.	
nabeliael	Laboratory				<u> </u>			Turner	unto al sul s			
narytical	Laboratory							ranspo		Hand	Overnight	
		TP1	~1/	7						.		
gnatun	e/Sampler:	10h	<u> </u>	M								
_			~ ~ ~	12								

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.6876"-1.47; 8"-2.61; 10"-4.08

,

}	Sample Log		Development Log		Purge l	_og
---	------------	--	-----------------	--	---------	-----

	9	Sampl	e Log		opment Lo	g 🗆	Purge L	.og			
Project: JA TO51 Project No:	TPH J	nvestig	itri-		Site: 🖧	UMU 1. 49 -	6 MW5				
Field Crew: 744each	n eu Ke	flen			Date: ij	3/03	• • •				LOGDATE
Screen Interval (ft): Well Diameter (in.) PID reading (ppm): Water Level Indicator: Total Well Depth (ft): Depth to Water (ft): Liquid in Well Depth to Product (ft.):	2.'' ∧/A □ Oil/Water Pr □ Probe (PRO 12.\ 1 5.56 ⊠ WATER (W) □ DNAPL (D)	to obe (INRFC) BE)	Tape (TAPE) (L) ()	BEGDEPTH Climatic Conditions: Purge Method: Pump placement (ft): Pump Rate (gal/min): Length of Saturated SOUNDING Zone (ft): STATDEPTH Pore Volume (gal): DRY/FTCODE			peristaltic ☐ peristaltic A b #DIV/0! 0 1. }	☐doudy ☐bailer †oc	$ \begin{array}{c} \hline rainy \\ \hline waterra \\ \hline submersible \\ \hline 13,11 \\ \underline{5.56} \\ \hline 6.55 \\ \hline 6.55 \\ \hline 42,30 \\ \hline 42,30 \\ \hline 95 \\ \hline 67 \overline{P} \ 0 \\ \end{array} $		
				Field	Parameters						
Depth to	Purge Rate	Gallons	44	Temp (C)	Cond (mS/cm)	OBP (mV)	Turbidity (N.T.U.)	Salinity (%)	0.0. (ma/L)	Commen	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	0n 0.5 1.0 2.0 2.5 3.9 4.0	6.88 6.96 1.24 6.97 7.30 6.42 6.42 6.42 6.43	30.4 30.5 30.6 30.6 30.6 30.6 30.6 30.6 30.6	25.5 25.7 26.5 26.5 26.6 26.6 26.7	et informa	602 601 613 627 638 689 689 652	1.54 1.57 1.62 1.63 1.64 1.64 1.65	2.08 1.93 1.91 1.91 1.90 1.90 1.90		
Turbidity Laboratory Analysis Sample ID Sample Date/Time Notes	∑wlfiu □vocs SW82 □SVOCs SW82 □Other √40 11 3 (0	<u>>mell</u> 60B [8270C [<u>NWTPH-D</u> 7 - Mu]tph-e SW8(]tph-p SW8(<u>x, Muteu</u> 15 - [] 10:1	015m 015m (-Dx <i>w/so</i> , 0 ⁻ 3 5	□ PAHs SW8310 □ PCBs SW8082 	[w/sc +]Pest SW808]Herb SW815 Gfratin, Total No.	1	Metals SW60 Field Filtered Field SW742 Field Filtered TPH-Cx,)10/7000 1 Y I N 1 I Y I N VP#	-
Analytical Laboratory							Transp	orted vla	Hand	Overnight	
Signature/Sampler:											

Capacity of Casing (gal/linear feet): 1"-0.041; 2"-0.16; 4"-0.65; 6"-1.47; 8"-2.61; 10"-4.08

.

United States Air Force 15th Airlift Wing Environmental Restoration Program

Final

TPH Action Level Derivation Report Johnston Atoll

Appendix C Analytical Results

Appendix C: Analytical Results

This appendix presents the laboratory report containing the analytical results, including chromatograms, for the soil and groundwater samples collected at the SWMUs and AOCs.

Laboratory Report Forms

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

24 November 2003

Jeff Cotter CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 RE: Johnson Atoll TPH Investigation

Enclosed are the results of analyses for samples received by the laboratory on 11/06/03 09:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brad Meadows For John Clawson Project Manager

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation

Reported: 11/24/03 07:41

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Jeff Cotter

Project Number: 179600.05.01.01

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SWM-MW22-1103	B3K0154-01	Water	11/01/03 14:25	11/06/03 09:45
T49-FD1-1103	B3K0154-02	Water	11/02/03 12:45	11/06/03 09:45
T49-MW15-1103	B3K0154-03	Water	11/02/03 13:20	11/06/03 09:45
T49-TB15-1103	B3K0154-04	Water	11/02/03 15:15	11/06/03 09:45
T49-TP105	B3K0154-05	Soil	10/31/03 14:05	11/06/03 09:45
T49-TPFDI	B3K0154-06	Soil	10/31/03 14:30	11/06/03 09:45
T49-TP102	B3K0154-07	Soil	10/31/03 14:45	11/06/03 09:45
T49-TP101	B3K0154-08	Soil	10/31/03 15:05	11/06/03 09:45
Leachate of T49-TP101	B3K0154-09	Water	11/13/03 14:58	11/06/03 09:45
T49-TP103	B3K0154-10	Soil	10/31/03 15:45	11/06/03 09:45
T49-TP104	B3K0154-11	Soil	10/31/03 16:00	11/06/03 09:45
Leachate of T49-TP104	B3K0154-12	Water	11/13/03 14:58	11/06/03 09:45
SWM-TP102	B3K0154-13	Soil	11/01/03 09:10	11/06/03 09:45
SWM-TP103	B3K0154-14	Soil	11/01/03 09:55	11/06/03 09:45
SWM-TP101	B3K0154-15	Soil	11/01/03 10:50	11/06/03 09:45
SWM-TP104	B3K0154-16	Soil	11/01/03 11:25	11/06/03 09:45
SWM-TP105	B3K0154-17	Soil	11/01/03 13:30	11/06/03 09:45
SWM-MW20-1103	B3K0154-18	Water	11/02/03 10:30	11/06/03 09:45
FW-MW3D-1103	B3K0154-19	Water	11/02/03 11:50	11/06/03 09:45
FW-TB3D-1103	B3K0154-20	Water	11/02/03 12:50	11/06/03 09:45
T49-MW6-1103	B3K0154-21	Water	11/02/03 14:35	11/06/03 09:45
T49-MW7-1103	B3K0154-22	Water	11/02/03 15:40	11/06/03 09:45
T49-MW5-1103	B3K0154-23	Water	11/03/03 10:15	11/06/03 09:45
T49-TB5-1103	B3K0154-24	Water	11/03/03 11:40	11/06/03 09:45
SWM-MW21-1103	B3K0154-25	Water	11/02/03 08:40	11/06/03 09:45
SWM-TB-21-1103	B3K0154-26	Water	11/03/03 08:40	11/06/03 09:45
SWM-MW20-1103 Filtered	B3K0154-27	Water	11/02/03 10:30	11/06/03 09:45
T49-MW6-1103 Filtered	B3K0154-28	Water	11/02/03 14:35	11/06/03 09:45
T49-MW7-1103 Filtered	B3K0154-29	Water	11/02/03 15:40	11/06/03 09:45

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Jeff Cotter

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
T49-MW5-1103 Filtered	B3K0154-30	Water	11/03/03 10:15	11/06/03 09:45

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brad Meadows For John Clawson, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 2 of 55

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Project Manager: Jeff Cotter

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW22-1103 (B3K0154-01) Wat	er Sampled	: 11/01/03 14	1:25 Receiv	ved: 11/06/0)3 09:45				A-01
Gasoline Range Hydrocarbons	622	100	ug/l	2	3K10007	11/11/03	11/11/03	NWTPH-Gx	D
Surrogate: 4-BFB (FID)	126 %	62-127			"	"	"	"	
T49-FD1-1103 (B3K0154-02) Water	Sampled: 11/	02/03 12:45	Received:	1/06/03 09	:45				A-01
Gasoline Range Hydrocarbons	358	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	83.5 %	62-127			"	"	"	"	
T49-MW15-1103 (B3K0154-03) Water	Sampled:	1/02/03 13:2	20 Received	1: 11/06/03	09:45				A-01
Gasoline Range Hydrocarbons	122	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	91.9 %	62-127			"	"	"	"	
T49-TB15-1103 (B3K0154-04) Water	Sampled: 11	/02/03 15:15	Received:	11/06/03 0	9:45				A-01
Gasoline Range Hydrocarbons	20.3	50.0	ug/l	1	3K10007	11/11/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	102 %	62-127			"	"	"	"	
T49-TPFDI (B3K0154-06) Soil Samp	oled: 10/31/03	14:30 Rece	eived: 11/06/	03 09:45					A-01
Gasoline Range Hydrocarbons	30.1	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	90.6 %	52-123			"	"	"	"	
T49-TP102 (B3K0154-07) Soil Samp	led: 10/31/03	14:45 Recei	ived: 11/06/	03 09:45					A-01
Gasoline Range Hydrocarbons	29.9	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	88.8 %	52-123			"	"	"	"	
T49-TP101 (B3K0154-08) Soil Samp	led: 10/31/03	15:05 Recei	ived: 11/06/	03 09:45					A-01
Gasoline Range Hydrocarbons	1.08	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	88.3 %	52-123			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Project Manager: Jeff Cotter

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Leachate of T49-TP101 (B3K0154-09) Water Sar	npled: 11/13/	03 14:58 R	eceived: 11	/06/03 09:	45			A-01
Gasoline Range Hydrocarbons 13.1	50.0	ug/l	1	3K20042	11/20/03	11/20/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID) 99.8 %	62-127			"	"	"	"	
T49-TP103 (B3K0154-10) Soil Sampled: 10/31/03	15:45 Rece	ived: 11/06/	03 09:45					A-01
Gasoline Range Hydrocarbons 0.633	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID) 82.6 %	52-123			"	"	"	"	
T49-TP104 (B3K0154-11) Soil Sampled: 10/31/03	16:00 Rece	ived: 11/06/	03 09:45					A-01
Gasoline Range Hydrocarbons 1230	50.0	mg/kg dry	10	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01, D
Surrogate: 4-BFB (FID) %	52-123			"	"	"	"	S-01, D
Leachate of T49-TP104 (B3K0154-12) Water Sar	npled: 11/13/	03 14:58 R	eceived: 11	/06/03 09:	45			A-01
Gasoline Range Hydrocarbons 31.4	50.0	ug/l	1	3K20042	11/20/03	11/20/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID) 97.7 %	62-127			"	"	"	"	
SWM-TP102 (B3K0154-13) Soil Sampled: 11/01/	03 09:10 Re	ceived: 11/0	6/03 09:45					A-01
Gasoline Range Hydrocarbons 25.6	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID) 100 %	52-123			"	"	"	"	
SWM-TP103 (B3K0154-14) Soil Sampled: 11/01/	03 09:55 Re	ceived: 11/0	6/03 09:45					A-01
Gasoline Range Hydrocarbons 4.68	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID) 888.5 %	52-123			"	"	"	"	
SWM-TP101 (B3K0154-15) Soil Sampled: 11/01/	03 10:50 Re	ceived: 11/0	6/03 09:45					A-01
Gasoline Range Hydrocarbons 343	20.0	mg/kg dry	4	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01, D
Surrogate: 4-BFB (FID) 174 %	52-123			"	"	"	"	S-04, D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP104 (B3K0154-16) Soil S	Sampled: 11/01/0	3 11:25 Rec	ceived: 11/0	6/03 09:45					A-01
Gasoline Range Hydrocarbons	5.68	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	87.3 %	52-123			"	"	"	"	
SWM-TP105 (B3K0154-17) Soil S	Sampled: 11/01/0	3 13:30 Red	eived: 11/0	6/03 09:45					A-01
Gasoline Range Hydrocarbons	1.42	5.00	mg/kg dry	1	3K10012	11/10/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	89.7 %	52-123			"	"	"	"	
SWM-MW20-1103 (B3K0154-18) V	Vater Sampled	: 11/02/03 10	:30 Receiv	red: 11/06/0)3 09:45				A-01
Gasoline Range Hydrocarbons	561	100	ug/l	2	3K10007	11/11/03	11/11/03	NWTPH-Gx	D
Surrogate: 4-BFB (FID)	97.7 %	62-127			"	"	"	"	
FW-MW3D-1103 (B3K0154-19) Wa	ater Sampled:	11/02/03 11:5	50 Receive	d: 11/06/03	09:45				A-01
Gasoline Range Hydrocarbons	50.5	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	92.1 %	62-127			"	"	"	"	
FW-TB3D-1103 (B3K0154-20) Wat	er Sampled: 1	1/02/03 12:50	Received	: 11/06/03 (9:45				A-01
Gasoline Range Hydrocarbons	20.9	50.0	ug/l	1	3K10007	11/11/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	101 %	62-127			"	"	"	"	
T49-MW6-1103 (B3K0154-21) Wat	er Sampled: 11	1/02/03 14:35	Received	11/06/03 (9:45				A-01
Gasoline Range Hydrocarbons	341	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	G-01
Surrogate: 4-BFB (FID)	112 %	62-127			"	"	"	"	
T49-MW7-1103 (B3K0154-22) Wat	er Sampled: 1	1/02/03 1 <u>5</u> :40	Received:	11/06/03 (9:45				A-01
Gasoline Range Hydrocarbons	50.1	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	80.4 %	62-127			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Project Manager: Jeff Cotter

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-MW5-1103 (B3K0154-23) Water	Sampled: 11	1/03/03 10:15	Received	l: 11/06/03 ()9:45				A-01
Gasoline Range Hydrocarbons	35.2	50.0	ug/l	1	3K12053	11/12/03	11/12/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	86.0 %	62-127			"	"	"	"	
T49-TB5-1103 (B3K0154-24) Water Sa	mpled: 11/	03/03 11:40 F	Received:	11/06/03 09	:45				A-01
Gasoline Range Hydrocarbons	17.4	50.0	ug/l	1	3K10007	11/11/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	99.6 %	62-127			"	"	"	"	
SWM-MW21-1103 (B3K0154-25) Water	Sampled	: 11/02/03 08:4	40 Recei	ived: 11/06/0	03 09:45				A-01
Gasoline Range Hydrocarbons	282	100	ug/l	2	3K10007	11/11/03	11/11/03	NWTPH-Gx	D
Surrogate: 4-BFB (FID)	86.2 %	62-127			"	"	"	"	
SWM-TB-21-1103 (B3K0154-26) Water	Sampled:	11/03/03 08:4	0 Receiv	ved: 11/06/0	3 09:45				A-01
Gasoline Range Hydrocarbons	21.1	50.0	ug/l	1	3K10007	11/11/03	11/11/03	NWTPH-Gx	J
Surrogate: 4-BFB (FID)	104 %	62-127			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW22-1103 (B3K0154-01) Water	r Sampled	: 11/01/03 14:25	5 Recei	ved: 11/06/0	03 09:45				A-01
C5-C6 Aliphatics	28.5	100	ug/l	2	3K10009	11/13/03	11/13/03	WA MTCA-VPH	D, J
C6-C8 Aliphatics	131	100	"	"	"	"	"	"	D
C8-C10 Aliphatics	ND	100	"	"	"	"	"	"	D, U
C8-C10 Aromatics	32.6	100	"	"	"	"	"	"	D, J
C12-C13 Aromatics	144	100	"	"	"	"	"	"	D
Total VPH (TVPH)	336	500	"	"	"	"	"	"	D, J
Surrogate: 4-BFB (FID)	120 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	105 %	60-140			"	"	"	"	
T49-FD1-1103 (B3K0154-02) Water S	ampled: 11/	02/03 12:45 R	eceived:	11/06/03 09	:45				A-01
C5-C6 Aliphatics	1.12	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	J
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	48.6	50.0		"	"	"	"	"	J
C12-C13 Aromatics	285	50.0		"	"	"	"	"	
Total VPH (TVPH)	335	250		"		"	"	"	
Surrogate: 4-BFB (FID)	90.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.0 %	60-140			"	"	"	"	
T49-MW15-1103 (B3K0154-03) Water	Sampled:	11/02/03 13:20	Receive	ed: 11/06/03	09:45				A-01
C5-C6 Aliphatics	ND	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	16.4	50.0		"	"	"	"	"	J
C12-C13 Aromatics	269	50.0		"	"	"	"	"	
Total VPH (TVPH)	285	250		"	"	"	"	"	
Surrogate: 4-BFB (FID)	91.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.0 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-TPFDI (B3K0154-06) Soil	Sampled: 10/31/03	14:30 Rece	eived: 11/06/	03 09:45					A-01
C5-C6 Aliphatics	0.0343	5.00	mg/kg dry	1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	J
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	0.516	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	186	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	187	25.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	84.1 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.7 %	60-140			"	"	"	"	
T49-TP102 (B3K0154-07) Soil	Sampled: 10/31/03	14:45 Rece	ived: 11/06/0	3 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dry	1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	1.08	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	107	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	108	25.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	72.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	95.2 %	60-140			"	"	"	"	
<u>T49-TP101 (B3K0154-08) Soil</u>	Sampled: 10/31/03	15:05 Rece	ived: 11/06/0	3 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dry	1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	5.00		"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	ND	5.00	"	"	"	"	"	"	U
C12-C13 Aromatics	16.2	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	16.2	25.0	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	83.1 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.9 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Leachate of T49-TP101 (B3K0)	154-09) Water Sam	pled: 11/13/	03 14:58	Received: 11	/06/03 09:	45			A-01
C5-C6 Aliphatics	ND	50.0	ug/l	1	3K14014	11/14/03	11/20/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	ND	50.0	"	"	"	"	"	"	U
C12-C13 Aromatics	7.35	50.0	"	"	"	"	"	"	J
Total VPH (TVPH)	7.35	250	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	84.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	94.8 %	60-140			"	"	"	"	
T49-TP103 (B3K0154-10) Soil	Sampled: 10/31/03	15:45 Recei	ived: 11/0	6/03 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dı	ry 1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	ND	5.00	"	"	"	"	"	"	U
C12-C13 Aromatics	1.32	5.00	"	"	"	"	"	"	J
Total VPH (TVPH)	1.32	25.0	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	81.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	93.7 %	60-140			"	"	"	"	
<u>T49-TP104 (B3K0154-11) Soil</u>	Sampled: 10/31/03	16:00 Recei	ived: 11/0	6/03 09:45					A-01
C5-C6 Aliphatics	ND	50.0	mg/kg dı	ry 10	3K10012	11/10/03	11/12/03	WA MTCA-VPH	D, U
C6-C8 Aliphatics	0.873	50.0	"	"	"	"	"	"	D, J
C8-C10 Aliphatics	38.9	50.0	"	"	"	"	"	"	D, J
C8-C10 Aromatics	79.1	50.0	"	"	"	"	"	"	D
C12-C13 Aromatics	1540	50.0	"	"	"	"	"	"	D
Total VPH (TVPH)	1660	250	"	"	"	"	"	"	D
Surrogate: 4-BFB (FID)	%	60-140			"	"	"	"	S-01, D
Surrogate: 4-BFB (PID)	%	60-140			"	"	"	"	S-01, D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Leachate of T49-TP104 (B3K015	4-12) Water Sam	pled: 11/13/	03 14:58	Received: 11	/06/03 09:	45			A-01
C5-C6 Aliphatics	ND	50.0	ug/l	1	3K14014	11/14/03	11/21/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	ND	50.0	"	"		"	"	"	U
C12-C13 Aromatics	13.5	50.0	"	"	"	"	"	"	J
Total VPH (TVPH)	13.5	250	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	87.7 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	94.0 %	60-140			"	"	"	"	
SWM-TP102 (B3K0154-13) Soil	Sampled: 11/01/0	03 09:10 Re	ceived: 11	/06/03 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dr	y 1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	1.74	5.00	"	"	"	"	"	"	J
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	3.91	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	51.6	5.00	"	"	"	"	"	"	
Total VPH (TVPH)	57.3	25.0	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	93.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	103 %	60-140			"	"	"	"	
SWM-TP103 (B3K0154-14) Soil	Sampled: 11/01/0	03 09:55 Re	ceived: 11	/06/03 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dr	y 1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	0.122	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	3.73	5.00	"	"		"	"	"	J
Total VPH (TVPH)	3.85	25.0	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	75.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.4 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP101 (B3K0154-15) Soil	Sampled: 11/01/0	3 10:50 Re	ceived: 11/06	5/03 09:45					A-01
C5-C6 Aliphatics	ND	20.0	mg/kg dry	4	3K10012	11/10/03	11/12/03	WA MTCA-VPH	D, U
C6-C8 Aliphatics	1.88	20.0	"	"	"	"	"	"	D, J
C8-C10 Aliphatics	14.5	20.0	"	"	"	"	"	"	D, J
C8-C10 Aromatics	22.1	20.0	"	"	"	"	"	"	D
C12-C13 Aromatics	366	20.0	"	"	"	"	"	"	D
Total VPH (TVPH)	404	100	"	"	"	"	"	"	D
Surrogate: 4-BFB (FID)	195 %	60-140			"	"	"	"	S-04, D
Surrogate: 4-BFB (PID)	107 %	60-140			"	"	"	"	D
SWM-TP104 (B3K0154-16) Soil	Sampled: 11/01/0	3 11:25 Re	ceived: 11/06	5/03 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dry	1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	0.123	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	0.754	5.00	"	"	"	"	"	"	J
Total VPH (TVPH)	0.877	25.0	"	"		"	"	"	J
Surrogate: 4-BFB (FID)	82.5 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	82.3 %	60-140			"	"	"	"	
SWM-TP105 (B3K0154-17) Soil	Sampled: 11/01/0	3 13:30 Re	ceived: 11/06	5/03 09:45					A-01
C5-C6 Aliphatics	ND	5.00	mg/kg dry	1	3K10012	11/10/03	11/12/03	WA MTCA-VPH	U
C6-C8 Aliphatics	0.0697	5.00		"	"	"	"	"	J
C8-C10 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C8-C10 Aromatics	0.134	5.00	"	"	"	"	"	"	J
C12-C13 Aromatics	0.235	5.00	"	"	"	"	"	"	J
Total VPH (TVPH)	0.439	25.0	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	78.1 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	79.6 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW20-1103 (B3K0154-18) Water	r Sampled	: 11/02/03 10:3	0 Recei	ved: 11/06/(03 09:45				A-01
C5-C6 Aliphatics	39.2	100	ug/l	2	3K10009	11/13/03	11/13/03	WA MTCA-VPH	D, J
C6-C8 Aliphatics	140	100	"	"	"	"	"	"	D
C8-C10 Aliphatics	ND	100	"	"	"	"	"	"	D, U
C8-C10 Aromatics	31.4	100	"	"	"	"	"	"	D, J
C12-C13 Aromatics	176	100	"	"	"	"	"	"	D
Total VPH (TVPH)	386	500	"	"	"	"	"	"	D, J
Surrogate: 4-BFB (FID)	81.9 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	88.1 %	60-140			"	"	"	"	
FW-MW3D-1103 (B3K0154-19) Water	Sampled:	11/02/03 11:50	Receiv	ed: 11/06/03	09:45				A-01
C5-C6 Aliphatics	ND	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	6.35	50.0	"	"	"	"	"	"	J
C12-C13 Aromatics	87.4	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	93.7	250	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	92.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	99.4 %	60-140			"	"	"	"	
T49-MW6-1103 (B3K0154-21) Water	Sampled: 11	1/02/03 14:35	Received	l: 11/06/03 (9:45				A-01
C5-C6 Aliphatics	3.84	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	J
C6-C8 Aliphatics	10.0	50.0	"	"	"	"	"	"	J
C8-C10 Aliphatics	8.07	50.0	"	"	"	"	"	"	J
C8-C10 Aromatics	40.8	50.0	"	"	"	"	"	"	J
C12-C13 Aromatics	400	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	463	250	"	"	"	"	"	"	
Surrogate: 4-BFB (FID)	115 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	107 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

Project Manager: Jeff Cotter

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-MW7-1103 (B3K0154-22) Water	Sampled: 11	1/02/03 15:40	Received	l: 11/06/03 (9:45				A-01
C5-C6 Aliphatics	ND	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	U
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	1.77	50.0	"	"	"	"	"	"	J
C8-C10 Aromatics	4.70	50.0	"	"	"	"	"	"	J
C12-C13 Aromatics	129	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	136	250	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	94.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	96.9 %	60-140			"	"	"	"	
T49-MW5-1103 (B3K0154-23) Water	Sampled: 11	1/03/03 10:15	Received	I: 11/06/03 (9:45				A-01
C5-C6 Aliphatics	4.44	50.0	ug/l	1	3K10009	11/13/03	11/13/03	WA MTCA-VPH	J
C6-C8 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aliphatics	ND	50.0	"	"	"	"	"	"	U
C8-C10 Aromatics	8.22	50.0	"	"	"	"	"	"	J
C12-C13 Aromatics	61.6	50.0	"	"	"	"	"	"	
Total VPH (TVPH)	74.2	250	"	"	"	"	"	"	J
Surrogate: 4-BFB (FID)	80.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	94.6 %	60-140			"	"	"	"	
SWM-MW21-1103 (B3K0154-25) Wat	er Sampled	: 11/02/03 08:	40 Recei	ved: 11/06/0)3 09:45				A-01
C5-C6 Aliphatics	63.2	100	ug/l	2	3K10009	11/13/03	11/13/03	WA MTCA-VPH	D, J
C6-C8 Aliphatics	116	100	"	"	"	"	"	"	D
C8-C10 Aliphatics	ND	100	"	"	"	"	"	"	D, U
C8-C10 Aromatics	20.8	100	"	"	"	"	"	"	D, J
C12-C13 Aromatics	19.3	100	"	"	"	"	"	"	D, J
Total VPH (TVPH)	220	500	"	"	"	"	"	"	D, J
Surrogate: 4-BFB (FID)	91.5 %	60-140			"	"	"	"	
Surrogate: 4-BFB (PID)	92.3 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						_F 3 w			
<u>SWM-MW22-1103 (B3K0154-01) Wa</u>	ter Sampled	: 11/01/03 14	4:25 Receiv	red: 11/06/0	03 09:45				A-01
Diesel Range Hydrocarbons	0.830	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.292	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	88.6 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	91.8 %	60-140			"	"	"	"	
T49-FD1-1103 (B3K0154-02) Water	Sampled: 11/	02/03 12:45	Received: 1	1/06/03 09	:45				A-01
Diesel Range Hydrocarbons	10.7	1.25	mg/l	5	3K06062	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	1.11	0.500	"	1	"	"	11/09/03	"	D-06
Surrogate: o-Terphenvl	116 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	99.0 %	60-140			"	"	"	"	
T49-MW15-1103 (B3K0154-03) Wate	r Sampled:	11/02/03 13:2	20 Received	l: 11/06/03	09:45				A-01
Diesel Range Hydrocarbons	6.66	1.25	mg/l	5	3K06062	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	0.732	0.500	"	1	"	"	11/09/03	"	D-06
Surrogate: o-Terphenyl	123 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	113 %	60-140			"	"	"	"	
T49-TPFDI (B3K0154-06) Soil Sam	pled: 10/31/03	14:30 Rece	eived: 11/06/	03 09:45					A-01
Diesel Range Hydrocarbons	11000	1000	mg/kg dry	100	3K06061	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	ND	2500	"	"	"	"	"	"	D, U
Surrogate: o-Terphenvl	%	60-140			"	"	"	"	S-01, D
Surrogate: 1-Chlorooctadecane	%	60-140			"	"	"	"	S-01, D
T49-TP102 (B3K0154-07) Soil Sam	oled: 10/31/03	14:45 Rece	ived: 11/06/	03 09:45					A-01
Diesel Range Hydrocarbons	11900	1000	mg/kg dry	100	3K06061	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	962	2500	"	"	"	"	"	"	D, J
Surrogate: o-Terphenvl	114 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	%	60-140			"	"	"	"	S-01. D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Pagult	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Anaryte	Result	Liiiit	Onits	Difution	Daten	Trepareu	Anaryzeu	Wiethod	notes
T49-TP101 (B3K0154-08) Soil	Sampled: 10/31/03	15:05 Rece	ived: 11/06/()3 09:45					A-01
Diesel Range Hydrocarbons	716	50.0	mg/kg dry	5	3K06061	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	292	125	"	"	"	"	"	"	D
Surrogate: o-Terphenyl	94.3 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	79.9 %	60-140			"	"	"	"	D
Leachate of T49-TP101 (B3K01	54-09) Water Sam	pled: 11/13/	03 14:58 Ro	eceived: 11	/06/03 09:	45			A-01
Diesel Range Hydrocarbons	0.477	0.250	mg/l	1	3K14017	11/14/03	11/19/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.309	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	90.5 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	90.2 %	60-140			"	"	"	"	
T49-TP103 (B3K0154-10) Soil	Sampled: 10/31/03	15:45 Rece	ived: 11/06/()3 09:45					A-01
Diesel Range Hydrocarbons	116	10.0	mg/kg dry	1	3K06061	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	65.2	25.0	"	"	"	"	"	"	
Surrogate: o-Terphenyl	98.2 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	97.5 %	60-140			"	"	"	"	
T49-TP104 (B3K0154-11) Soil	Sampled: 10/31/03	16:00 Rece	ived: 11/06/()3 09:45					A-01
Diesel Range Hydrocarbons	40500	2000	mg/kg dry	200	3K06061	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	ND	5000	"	"		"	"	"	D, U
Surrogate: o-Terphenyl	%	60-140			"	"	"	"	S-01, D
Surrogate: 1-Chlorooctadecane	%	60-140			"	"	"	"	S-01, D
Leachate of T49-TP104 (B3K01	54-12) Water Sam	pled: 11/13/	03 14:58 R	eceived: 11	/06/03 09:	45			A-01
Diesel Range Hydrocarbons	5.51	0.500	mg/l	2	3K14017	11/14/03	11/19/03	NWTPH-Dx	D-06, D
Lube Oil Range Hydrocarbons	0.284	0.500	"	1	"	"	11/19/03	"	J
Surrogate: o-Terphenyl	107 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	92.6%	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Project Manager: Jeff Cotter

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP102 (B3K0154-13) Soil	Sampled: 11/01/0	3 09:10 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range Hydrocarbons	188	10.0	mg/kg dry	1	3K06061	11/06/03	11/07/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	22.3	25.0	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	92.7 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	97.0 %	60-140			"	"	"	"	
SWM-TP103 (B3K0154-14) Soil	Sampled: 11/01/0	3 09:55 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range Hydrocarbons	12.3	10.0	mg/kg dry	1	3K06061	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	U
Surrogate: o-Terphenyl	94.6 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	97.6 %	60-140			"	"	"	"	
SWM-TP101 (B3K0154-15) Soil	Sampled: 11/01/0	3 10:50 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range Hydrocarbons	2100	100	mg/kg dry	10	3K06061	11/06/03	11/09/03	NWTPH-Dx	D
Lube Oil Range Hydrocarbons	ND	250	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	109 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	126 %	60-140			"	"	"	"	D
SWM-TP104 (B3K0154-16) Soil	Sampled: 11/01/0	3 11:25 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range Hydrocarbons	116	10.0	mg/kg dry	1	3K06061	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	17.3	25.0	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	93.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	95.6 %	60-140			"	"	"	"	
SWM-TP105 (B3K0154-17) Soil	Sampled: 11/01/0	3 13:30 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range Hydrocarbons	3.08	10.0	mg/kg dry	1	3K06061	11/06/03	11/09/03	NWTPH-Dx	J
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	U
Surrogate: o-Terphenyl	93.2 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	93.2 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW20-1103 (B3K0154-18) Wate	er Sampled	: 11/02/03 10:	30 Recei	ved: 11/06/0	03 09:45				A-01
Diesel Range Hydrocarbons	0.823	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.236	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	94.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	91.1 %	60-140			"	"	"	"	
FW-MW3D-1103 (B3K0154-19) Water	Sampled:	11/02/03 11:50	Receive	ed: 11/06/03	09:45				A-01
Diesel Range Hydrocarbons	1.49	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.342	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	92.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	92.6 %	60-140			"	"	"	"	
T49-MW6-1103 (B3K0154-21) Water	Sampled: 11	1/02/03 14:35	Received	l: 11/06/03 (9:45				A-01
Diesel Range Hydrocarbons	0.832	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.186	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	94.5 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	92.4 %	60-140			"	"	"	"	
T49-MW7-1103 (B3K0154-22) Water	Sampled: 11	1/02/03 15:40	Received	I: 11/06/03 (9:45				A-01
Diesel Range Hydrocarbons	4.99	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.443	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	99.5 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	96.0 %	60-140			"	"	"	"	
T49-MW5-1103 (B3K0154-23) Water	Sampled: 1	1/03/03 10:15	Received	l: 11/06/03 (9:45				A-01
Diesel Range Hydrocarbons	0.339	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.159	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	97.0 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	96.8 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW21-1103 (B3K0154-25) Water	Sampled	: 11/02/03 08:	40 Recei	ved: 11/06/0	03 09:45	-	-		4-01
Diesel Range Hydrocarbons	1.25	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.204	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenvl	98.6 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	98.6 %	60-140			"	"	"	"	
SWM-MW20-1103 Filtered (B3K0154-27) Water	Sampled: 11/	02/03 10:3	0 Received	d: 11/06/03	3 09:45			A-01
Diesel Range Hydrocarbons	2.19	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.237	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	86.3 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	86.3 %	60-140			"	"	"	"	
T49-MW6-1103 Filtered (B3K0154-28) W	Vater Sar	npled: 11/02/	03 14:35	Received: 1	1/06/03 09	9:45			A-01
Diesel Range Hydrocarbons	0.589	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	
Lube Oil Range Hydrocarbons	0.136	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	87.9 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	90.5 %	60-140			"	"	"	"	
T49-MW7-1103 Filtered (B3K0154-29) W	Vater Sar	npled: 11/02/	03 15:40	Received: 1	1/06/03 09	9:45			A-01
Diesel Range Hydrocarbons	0.568	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenvl	89.5 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	86.9 %	60-140			"	"	"	"	
T49-MW5-1103 Filtered (B3K0154-30) W	Vater Sar	npled: 11/03/	03 10:15	Received: 1	1/06/03 09	9:45			A-01
Diesel Range Hydrocarbons	1.24	0.250	mg/l	1	3K06062	11/06/03	11/09/03	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	0.158	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	94.5 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	96.0 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW22-1103 (B3K0154-01) Wate	r Sampled	• 11/01/03 14	1·25 Receiv	ed• 11/06/0	13 09.45	1			A 01
Diesel Range (SCCII)	0 209	0 250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	<u>A-01</u>
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenvl (SGCU)	83.2 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	87.4 %	60-140			"	"	"	"	
T49-FD1-1103 (B3K0154-02) Water S	ampled: 11/	02/03 12:45	Received: 1	1/06/03 09	:45				A-01
Diesel Range (SGCU)	3.83	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	0.168	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl (SGCU)	117 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	112 %	60-140			"	"	"	"	
T49-MW15-1103 (B3K0154-03) Water	Sampled: 1	11/02/03 13:2	20 Received	l: 11/06/03	09:45				A-01
Diesel Range (SGCU)	1.84	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	0.149	0.500	"	"	"	"	"	"	J
Surrogate: o-Terphenyl (SGCU)	87.9 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	88.6 %	60-140			"	"	"	"	
T49-TPFDI (B3K0154-06) Soil Sample	ed: 10/31/03	14:30 Rece	eived: 11/06/	03 09:45					A-01
Diesel Range (SGCU)	10200	400	mg/kg dry	40	3K06061	11/06/03	11/10/03	NWTPH-Dx	D
Lube Oil Range (SGCU)	591	1000	"	"	"	"	"	"	D, J
Surrogate: o-Terphenyl (SGCU)	89.6 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane (SGCU	101 %	60-140			"	"	"	"	D
T49-TP102 (B3K0154-07) Soil Sample	d: 10/31/03	14:45 Rece	ived: 11/06/(3 09:45					A-01
Diesel Range (SGCU)	11100	400	mg/kg dry	40	3K06061	11/06/03	11/10/03	NWTPH-Dx	D
Lube Oil Range (SGCU)	779	1000	"	"	"	"	"	"	D, J
Surrogate: o-Terphenyl (SGCU)	83.8 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane (SGCU	116 %	60-140			"	"	"	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-TP101 (B3K0154-08) Soil Sample	d: 10/31/03	15:05 Recei	ived: 11/06/0	3 09:45					A-01
Diesel Range (SGCU)	558	20.0	mg/kg dry	2	3K06061	11/06/03	11/11/03	NWTPH-Dx	D
Lube Oil Range (SGCU)	132	25.0	"	1	"	"	11/10/03	"	
Surrogate: o-Terphenyl (SGCU)	106 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	<i>93</i> .7 %	60-140			"	"	"	"	
Leachate of T49-TP101 (B3K0154-09) W	Vater Sam	pled: 11/13/0	03 14:58 Re	eceived: 11	/06/03 09:	45			A-01
Diesel Range (SGCU)	ND	0.250	mg/l	1	3K14017	11/14/03	11/19/03	NWTPH-Dx	U
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	81.7 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	86.9 %	60-140			"	"	"	"	
T49-TP103 (B3K0154-10) Soil Sample	d: 10/31/03	15:45 Recei	ived: 11/06/0	3 09:45					A-01
Diesel Range (SGCU)	103	10.0	mg/kg dry	1	3K06061	11/06/03	11/10/03	NWTPH-Dx	
Lube Oil Range (SGCU)	43.1	25.0	"	"	"	"	"	"	
Surrogate: o-Terphenyl (SGCU)	107 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	108 %	60-140			"	"	"	"	
T49-TP104 (B3K0154-11) Soil Sample	d: 10/31/03	16:00 Recei	ived: 11/06/0	3 09:45					A-01
Diesel Range (SGCU)	38500	2000	mg/kg dry	200	3K06061	11/06/03	11/10/03	NWTPH-Dx	D
Lube Oil Range (SGCU)	ND	5000	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl (SGCU)	%	60-140			"	"	"	"	S-01, D
Surrogate: 1-Chlorooctadecane (SGCU	%	60-140			"	"	"	"	S-01, D
Leachate of T49-TP104 (B3K0154-12) W	Vater Sam	pled: 11/13/0	03 14:58 Re	eceived: 11	/06/03 09:	45			A-01
Diesel Range (SGCU)	0.693	0.250	mg/l	1	3K14017	11/14/03	11/19/03	NWTPH-Dx	D-06
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	86.0 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	91.6 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
i indiye	Result	Linit	ento	Difution	Duton	Trepured	7 mary 20a	memou	10005
SWM-TP102 (B3K0154-13) Soil Samp	led: 11/01/0	3 09:10 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range (SGCU)	181	10.0	mg/kg dry	1	3K06061	11/06/03	11/10/03	NWTPH-Dx	
Lube Oil Range (SGCU)	16.5	25.0	"	"	"	"	"	"	J
Surrogate: o-Terphenyl (SGCU)	92.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	93.9 %	60-140			"	"	"	"	
SWM-TP103 (B3K0154-14) Soil Samp	led: 11/01/0	3 09:55 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range (SGCU)	14.1	10.0	mg/kg dry	1	3K06061	11/06/03	11/10/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	25.0	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	104 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	107 %	60-140			"	"	"	"	
SWM-TP101 (B3K0154-15) Soil Samp	led: 11/01/0	3 10:50 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range (SGCU)	1980	100	mg/kg dry	10	3K06061	11/06/03	11/11/03	NWTPH-Dx	D
Lube Oil Range (SGCU)	ND	250	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl (SGCU)	110 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane (SGCU	122 %	60-140			"	"	"	"	D
SWM-TP104 (B3K0154-16) Soil Samp	led: 11/01/0	3 11:25 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range (SGCU)	109	10.0	mg/kg dry	1	3K06061	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	12.2	25.0	"	"	"	"	"	"	J
Surrogate: o-Terphenyl (SGCU)	95.0 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	98.1 %	60-140			"	"	"	"	
SWM-TP105 (B3K0154-17) Soil Samp	led: 11/01/0	3 13:30 Re	ceived: 11/06	5/03 09:45					A-01
Diesel Range (SGCU)	4.65	10.0	mg/kg dry	1	3K06061	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	25.0	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	96.3 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	94.4 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW20-1103 (B3K0154-18) Wate	er Sampled	: 11/02/03 10:.	30 Recei	ved: 11/06/0	03 09:45	*	-		A-01
Diesel Range (SGCU)	0.308	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	92.3 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	93.6 %	60-140			"	"	"	"	
FW-MW3D-1103 (B3K0154-19) Water	Sampled:	11/02/03 11:50	Receive	ed: 11/06/03	6 09:45				A-01
Diesel Range (SGCU)	0.261	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	93.8 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	94.8 %	60-140			"	"	"	"	
T49-MW6-1103 (B3K0154-21) Water	Sampled: 11	/02/03 14:35	Received	: 11/06/03 ()9:45				A-01
Diesel Range (SGCU)	1.15	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	93.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	98.3 %	60-140			"	"	"	"	
T49-MW7-1103 (B3K0154-22) Water	Sampled: 11	/02/03 15:40	Received	: 11/06/03 ()9:45				A-01
Diesel Range (SGCU)	0.331	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	94.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	99.5 %	60-140			"	"	"	"	
T49-MW5-1103 (B3K0154-23) Water	Sampled: 11	/03/03 10:15	Received	: 11/06/03 ()9:45				A-01
Diesel Range (SGCU)	0.213	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	87.6 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	88.9 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Jeff Cotter

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW21-1103 (B3K0154-25) Water	Sampled	l: 11/02/03 08:4	40 Recei	ved: 11/06/	03 09:45				A-01
Diesel Range (SGCU)	0.123	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	110 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	118 %	60-140			"	"	"	"	
SWM-MW20-1103 Filtered (B3K0154-27	7) Water	Sampled: 11/0	02/03 10:3	0 Received	d: 11/06/03	8 09:45			A-01
Diesel Range (SGCU)	0.124	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	85.9 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	90.6 %	60-140			"	"	"	"	
T49-MW6-1103 Filtered (B3K0154-28) V	Vater Sa	mpled: 11/02/0	3 14:35	Received: 1	1/06/03 09	:45			A-01
Diesel Range (SGCU)	0.377	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	87.9 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	88.6 %	60-140			"	"	"	"	
T49-MW7-1103 Filtered (B3K0154-29) V	Vater Sa	mpled: 11/02/0	3 15:40	Received: 1	1/06/03 09	:45			A-01
Diesel Range (SGCU)	0.0897	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	94.8 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	98.6 %	60-140			"	"	"	"	
T49-MW5-1103 Filtered (B3K0154-30) V	Vater Sa	mpled: 11/03/0	3 10:15	Received: 1	1/06/03 09	:45			A-01
Diesel Range (SGCU)	0.137	0.250	mg/l	1	3K06062	11/06/03	11/11/03	NWTPH-Dx	J
Lube Oil Range (SGCU)	ND	0.500	"	"	"	"	"	"	U
Surrogate: o-Terphenyl (SGCU)	93.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane (SGCU	93.1 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW22-1103 (B3K0154-01) Wat	er Sampled	: 11/01/03 14	4:25 Recei	ived: 11/06/(03 09:45				A-01
Extractable Petroleum	220	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	24.3	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	44.5	50.5	"	"	"	"	"	"	D, J
C16-C21 Aliphatics	20.1	50.5	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	78.1	50.5	"	"	"	"	"	"	D
C10-C12 Aromatics	16.7	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
C16-C21 Aromatics	36.5	50.5	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	80.2 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	95.3 %	60-140			"	"	11/14/03	"	D
T49-FD1-1103 (B3K0154-02) Water	Sampled: 11/	02/03 12:45	Received:	11/06/03 09	:45				A-01
Extractable Petroleum	243	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	27.2	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	51.0	50.5	"	"	"	"	"	"	D
C16-C21 Aliphatics	29.0	50.5	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	53.1	50.5	"	"	"	"	"	"	D
C10-C12 Aromatics	21.0	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	16.5	50.5	"	"	"	"	"	"	D, J
C16-C21 Aromatics	45.2	50.5	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	90.3 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	101 %	60-140			"	"	11/14/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-MW15-1103 (B3K0154-03) Wat	er Sampled:	11/02/03 13:2	0 Received	: 11/06/03	09:45				A-01
Extractable Petroleum	257	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	27.1	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	51.9	50.5	"	"	"	"	"	"	D
C16-C21 Aliphatics	30.4	50.5	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	76.2	50.5	"	"	"	"	"	"	D
C10-C12 Aromatics	17.8	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	10.2	50.5	"	"	"	"	"	"	D, J
C16-C21 Aromatics	43.6	50.5	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	88.6 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	99.5 %	60-140			"	"	11/14/03	"	D
T49-TPFDI (B3K0154-06) Soil San	10/31/03	14:30 Rece	ived: 11/06/0	3 09:45					A-01
Extractable Petroleum	9710	160	mg/kg dry wt.	4	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	D
Hydrocarbons									
C10-C12 Aliphatics	159	20.0	mg/kg dry	"	3K06061	"	"	"	D
C12-C16 Aliphatics	2500	20.0	"	"	"	"	"	"	D
C16-C21 Aliphatics	4180	20.0	"	"	"	"	"	"	D
C21-C34 Aliphatics	998	20.0	"	"	"	"	"	"	D
C10-C12 Aromatics	4.70	20.0	"	"	"	"	"	"	D, J
C12-C16 Aromatics	97.9	20.0	"	"	"	"	"	"	D
C16-C21 Aromatics	1380	20.0	"	"	"	"	"	"	D
C21-C34 Aromatics	387	20.0	"	"	"	"	"	"	D
Surrogate: o-Terphenyl	94.5 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	115 %	60-140			"	"	"	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-TP102 (B3K0154-07) Soil	Sampled: 10/31/03 1	4:45 Rece	eived: 11/06/03	3 09:45					A-01
Extractable Petroleum	10500	160	mg/kg dry wt.	4	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	D
Hydrocarbons									
C10-C12 Aliphatics	70.3	20.0	mg/kg dry	"	3K06061	"	"	"	D
C12-C16 Aliphatics	1970	20.0	"	"	"	"	"	"	D
C16-C21 Aliphatics	5100	20.0	"	"	"	"	"	"	D
C21-C34 Aliphatics	1380	20.0	"	"	"	"	"	"	D
C10-C12 Aromatics	4.52	20.0	"	"	"	"	"	"	D, J
C12-C16 Aromatics	62.8	20.0	"	"	"	"	"	"	D
C16-C21 Aromatics	1460	20.0	"	"	"	"	"	"	D
C21-C34 Aromatics	461	20.0	"		"	"	"	"	D
Surrogate: o-Terphenyl	97.6 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	105 %	60-140			"	"	"	"	D
T49-TP101 (B3K0154-08) Soil	Sampled: 10/31/03 1	15:05 Rece	eived: 11/06/03	3 09:45					A-01
Extractable Petroleum	622	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	
Hydrocarbons									
C10-C12 Aliphatics	0.620	5.00	mg/kg dry	"	3K06061	"	"	"	J
C12-C16 Aliphatics	47.8	5.00	"	"	"	"	"	"	
C16-C21 Aliphatics	300	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	191	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	0.904	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	ND	5.00	"	"	"	"	"	"	U
C16-C21 Aromatics	28.9	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	52.5	5.00	"	"	"	"	"	"	
Surrogate: o-Terphenyl	88.7 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	80.5 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Leachate of T49-TP101 (B3K01	54-09) Water Samp	led: 11/13/	03 14:58 R	eceived: 11	/06/03 09:	45			A-01
Extractable Petroleum	6.73	417	ug/l	2	[CALC]	11/14/03	11/23/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	ND	52.1	"	"	3K14024	"	11/23/03	"	D, U
C12-C16 Aliphatics	ND	52.1	"	"	"	"	"	"	D, U
C16-C21 Aliphatics	ND	52.1	"	"	"	"	"	"	D, U
C21-C34 Aliphatics	ND	52.1	"	"	"	"	"	"	D, U
C10-C12 Aromatics	6.73	52.1	"	"	"	"	11/23/03	"	D, J
C12-C16 Aromatics	ND	52.1	"	"	"	"	"	"	D, U
C16-C21 Aromatics	ND	52.1		"	"	"	"	"	D, U
C21-C34 Aromatics	ND	52.1	"	"		"	"	"	D, U
Surrogate: o-Terphenyl	82.0 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	90.6 %	60-140			"	"	11/23/03	"	D
T49-TP103 (B3K0154-10) Soil	Sampled: 10/31/03 1	5:45 Rece	eived: 11/06/	03 09:45					A-01
Extractable Petroleum	107	40.0	mg/kg dry wt	. 1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	
Hydrocarbons									
C10-C12 Aliphatics	ND	5.00	mg/kg dry	"	3K06061	"	"	"	U
C12-C16 Aliphatics	5.13	5.00	"	"	"	"	"	"	
C16-C21 Aliphatics	45.7	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	38.2	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	0.922	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	ND	5.00		"	"	"	"	"	U
C16-C21 Aromatics	5.85	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	<u>1</u> 1.5	5.00	"	"	"	"	"	"	
Surrogate: o-Terphenyl	90.2 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	85.3 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-TP104 (B3K0154-11) Soil	Sampled: 10/31/03	16:00 Rece	eived: 11/06/0	3 09:45					A-01
Extractable Petroleum	37800	800	mg/kg dry wt.	20	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	D
Hydrocarbons									
C10-C12 Aliphatics	2670	100	mg/kg dry	"	3K06061	"	"	"	D
C12-C16 Aliphatics	15600	100	"	"	"	"	"	"	D
C16-C21 Aliphatics	10200	100		"	"	"	"	"	D
C21-C34 Aliphatics	1760	100		"	"	"	"	"	D
C10-C12 Aromatics	113	100		"	"	"	"	"	D
C12-C16 Aromatics	1620	100		"	"	"	"	"	D
C16-C21 Aromatics	4980	100		"	"	"	"	"	D
C21-C34 Aromatics	849	100	"	"	"	"	"	"	D
Surrogate: o-Terphenyl	%	60-140			"	"	"	"	S-01, D
Surrogate: 1-Chlorooctadecane	%	60-140			"	"	"	"	S-01, D
Leachate of T49-TP104 (B3K01	54-12) Water Sam	pled: 11/13/	03 14:58 Re	ceived: 11	/06/03 09:	45			A-01
Extractable Petroleum	495	439	ug/l	2	[CALC]	11/14/03	11/23/03	WA MTCA-EPH	D
Hydrocarbons									
C10-C12 Aliphatics	4.80	54.9	"	"	3K14024	"	11/23/03	"	D, J
C12-C16 Aliphatics	12.7	54.9	"	"	"	"	"	"	D, J
C16-C21 Aliphatics	14.1	54.9	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	ND	54.9		"	"	"	"	"	D, U
C10-C12 Aromatics	68.5	54.9		"	"	"	11/23/03	"	D
C12-C16 Aromatics	274	54.9		"	"	"	"	"	D
C16-C21 Aromatics	121	54.9	"	"	"	"	"	"	D
C21-C34 Aromatics	ND	54.9	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	87.5 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	85.0 %	60-140			"	"	11/23/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP102 (B3K0154-13) Soil	Sampled: 11/01/0	3 09:10 Re	ceived: 11/06	/03 09:45					A-01
Extractable Petroleum	184	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	
Hydrocarbons									
C10-C12 Aliphatics	6.45	5.00	mg/kg dry	"	3K06061	"	"	"	
C12-C16 Aliphatics	52.5	5.00		"	"	"	"	"	
C16-C21 Aliphatics	68.2	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	23.2	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	1.00	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	2.03	5.00	"	"	"	"	"	"	J
C16-C21 Aromatics	17.7	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	12.9	5.00	"	"	"	"	"	"	
Surrogate: o-Terphenyl	89.0 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	88.4 %	60-140			"	"	"	"	
SWM-TP103 (B3K0154-14) Soil	Sampled: 11/01/0	3 09:55 Re	ceived: 11/06	/03 09:45					A-01
Extractable Petroleum	15.5	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	J
Hydrocarbons									
C10-C12 Aliphatics	ND	5.00	mg/kg dry	"	3K06061	"	"	"	U
C12-C16 Aliphatics	ND	5.00	"	"	"	"	"	"	U
C16-C21 Aliphatics	5.71	5.00		"	"	"	"	"	
C21-C34 Aliphatics	3.53	5.00	"	"	"	"	"	"	J
C10-C12 Aromatics	0.940	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	ND	5.00	"	"	"	"	"	"	U
C16-C21 Aromatics	2.88	5.00	"	"	"	"	"	"	J
C21-C34 Aromatics	2.48	5.00	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	85.1 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	88.1 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP101 (B3K0154-15) Soil	Sampled: 11/01/0	3 10:50 Re	ceived: 11/06	/03 09:45					A-01
Extractable Petroleum	1930	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	
Hydrocarbons									
C10-C12 Aliphatics	126	5.00	mg/kg dry	"	3K06061	"	"	"	
C12-C16 Aliphatics	741	5.00		"	"	"	"	"	
C16-C21 Aliphatics	546	5.00	"	"	"	"	"	"	
C21-C34 Aliphatics	156	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	1.82	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	62.5	5.00	"	"	"	"	"	"	
C16-C21 Aromatics	229	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	65.7	5.00	"	"	"	"	"	"	
Surrogate: o-Terphenyl	98.7 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	96.2 %	60-140			"	"	"	"	
SWM-TP104 (B3K0154-16) Soil	Sampled: 11/01/0	3 11:25 Re	ceived: 11/06	/03 09:45					A-01
Extractable Petroleum	112	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/08/03	WA MTCA-EPH	
Hydrocarbons									
C10-C12 Aliphatics	1.42	5.00	mg/kg dry	"	3K06061	"	"	"	J
C12-C16 Aliphatics	29.6	5.00	"	"	"	"	"	"	
C16-C21 Aliphatics	42.8	5.00		"	"	"	"	"	
C21-C34 Aliphatics	16.9	5.00	"	"	"	"	"	"	
C10-C12 Aromatics	0.733	5.00	"	"	"	"	"	"	J
C12-C16 Aromatics	1.46	5.00	"	"	"	"	"	"	J
C16-C21 Aromatics	11.7	5.00	"	"	"	"	"	"	
C21-C34 Aromatics	7.45	5.00	"	"	"	"	"	"	
Surrogate: o-Terphenyl	93.8 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	85.6 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP105 (B3K0154-17) Soil	Sampled: 11/01/0	3 13:30 Re	ceived: 11/06	/03 09:45					A-01
Extractable Petroleum	5.26	40.0	mg/kg dry wt.	1	[CALC]	11/06/03	11/09/03	WA MTCA-EPH	J
Hydrocarbons									
C10-C12 Aliphatics	ND	5.00	mg/kg dry	"	3K06061	"	"	"	U
C12-C16 Aliphatics	ND	5.00		"	"	"	"	"	U
C16-C21 Aliphatics	ND	5.00		"	"	"	"	"	U
C21-C34 Aliphatics	ND	5.00		"	"	"	"	"	U
C10-C12 Aromatics	0.768	5.00		"	"	"	"	"	J
C12-C16 Aromatics	ND	5.00		"	"	"	"	"	U
C16-C21 Aromatics	2.63	5.00		"	"	"	"	"	J
C21-C34 Aromatics	1.86	5.00	"	"	"	"	"	"	J
Surrogate: o-Terphenyl	93.8 %	60-140			"	"	"	"	
Surrogate: 1-Chlorooctadecane	85.2 %	60-140			"	"	"	"	
<u>SWM-MW20-1103 (B3K0154-18)</u>	Water Sampled	: 11/02/03 1	0:30 Receive	ed: 11/06/	03 09:45				A-01
Extractable Petroleum	286	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	28.4	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	47.7	50.5	"	"	"	"	"	"	D, J
C16-C21 Aliphatics	26.3	50.5		"	"	"	"	"	D, J
C21-C34 Aliphatics	32.6	50.5		"	"	"	"	"	D, J
C10-C12 Aromatics	26.3	50.5		"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	55.0	50.5		"	"	"	"	"	D
C16-C21 Aromatics	69.8	50.5		"	"	"	"	"	D
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	88.6 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	94.1 %	60-140			"	"	11/14/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FW-MW3D-1103 (B3K0154-19) Water	Sampled:	11/02/03 11:50	Receive	ed: 11/06/03	09:45				A-01
Extractable Petroleum	157	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	22.8	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	40.7	50.5	"	"	"	"	"	"	D, J
C16-C21 Aliphatics	24.5	50.5	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	20.0	50.5	"	"	"	"	"	"	D, J
C10-C12 Aromatics	16.3	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
C16-C21 Aromatics	32.5	50.5	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	84.7 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	92.6 %	60-140			"	"	11/14/03	"	D
T49-MW6-1103 (B3K0154-21) Water	Sampled: 1	1/02/03 14:35	Received	: 11/06/03 (9:45				A-01
Extractable Petroleum Hydrocarbons	553	421	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D
C10-C12 Aliphatics	36.7	52.6	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	63.9	52.6	"	"	"	"	"	"	D
C16-C21 Aliphatics	30.2	52.6	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	71.7	52.6	"	"	"	"	"	"	D
C10-C12 Aromatics	45.5	52.6	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	173	52.6	"	"	"	"	"	"	D
C16-C21 Aromatics	132	52.6	"	"	"	"	"	"	D
C21-C34 Aromatics	ND	52.6	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	81.5 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	93.1 %	60-140			"	"	11/14/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814 Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-MW7-1103 (B3K0154-22) Water	Sampled: 11	1/02/03 15:40	Received	l: 11/06/03 ()9:45				A-01
Extractable Petroleum	280	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	32.9	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	74.1	50.5	"	"	"	"	"	"	D
C16-C21 Aliphatics	60.5	50.5	"	"	"	"	"	"	D
C21-C34 Aliphatics	50.8	50.5	"	"	"	"	"	"	D
C10-C12 Aromatics	6.03	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
C16-C21 Aromatics	56.1	50.5	"	"	"	"	"	"	D
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	86.1 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	100 %	60-140			"	"	11/14/03	"	D
T49-MW5-1103 (B3K0154-23) Water	Sampled: 11	1/03/03 10:15	Received	l: 11/06/03 ()9:45				A-01
Extractable Petroleum Hydrocarbons	153	404	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
C10-C12 Aliphatics	22.4	50.5	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	40.2	50.5	"	"	"	"		"	D, J
C16-C21 Aliphatics	23.7	50.5	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	34.9	50.5	"	"	"	"	"	"	D, J
C10-C12 Aromatics	9.76	50.5	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	ND	50.5	"	"	"	"		"	D, U
C16-C21 Aromatics	21.7	50.5	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	50.5	"	"	"	"	"	"	D, U
Surrogate: o-Terphenyl	89.4 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	99.5 %	60-140			"	"	11/14/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-MW21-1103 (B3K0154-25) Water	Sampled	: 11/02/03 08	:40 Recei	ived: 11/06/(03 09:45				A-01
Extractable Petroleum	146	426	ug/l	2	[CALC]	11/06/03	11/14/03	WA MTCA-EPH	D, J
Hydrocarbons									
C10-C12 Aliphatics	24.2	53.2	"	"	3K06062	"	11/14/03	"	D, J
C12-C16 Aliphatics	43.7	53.2	"	"	"	"	"	"	D, J
C16-C21 Aliphatics	24.0	53.2	"	"	"	"	"	"	D, J
C21-C34 Aliphatics	35.7	53.2	"	"	"	"	"	"	D, J
C10-C12 Aromatics	5.58	53.2	"	"	"	"	11/14/03	"	D, J
C12-C16 Aromatics	ND	53.2			"	"	"	"	D, U
C16-C21 Aromatics	12.4	53.2	"	"	"	"	"	"	D, J
C21-C34 Aromatics	ND	53.2	"	"		"	"	"	D, U
Surrogate: o-Terphenyl	87.8 %	60-140			"	"	"	"	D
Surrogate: 1-Chlorooctadecane	97.9 %	60-140			"	"	11/14/03	"	D

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01

Reported: 11/24/03 07:41

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T49-TP105 (B3K0154-05) Soil Sampled: 10/31/03	14:05 Rece	ived: 11/06	/03 09:45					A-01
Drv Weight 83.7	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	11 01
Fractional Organic Carbon - Low 0.00171	0.00100	g/g	"	3K17042	11/07/03	11/14/03	EPA 9060	
Fractional Organic Carbon - High 0.00852	0.00100	"	"	"	"	"	"	
Fractional Organic Carbon - 0.00462	0.00100	"	"	"	"	"	"	
T49-TPFDI (B3K0154-06) Soil Sampled: 10/31/0.	3 14:30 Reco	eived: 11/06	6/03 09:45					A-01
Dry Weight 81.7	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
T49-TP102 (B3K0154-07) Soil Sampled: 10/31/03	14:45 Rece	ived: 11/06	/03 09:45					A-01
Dry Weight 80.0	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
T49-TP101 (B3K0154-08) Soil Sampled: 10/31/03	15:05 Rece	ived: 11/06	/03 09:45					A-01
Dry Weight 83.7	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
T49-TP103 (B3K0154-10) Soil Sampled: 10/31/03	15:45 Rece	ived: 11/06	/03 09:45					A-01
Dry Weight 81.8	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
T49-TP104 (B3K0154-11) Soil Sampled: 10/31/03	16:00 Rece	ived: 11/06	/03 09:45					A-01
Dry Weight 89.9	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
SWM-TP102 (B3K0154-13) Soil Sampled: 11/01/	03 09:10 Re	ceived: 11/(06/03 09:45					A-01
Dry Weight 81.2	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
SWM-TP103 (B3K0154-14) Soil Sampled: 11/01/	03 09:55 Re	ceived: 11/()6/03 09:45					A-01
Dry Weight 79.4	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	

North Creek Analytical - Bothell

CH2M Hill - Honolulu 1585 Kapiolani Blvd. Suite 1420 Honolulu, HI 96814

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SWM-TP101 (B3K0154-15) Soil	Sampled: 11/01/03	3 10:50 Rec	eived: 11/	06/03 09:45					A-01
Dry Weight	85.6	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
SWM-TP104 (B3K0154-16) Soil	Sampled: 11/01/03	3 11:25 Rec	eived: 11/	06/03 09:45					A-01
Dry Weight	83.5	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
SWM-TP105 (B3K0154-17) Soil	Sampled: 11/01/03	3 13:30 Rec	eived: 11/	06/03 09:45					A-01
Dry Weight	82.5	1.00	%	1	3K11008	11/11/03	11/12/03	BSOPSPL003R08	
Fractional Organic Carbon - Low	0.00239	0.00100	g/g	"	3K17042	11/07/03	11/14/03	EPA 9060	
Fractional Organic Carbon - High	0.00354	0.00100	"	"	"	"	"	"	
Fractional Organic Carbon - Average	0.00289	0.00100	"	"	"	"	"	"	

North Creek Analytical - Bothell

CH2M Hill - Honolulu	Project:	Johnson Atoll TPH Investigation	
1585 Kapiolani Blvd. Suite 1420	Project Number:	179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager:	Jeff Cotter	11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K10007:	Prepared 11/11/03	Using E	PA 5030B	(P/T)							
Blank (3K10007-Bl	LK1)										
Gasoline Range Hydro	carbons	13.7	50.0	ug/l							J
Surrogate: 4-BFB (FIL))	47.1		"	48.0		98.1	62-127			
LCS (3K10007-BS1	l)										
Gasoline Range Hydro	carbons	492	50.0	ug/l	500		98.4	80-120			
Surrogate: 4-BFB (FIL))	54.4		"	48.0		113	62-127			
LCS Dup (3K10007	7-BSD1)										
Gasoline Range Hydro	carbons	460	50.0	ug/l	500		92.0	80-120	6.72	25	
Surrogate: 4-BFB (FIL))	52.1		"	48.0		109	62-127			
Matrix Spike (3K1)	0007-MS1)					Source: H	B3K0154-	25			
Gasoline Range Hydro	carbons	1050	100	ug/l	1000	282	76.8	72-119			D
Surrogate: 4-BFB (FIL))	46.9		"	48.0		97.7	62-127			
Matrix Spike Dup ((3K10007-MSD1)					Source: H	B3K0154-	25			
Gasoline Range Hydro	carbons	1160	100	ug/l	1000	282	87.8	72-119	9.95	25	D
Surrogate: 4-BFB (FIL))	45.5		"	48.0		94.8	62-127			
Batch 3K10012:	Prepared 11/10/03	Using E	PA 5030B	(MeOH)							
Blank (3K10012-Bl	L K1)										
Gasoline Range Hydro	carbons	0.558	5.00	mg/kg							J
Surrogate: 4-BFB (FIL))	4.01		"	4.00		100	52-123			
LCS (3K10012-BS1	1)										
Gasoline Range Hydro	carbons	28.4	5.00	mg/kg	27.5		103	80-120			
Surrogate: 4-BFB (FIL))	4.14		"	4.00		104	52-123			

North Creek Analytical - Bothell

CH2M Hill - HonoluluProject:Johnson Atoll TPH Investigation1585 Kapiolani Blvd. Suite 1420Project Number:179600.05.01.01Reported:Honolulu, HI 96814Project Manager:Jeff Cotter11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

			Reporting		Snike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K10012:	Prepared 11/10/03	Using El	PA 5030B	(MeOH)							
LCS Dup (3K10012	2-BSD1)										
Gasoline Range Hydro	carbons	27.8	5.00	mg/kg	27.5		101	80-120	2.14	40	
Surrogate: 4-BFB (FIL))	4.03		"	4.00		101	52-123			
Matrix Spike (3K1))012-MS1)					Source: H	B3K0154-	13			
Gasoline Range Hydro	carbons	52.4	5.00	mg/kg dry	33.9	25.6	79.1	54-120			
Surrogate: 4-BFB (FIL))	5.11		"	4.93		104	52-123			
Matrix Spike Dup (3K10012-MSD1)					Source: H	33K0154-	13			
Gasoline Range Hydro	carbons	49.4	5.00	mg/kg dry	33.9	25.6	70.2	54-120	5.89	40	
Surrogate: 4-BFB (FIL))	4.97		"	4.93		101	52-123			
Batch 3K12053:	Prepared 11/12/03	Using El	PA 5030B	(P/T)							
Blank (3K12053-BI											
Gasoline Range Hydro	carbons	11.6	50.0	ug/l							J
Surrogate: 4-BFB (FIL))	40.0		"	48.0		83.3	62-127			
LCS (3K12053-BS1	.)										
Gasoline Range Hydro	carbons	416	50.0	ug/l	500		83.2	80-120			
Surrogate: 4-BFB (FIL))	42.4		"	48.0		<i>88.3</i>	62-127			
LCS Dup (3K12053	B-BSD1)										
Gasoline Range Hydro	carbons	465	50.0	ug/l	500		93.0	80-120	11.1	25	
Surrogate: 4-BFB (FIL))	47.7		"	48.0		99.4	62-127			
Matrix Spike (3K12	2053-MS1)					Source: H	33K0154-	03			
Gasoline Range Hydro	carbons	528	50.0	ug/l	500	122	81.2	72-119			
Surrogate: 4-BFB (FIL))	43.9		"	48.0		91.5	62-127			

North Creek Analytical - Bothell

CH2M Hill - HonoluluProject:Johnson Atoll TPH Investigation1585 Kapiolani Blvd. Suite 1420Project Number:179600.05.01.01Reported:Honolulu, HI 96814Project Manager:Jeff Cotter11/24/03 07:41

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K12053:	Prepared 11/12/03	Using EI	PA 5030B	(P/T)							
Matrix Spike Dup ((3K12053-MSD1)					Source: H	B3K0154-	03			
Gasoline Range Hydro	carbons	567	50.0	ug/l	500	122	89.0	72-119	7.12	25	
Surrogate: 4-BFB (FIL))	45.5		"	48.0		94.8	62-127			
Batch 3K20042:	Prepared 11/20/03	Using EF	PA 5030B	(P/T)							
Blank (3K20042-Bl	L K1)										
Gasoline Range Hydro	carbons	17.3	50.0	ug/l							J
Surrogate: 4-BFB (FIL))	47.8		"	48.0		99.6	62-127			
LCS (3K20042-BS1	l)										
Gasoline Range Hydro	carbons	435	50.0	ug/l	500		87.0	80-120			
Surrogate: 4-BFB (FIL))	48.0		"	48.0		100	62-127			
LCS Dup (3K20042	2-BSD1)										
Gasoline Range Hydro	carbons	414	50.0	ug/l	500		82.8	80-120	4.95	25	
Surrogate: 4-BFB (FIL))	48.9		"	48.0		102	62-127			

North Creek Analytical - Bothell

1585 Kapiolani Blvd. Suite 1420	Project Number: 179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager: Jeff Cotter	11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC				
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K10009:	Prepared 11/13/03	Using El	PA 5030B	(P/T)							
Blank (3K10009-BL	.K1)										
C5-C6 Aliphatics		1.08	50.0	ug/l							J
C6-C8 Aliphatics		1.91	50.0	"							J
C8-C10 Aliphatics		1.94	50.0	"							J
C8-C10 Aromatics		3.25	50.0	"							J
C12-C13 Aromatics		17.7	50.0	"							J
Total VPH (TVPH)		25.9	250	"							J
Surrogate: 4-BFB (FID))	46.8		"	48.0		97.5	60-140			
Surrogate: 4-BFB (PID))	44.9		"	48.0		93.5	60-140			
LCS (3K10009-BS1))										
Total VPH (TVPH)		182	50.0	ug/l	200		91.0	70-130			
Surrogate: 4-BFB (FID))	41.6		"	48.0		86.7	60-140			
Surrogate: 4-BFB (PID))	47.6		"	48.0		99.2	60-140			
LCS Dup (3K10009	-BSD1)										
Total VPH (TVPH)	,	184	50.0	ug/l	200		92.0	70-130	1.09	25	
Surrogate: 4-BFB (FID))	43.2		"	48.0		90.0	60-140			
Surrogate: 4-BFB (PID))	47.6		"	48.0		99.2	60-140			
Matrix Spike (3K10	009-MS1)					Source: I	B3K0154-	25			
Total VPH (TVPH)	,	605	100	ug/l	400	220	96.2	70-130			D
Surrogate: 4-BFB (FID))	43.2		"	48.0		90.0	60-140			
Surrogate: 4-BFB (PID))	43.2		"	48.0		90.0	60-140			
Matrix Spike Dup (.	3K10009-MSD1)					Source: l	B3K0154-	25			
Total VPH (TVPH)		530	100	ug/l	400	220	77.5	70-130	13.2	25	D
Surrogate: 4-BFB (FID))	36.6		"	48.0		76.2	60-140			
Surrogate: 4-BFB (PID))	43.9		"	48.0		91.5	60-140			

North Creek Analytical - Bothell

CH2M Hill - HonoluluProject:Johnson Atoll TPH Investigation1585 Kapiolani Blvd. Suite 1420Project Number:179600.05.01.01Reported:Honolulu, HI 96814Project Manager:Jeff Cotter11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

		Reporting			Spike	Source		%REC			
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K10012: P	repared 11/10/03	Using El	PA 5030B	(MeOH)							
Blank (3K10012-BLK2	2)										
C5-C6 Aliphatics		ND	5.00	mg/kg							U
C6-C8 Aliphatics		ND	5.00	"							U
C8-C10 Aliphatics		ND	5.00	"							U
C8-C10 Aromatics		0.158	5.00	"							J
C12-C13 Aromatics		0.608	5.00	"							J
Total VPH (TVPH)		0.767	25.0	"							J
Surrogate: 4-BFB (FID)		3.69		"	4.00		92.2	60-140			
Surrogate: 4-BFB (PID)		4.23		"	4.00		106	60-140			
LCS (3K10012-BS2)											
Total VPH (TVPH)		7.93	5.00	mg/kg	10.0		79.3	70-130			
Surrogate: 4-BFB (FID)		3.82		"	4.00		95.5	60-140			
Surrogate: 4-BFB (PID)		4.47		"	4.00		112	60-140			
LCS Dup (3K10012-B	SD2)										
Total VPH (TVPH)	,	7.42	5.00	mg/kg	10.0		74.2	70-130	6.64	25	
Surrogate: 4-BFB (FID)		3.44		"	4.00		86.0	60-140			
Surrogate: 4-BFB (PID)		4.59		"	4.00		115	60-140			
Matrix Spike (3K1001	2-MS2)					Source: I	B3K0154-	13			
Total VPH (TVPH)	,	58.4	5.00	mg/kg dry	12.3	57.3	8.94	70-130			Q-02
Surrogate: 4-BFB (FID)		4.81		"	4.93		97.6	60-140			
Surrogate: 4-BFB (PID)		3.89		"	4.93		78.9	60-140			
Matrix Spike Dup (3K	10012-MSD2)					Source: l	B3K0154-	13			
Total VPH (TVPH)	*	42.5	5.00	mg/kg dry	12.3	57.3	-120	70-130	31.5	25	Q-02, Q-16
Surrogate: 4-BFB (FID)		4.52		"	4.93		91.7	60-140			
Surrogate: 4-BFB (PID)		4.03		"	4.93		81.7	60-140			

North Creek Analytical - Bothell

CH2M Hill - Honolulu	Project:	Johnson Atoll TPH Investigation	
1585 Kapiolani Blvd. Suite 1420	Project Number:	179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager:	Jeff Cotter	11/24/03 07:41

Volatile Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

					, ,						
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K14014:	Prepared 11/14/03	Using EI	PA 5030B	(P/T)							
Blank (3K14014-Bl	LK1)										
C5-C6 Aliphatics		ND	50.0	ug/l							U
C6-C8 Aliphatics		ND	50.0	"							U
C8-C10 Aliphatics		ND	50.0	"							U
C8-C10 Aromatics		ND	50.0	"							U
C12-C13 Aromatics		3.34	50.0	"							J
Total VPH (TVPH)		3.34	250	"							J
Surrogate: 4-BFB (FIL))	39.4		"	48.0		82.1	60-140			
Surrogate: 4-BFB (PIL))	45.1		"	48.0		94.0	60-140			
LCS (3K14014-BS1)										
Total VPH (TVPH)		162	50.0	ug/l	200		81.0	70-130			
Surrogate: 4-BFB (FIL))	43.6		"	48.0		90.8	60-140			
Surrogate: 4-BFB (PIL))	45.9		"	48.0		95.6	60-140			
LCS Dup (3K14014	I-BSD1)										
Total VPH (TVPH)		165	50.0	ug/l	200		82.5	70-130	1.83	25	
Surrogate: 4-BFB (FIL))	42.7		"	48.0		89.0	60-140			
Surrogate: 4-BFB (PIL))	46.6		"	48.0		97.1	60-140			

North Creek Analytical - Bothell

CH2M Hill - Honolulu	Project: Johnson Atoll TPH In	nvestigation
1585 Kapiolani Blvd. Suite 1420	Project Number: 179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager: Jeff Cotter	11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

r				J	~ "	~					
A mala da		D	Reporting	T Tasida	Spike	Source	0/DEC	%REC	רוחת	RPD	Natas
Anaiyte		Result	Limit	Units	Level	Result	%REC	Limits	кро	Limit	Notes
Batch 3K06061:	Prepared 11/06/03	Using El	PA 3550B								
Blank (3K06061-Bl	L K1)										
Diesel Range Hydrocar	rbons	1.77	10.0	mg/kg							J
Lube Oil Range Hydro	carbons	ND	25.0	"							U
Surrogate: o-Terpheny	l	13.0		"	13.3		97.7	60-140			
Surrogate: 1-Chlorooc	tadecane	13.5		"	13.3		102	60-140			
LCS (3K06061-BS1	l)										
Diesel Range Hydrocar	rbons	50.6	10.0	mg/kg	66.7		75.9	70-130			
Surrogate: o-Terpheny	l	12.7		"	13.3		95.5	60-140			
LCS Dup (3K06061	I-BSD1)										
Diesel Range Hydrocar	rbons	53.3	10.0	mg/kg	66.7		79.9	70-130	5.20	40	
Surrogate: o-Terpheny	l	13.2		"	13.3		99.2	60-140			
Matrix Spike (3K0	6061-MS1)					Source: E	B3K0154-	13			
Diesel Range Hydrocar	rbons	474	20.0	mg/kg dry	82.1	188	348	50-150			Q-03, D
Surrogate: o-Terpheny	l	16.1		"	16.4		98.2	60-140			D
Matrix Spike Dup ((3K06061-MSD1)					Source: E	B3K0154-	13			
Diesel Range Hydrocar	rbons	591	20.0	mg/kg dry	82.1	188	491	50-150	22.0	40	Q-03, D
Surrogate: o-Terpheny	l	16.3		"	16.4		99.4	60-140			D
Batch 3K06062:	Prepared 11/06/03	Using El	PA 3510C								
Blank (3K06062-Bl	L K1)										
Diesel Range Hydrocar	rbons	ND	0.250	mg/l							U
Lube Oil Range Hydro	carbons	ND	0.500	"							U
Surrogate: o-Terpheny	l	0.384		"	0.400		96.0	60-140			
Surrogate: 1-Chlorooc	tadecane	0.403		"	0.400		101	60-140			

North Creek Analytical - Bothell

CH2M Hill - Honolulu	Project:	Johnson Atoll TPH Investigation	
1585 Kapiolani Blvd. Suite 1420	Project Number:	179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager:	Jeff Cotter	11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

				•							
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06062:	Prepared 11/06/03	Using E	PA 3510C								
Blank (3K06062-BI	LK2)										
Diesel Range Hydrocar	bons	ND	0.250	mg/l							U
Lube Oil Range Hydro	carbons	ND	0.500	"							U
Surrogate: o-Terpheny	!	0.378		"	0.400		94.5	60-140			
Surrogate: 1-Chlorooct	tadecane	0.388		"	0.400		97.0	60-140			
LCS (3K06062-BS1)										
Diesel Range Hydrocar	bons	1.61	0.250	mg/l	2.00		80.5	63-107			
Surrogate: o-Terpheny	!	0.385		"	0.400		96.2	60-140			
LCS Dup (3K06062	e-BSD1)										
Diesel Range Hydrocar	bons	1.49	0.250	mg/l	2.00		74.5	63-107	7.74	40	
Surrogate: o-Terpheny	!	0.360		"	0.400		90.0	60-140			
Matrix Spike (3K06	5062-MS1)					Source: H	B3K0154-	25			
Diesel Range Hydrocar	bons	2.22	0.250	mg/l	2.08	1.25	46.6	37-126			
Surrogate: o-Terpheny	!	0.369		"	0.417		88.5	60-140			
Matrix Spike Dup (3K06062-MSD1)					Source: H	33K0154-	25			
Diesel Range Hydrocar	bons	2.33	0.250	mg/l	2.08	1.25	51.9	37-126	4.84	40	
Surrogate: o-Terpheny	!	0.380		"	0.417		91.1	60-140			
Batch 3K14017:	Prepared 11/14/03	Using E	PA 3520C								
Blank (3K14017-BI	LK1)										
Diesel Range Hydrocar	bons	ND	0.250	mg/l							U

Diesel Range Hydrocarbons	ND	0.250	mg/l				U
Lube Oil Range Hydrocarbons	ND	0.500	"				U
Surrogate: o-Terphenyl	0.379		"	0.400	94.8	60-140	
Surrogate: 1-Chlorooctadecane	0.392		"	0.400	98.0	60-140	

North Creek Analytical - Bothell

CH2M Hill - Honolulu	Project:	Johnson Atoll TPH Investigation	
1585 Kapiolani Blvd. Suite 1420	Project Number:	179600.05.01.01	Reported:
Honolulu, HI 96814	Project Manager:	Jeff Cotter	11/24/03 07:41

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

				•						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K14017: Prepared 11/14/03	Using E	CPA 3520C								
Blank (3K14017-BLK2)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							U
Lube Oil Range Hydrocarbons	ND	0.500	"							U
Surrogate: o-Terphenyl	0.370		"	0.400		92.5	60-140			
Surrogate: 1-Chlorooctadecane	0.381		"	0.400		95.2	60-140			
LCS (3K14017-BS1)										
Diesel Range Hydrocarbons	1.49	0.250	mg/l	2.00		74.5	63-107			
Surrogate: o-Terphenyl	0.371		"	0.400		92.8	60-140			
LCS Dup (3K14017-BSD1)										
Diesel Range Hydrocarbons	1.47	0.250	mg/l	2.00		73.5	63-107	1.35	40	
Surrogate: o-Terphenyl	0.371		"	0.400		92.8	60-140			

North Creek Analytical - Bothell

1585 Kapiolani Blvd. Suite 1420 Project Number: 179600.05.01.01 Reported: 11/24/03 07:41 Honolulu, HI 96814 Project Manager: Jeff Cotter 11/24/03 07:41 Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06061:	Prepared 11/06/03	Using E	PA 3550B								
Blank (3K06061-BL	.K1)										
Diesel Range (SGCU)		2.93	10.0	mg/kg							J
Lube Oil Range (SGCU	J)	ND	25.0	"							U
Surrogate: o-Terphenyl	(SGCU)	13.4		"	13.3		101	60-140			
Surrogate: 1-Chlorooct	adecane (SGCU)	13.2		"	13.3		99.2	60-140			
LCS (3K06061-BS1)										
Diesel Range (SGCU)		52.3	10.0	mg/kg	66.7		78.4	70-130			
Surrogate: o-Terphenyl	(SGCU)	12.8		"	13.3		96.2	60-140			
LCS Dup (3K06061	-BSD1)										
Diesel Range (SGCU)		56.3	10.0	mg/kg	66.7		84.4	70-130	7.37	40	
Surrogate: o-Terphenyl	(SGCU)	13.2		"	13.3		99.2	60-140			
Matrix Spike (3K06	061-MS1)					Source: I	B3K0154-	13			
Diesel Range (SGCU)		509	20.0	mg/kg dry	82.1	181	400	50-150			Q-01, D
Surrogate: o-Terphenyl	(SGCU)	15.1		"	16.4		92.1	60-140			
Matrix Spike Dup (3K06061-MSD1)					Source: I	33K0154-	13			
Diesel Range (SGCU)		460	20.0	mg/kg dry	82.1	181	340	50-150	10.1	50	Q-01, D
Surrogate: o-Terphenyl	(SGCU)	16.5		"	16.4		101	60-140			
Batch 3K06062:	Prepared 11/06/03	Using E	PA 3510C								
Blank (3K06062-BL	.K1)										
Diesel Range (SGCU)		ND	0.250	mg/l							U
Lube Oil Range (SGCU	J)	ND	0.500	"							U

0.400

0.400

North Creek Analytical - Bothell

Surrogate: o-Terphenyl (SGCU)

Surrogate: 1-Chlorooctadecane (SGCU)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98.0

104

60-140

60-140

0.392

0.414

1585 Kapiolani Blvd. Suite 1420

Honolulu, HI 96814 Project Manager: Jeff Cotter 11/24/03 07:41 Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06062:	Prepared 11/06/03	Using El	PA 3510C								
Blank (3K06062-BL	LK2)										
Diesel Range (SGCU)		ND	0.250	mg/l							U
Lube Oil Range (SGCU	J)	ND	0.500	"							U
Surrogate: o-Terphenyl	(SGCU)	0.400		"	0.400		100	60-140			
Surrogate: 1-Chlorooct	adecane (SGCU)	0.424		"	0.400		106	60-140			
LCS (3K06062-BS1)										
Diesel Range (SGCU)		1.67	0.250	mg/l	2.00		83.5	45-105			
Surrogate: o-Terphenyl	(SGCU)	0.399		"	0.400		99.8	60-140			
LCS Dup (3K06062	-BSD1)										
Diesel Range (SGCU)		1.53	0.250	mg/l	2.00		76.5	45-105	8.75	50	
Surrogate: o-Terphenyl	(SGCU)	0.368		"	0.400		92.0	60-140			
Matrix Spike (3K06	062-MS1)					Source: I	B3K0154-	25			
Diesel Range (SGCU)		1.74	0.250	mg/l	2.08	0.123	77.7	0-200			
Surrogate: o-Terphenyl	(SGCU)	0.401		"	0.417		96.2	60-140			
Matrix Spike Dup (3K06062-MSD1)					Source: I	B3K0154-	25			
Diesel Range (SGCU)	,	1.82	0.250	mg/l	2.08	0.123	81.6	0-200	4.49	200	
Surrogate: o-Terphenyl	(SGCU)	0.415		"	0.417		99.5	60-140			
Batch 3K14017:	Prepared 11/14/03	Using El	PA 3520C								
Blank (3K14017-BL	K1)										

Diesel Range (SGCU)	ND	0.250	mg/l				U
Lube Oil Range (SGCU)	ND	0.500	"				U
Surrogate: o-Terphenyl (SGCU)	0.350		"	0.400	87.5	60-140	
Surrogate: 1-Chlorooctadecane (SGCU)	0.389		"	0.400	97.2	60-140	

North Creek Analytical - Bothell

1585 Kapiolani Blvd. Suite 1420

Somivolatile Potroloum Products by	NWTPH Dy with Acid/Silica Cal	Clean un Quality Control
Ionolulu, HI 96814	Project Manager: Jeff Cotter	11/24/03 07:41

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K14017: Prepared 11/14/03	Using E	PA 3520C								
Blank (3K14017-BLK2)										
Diesel Range (SGCU)	ND	0.250	mg/l							U
Lube Oil Range (SGCU)	ND	0.500	"							U
Surrogate: o-Terphenyl (SGCU)	0.319		"	0.400		79.8	60-140			
Surrogate: 1-Chlorooctadecane (SGCU)	0.338		"	0.400		84.5	60-140			
LCS (3K14017-BS1)										
Diesel Range (SGCU)	1.41	0.250	mg/l	2.00		70.5	45-105			
Surrogate: o-Terphenyl (SGCU)	0.355		"	0.400		88.8	60-140			
LCS Dup (3K14017-BSD1)										
Diesel Range (SGCU)	1.35	0.250	mg/l	2.00		67.5	45-105	4.35	50	
Surrogate: o-Terphenyl (SGCU)	0.340		"	0.400		85.0	60-140			

North Creek Analytical - Bothell

1585 Kapiolani Blvd. Suite 1420Project Number: 179600.05.01.01Reported:Honolulu, HI 96814Project Manager: Jeff Cotter11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06061: Prepared 11/06/03	Using	EPA 3550B								
Blank (3K06061-BLK1)										
C10-C12 Aliphatics	ND	5.00	mg/kg							U
C12-C16 Aliphatics	ND	5.00	"							U
C16-C21 Aliphatics	ND	5.00	"							U
C21-C34 Aliphatics	ND	5.00	"							U
C10-C12 Aromatics	0.729	5.00	"							J
C12-C16 Aromatics	ND	5.00	"							U
C16-C21 Aromatics	2.02	5.00	"							J
C21-C34 Aromatics	1.51	5.00	"							J
Surrogate: o-Terphenyl	12.3		"	13.3		92.5	60-140			
Surrogate: 1-Chlorooctadecane	12.0		"	13.3		90.2	60-140			
LCS (3K06061-BS2)										
C10-C12 Aliphatics	3.37	5.00	mg/kg	3.33		101	70-130			J
C12-C16 Aliphatics	5.34	5.00	"	6.67		80.1	70-130			
C16-C21 Aliphatics	6.41	5.00	"	6.67		96.1	70-130			
C21-C34 Aliphatics	21.1	5.00	"	23.3		90.6	70-130			
C10-C12 Aromatics	2.72	5.00	"	3.33		81.7	70-130			J
C12-C16 Aromatics	8.92	5.00	"	10.0		89.2	70-130			
C16-C21 Aromatics	16.6	5.00	"	16.7		99.4	70-130			
C21-C34 Aromatics	26.7	5.00	"	26.7		100	70-130			
Surrogate: o-Terphenyl	12.4		"	13.3		93.2	60-140			
Surrogate: 1-Chlorooctadecane	12.4		"	13.3		93.2	60-140			
LCS Dup (3K06061-BSD2)										
C10-C12 Aliphatics	3.00	5.00	mg/kg	3.33		90.1	70-130	11.6	25	J
C12-C16 Aliphatics	5.39	5.00	"	6.67		80.8	70-130	0.932	25	
C16-C21 Aliphatics	6.87	5.00	"	6.67		103	70-130	6.93	25	
C21-C34 Aliphatics	21.0	5.00	"	23.3		90.1	70-130	0.475	25	
C10-C12 Aromatics	2.40	5.00	"	3.33		72.1	70-130	12.5	25	J
C12-C16 Aromatics	9.01	5.00	"	10.0		90.1	70-130	1.00	25	
C16-C21 Aromatics	17.0	5.00	"	16.7		102	70-130	2.38	25	
C21-C34 Aromatics	27.5	5.00	"	26.7		103	70-130	2.95	25	
Surrogate: o-Terphenyl	12.8		"	13.3		96.2	60-140			
Surrogate: 1-Chlorooctadecane	11.7		"	13.3		88.0	60-140			

North Creek Analytical - Bothell

Honolulu, HI 96814

1585 Kapiolani Blvd. Suite 1420

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Johnson Atoll TPH Investigation

 Project Number:
 179600.05.01.01
 Reported:

11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

Project Manager: Jeff Cotter

[Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06061:	Prepared 11/06/03	Using l	EPA 3550B								
Matrix Spike (3K06	6061-MS2)					Source: I	B3K0154-	13			
C10-C12 Aliphatics		30.0	5.00	mg/kg dry	4.11	6.45	573	70-130			Q-03
C12-C16 Aliphatics		178	5.00	"	8.21	52.5	1530	70-130			Q-03
C16-C21 Aliphatics		156	5.00	"	8.21	68.2	1070	70-130			Q-03
C21-C34 Aliphatics		68.8	5.00	"	28.7	23.2	159	70-130			Q-03
C10-C12 Aromatics		2.66	5.00	"	4.11	1.00	40.4	70-130			Q-03, J
C12-C16 Aromatics		18.5	5.00	"	12.3	2.03	134	70-130			Q-03
C16-C21 Aromatics		69.6	5.00	"	20.5	17.7	253	70-130			Q-03
C21-C34 Aromatics		52.9	5.00	"	32.8	12.9	122	70-130			
Surrogate: o-Terphenyl		15.2		"	16.4		92.7	60-140			
Surrogate: 1-Chlorooct	adecane	15.0		"	16.4		91.5	60-140			
Matrix Spike Dup (3K06061-MSD2)					Source: I	33K0154-	13			
C10-C12 Aliphatics	, , , , , , , , , , , , , , , , , , ,	34.9	5.00	mg/kg dry	4.11	6.45	692	70-130	15.1	25	Q-03
C12-C16 Aliphatics		243	5.00	"	8.21	52.5	2320	70-130	30.9	25	Q-03
C16-C21 Aliphatics		197	5.00	"	8.21	68.2	1570	70-130	23.2	25	Q-03
C21-C34 Aliphatics		82.3	5.00	"	28.7	23.2	206	70-130	17.9	25	Q-03
C10-C12 Aromatics		2.77	5.00	"	4.11	1.00	43.1	70-130	4.05	25	Q-03, J
C12-C16 Aromatics		17.8	5.00	"	12.3	2.03	128	70-130	3.86	25	
C16-C21 Aromatics		82.8	5.00	"	20.5	17.7	318	70-130	17.3	25	Q-03
C21-C34 Aromatics		58.7	5.00	"	32.8	12.9	140	70-130	10.4	25	Q-03
Surrogate: o-Terphenyl	1	15.2		"	16.4		92.7	60-140			
Surrogate: 1-Chlorooct	adecane	14.8		"	16.4		90.2	60-140			
Batch 3K06062:	Prepared 11/06/03	Using l	EPA 3510C	1							
Blank (3K06062-BL	_K1)										
C10-C12 Aliphatics		21.3	50.0	ug/l							D, J
C12-C16 Aliphatics		38.7	50.0	"							D, J
C16-C21 Aliphatics		17.6	50.0	"							D, J
C21-C34 Aliphatics		16.9	50.0	"							D, J
C10-C12 Aromatics		16.2	50.0	"							D, J
C12-C16 Aromatics		ND	50.0	"							D, U
C16-C21 Aromatics		19.0	50.0	"							D, J
C21-C34 Aromatics		ND	50.0	"							D, U
Surrogate: o-Terphenyl		338		"	400		84.5	60-140			D
Surrogate: 1-Chlorooct	adecane	386		"	400		96.5	60-140			Ľ

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Johnson Atoll TPH Investigation

 1585 Kapiolani Blvd. Suite 1420
 Project Number:
 179600.05.01.01
 Reported:

 Honolulu, HI 96814
 Project Manager:
 Jeff Cotter
 11/24/03 07:41

 Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control

North Creek Analytical - Bothell

[Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K06062:	Prepared 11/06/03	Using 1	EPA 3510C								
LCS (3K06062-BS2)										
C10-C12 Aliphatics	, 	113	50.0	ug/l	100		113	70-130			D
C12-C16 Aliphatics		210	50.0	"	200		105	70-130			D
C16-C21 Aliphatics		201	50.0	"	200		100	70-130			D
C21-C34 Aliphatics		681	50.0	"	700		97.3	70-130			D
C10-C12 Aromatics		74.9	50.0	"	100		74.9	70-130			Ľ
C12-C16 Aromatics		254	50.0	"	300		84.7	70-130			D
C16-C21 Aromatics		468	50.0	"	500		93.6	70-130			D
C21-C34 Aromatics		675	50.0	"	800		84.4	70-130			D
Surrogate: o-Terphenyl		378		"	400		94.5	60-140			L
Surrogate: 1-Chlorooct	adecane	426		"	400		106	60-140			Ľ
LCS Dup (3K06062	-BSD2)										
C10-C12 Aliphatics		114	50.0	ug/l	100		114	70-130	0.881	25	D
C12-C16 Aliphatics		210	50.0	"	200		105	70-130	0.00	25	D
C16-C21 Aliphatics		201	50.0	"	200		100	70-130	0.00	25	D
C21-C34 Aliphatics		689	50.0	"	700		98.4	70-130	1.17	25	D
C10-C12 Aromatics		77.6	50.0	"	100		77.6	70-130	3.54	25	Ľ
C12-C16 Aromatics		233	50.0	"	300		77.7	70-130	8.62	25	D
C16-C21 Aromatics		449	50.0	"	500		89.8	70-130	4.14	25	E
C21-C34 Aromatics		646	50.0	"	800		80.8	70-130	4.39	25	D
Surrogate: o-Terphenyl	1	367		"	400		91.8	60-140			Ľ
Surrogate: 1-Chlorooct	adecane	443		"	400		111	60-140			Ľ
Matrix Spike (3K06	6062-MS2)					Source:	B3K0154-	25			
C10-C12 Aliphatics		118	53.2	ug/l	106	24.2	88.5	70-130			D
C12-C16 Aliphatics		211	53.2	"	213	43.7	78.5	70-130			D
C16-C21 Aliphatics		211	53.2	"	213	24.0	87.8	70-130			D
C21-C34 Aliphatics		752	53.2	"	745	35.7	96.1	70-130			Ľ
C10-C12 Aromatics		70.6	53.2	"	106	5.58	61.3	70-130			Q-01, E
C12-C16 Aromatics		236	53.2	"	319	ND	74.0	70-130			D
C16-C21 Aromatics		462	53.2	"	532	12.4	84.5	70-130			E
C21-C34 Aromatics		648	53.2	"	851	ND	76.1	70-130			D
Surrogate: o-Terphenyl	1	379		"	426		89.0	60-140			L
Surrogate: 1-Chlorooct	adecane	446		"	426		105	60-140			Ľ

North Creek Analytical - Bothell

Honolulu, HI 96814

1585 Kapiolani Blvd. Suite 1420

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Johnson Atoll TPH Investigation

 Project Number:
 179600.05.01.01
 Reported:

11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

Project Manager: Jeff Cotter

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3K06062: Prepar	ed 11/06/03	Using El	PA 3510C	01110	20101	Ttebuit	, uill e	2	iu b		110005
Matrix Spike Dup (3K06062-					Source: I	B3K0154-	25				
C10-C12 Aliphatics		101	53.8	ug/l	108	24.2	71.1	70-130	15.5	25	D
C12-C16 Aliphatics		200	53.8	"	215	43.7	72.7	70-130	5.35	25	D
C16-C21 Aliphatics		202	53.8	"	215	24.0	82.8	70-130	4.36	25	D
C21-C34 Aliphatics		723	53.8	"	753	35.7	91.3	70-130	3.93	25	D
C10-C12 Aromatics		74.5	53.8	"	108	5.58	63.8	70-130	5.38	25	Q-01, D
C12-C16 Aromatics		218	53.8	"	323	ND	67.5	70-130	7.93	25	Q-01, D
C16-C21 Aromatics		459	53.8	"	538	12.4	83.0	70-130	0.651	25	D
C21-C34 Aromatics		629	53.8	"	860	ND	73.1	70-130	2.98	25	D
Surrogate: o-Terphenyl		366		"	430		85.1	60-140			D
Surrogate: 1-Chlorooctadecane		429		"	430		99.8	60-140			D

Batch 3K14024: Prepared 11/14/03 Using EPA 3520C

Blank (3K14024-BLK1)							
C10-C12 Aliphatics	ND	50.0	ug/l				D, U
C12-C16 Aliphatics	ND	50.0	"				D, U
C16-C21 Aliphatics	ND	50.0	"				D, U
C21-C34 Aliphatics	ND	50.0	"				D, U
C10-C12 Aromatics	5.24	50.0	"				D, J
C12-C16 Aromatics	ND	50.0	"				D, U
C16-C21 Aromatics	ND	50.0	"				D, U
C21-C34 Aromatics	ND	50.0	"				D, U
Surrogate: o-Terphenyl	374		"	400	93.5	60-140	D
Surrogate: 1-Chlorooctadecane	374		"	400	93.5	60-140	D
Blank (3K14024-BLK2)							
C10-C12 Aliphatics	ND	50.0	ug/l				D, U
C12-C16 Aliphatics	ND	50.0	"				D, U
C16-C21 Aliphatics	ND	50.0	"				D, U
C21-C34 Aliphatics	ND	50.0	"				D, U
C10-C12 Aromatics	5.24	50.0	"				D, J
C12-C16 Aromatics	ND	50.0	"				D, U
C16-C21 Aromatics	ND	50.0	"				D, U
C21-C34 Aromatics	ND	50.0	"				D, U
Surrogate: o-Terphenyl	330		"	400	82.5	60-140	D
Surrogate: 1-Chlorooctadecane	367		"	400	91.8	60-140	D

North Creek Analytical - Bothell

on the

Brad Meadows For John Clawson, Project Manager

Honolulu, HI 96814

1585 Kapiolani Blvd. Suite 1420

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 Johnson Atoll TPH Investigation

 Project Number:
 179600.05.01.01
 Reported:

11/24/03 07:41

Extractable Petroleum Hydrocarbons by WDOE TPH Policy Method - Quality Control North Creek Analytical - Bothell

Project Manager: Jeff Cotter

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K14024:	Prepared 11/14/03	Using E	PA 3520C								
LCS (3K14024-BS2))										
C10-C12 Aliphatics		76.6	50.0	ug/l	100		76.6	70-130			D
C12-C16 Aliphatics		177	50.0	"	200		88.5	70-130			D
C16-C21 Aliphatics		185	50.0	"	200		92.5	70-130			D
C21-C34 Aliphatics		604	50.0	"	700		86.3	70-130			D
C10-C12 Aromatics		82.8	50.0	"	100		82.8	70-130			D
C12-C16 Aromatics		224	50.0	"	300		74.7	70-130			D
C16-C21 Aromatics		427	50.0	"	500		85.4	70-130			D
C21-C34 Aromatics		583	50.0	"	800		72.9	70-130			D
Surrogate: o-Terphenyl		381		"	400		95.2	60-140			D
Surrogate: 1-Chlorooct	adecane	380		"	400		95.0	60-140			D
LCS Dup (3K14024	-BSD2)										
C10-C12 Aliphatics		73.3	50.0	ug/l	100		73.3	70-130	4.40	25	D
C12-C16 Aliphatics		176	50.0	"	200		88.0	70-130	0.567	25	D
C16-C21 Aliphatics		186	50.0	"	200		93.0	70-130	0.539	25	D
C21-C34 Aliphatics		615	50.0	"	700		87.9	70-130	1.80	25	D
C10-C12 Aromatics		82.5	50.0	"	100		82.5	70-130	0.363	25	D
C12-C16 Aromatics		221	50.0	"	300		73.7	70-130	1.35	25	D
C16-C21 Aromatics		424	50.0	"	500		84.8	70-130	0.705	25	D
C21-C34 Aromatics		579	50.0	"	800		72.4	70-130	0.688	25	D
Surrogate: o-Terphenyl		379		"	400		94.8	60-140			D
Surrogate: 1-Chlorooct	adecane	375		"	400		<i>93.8</i>	60-140			D

North Creek Analytical - Bothell

CH2M Hill - Honolulu	
1585 Kapiolani Blvd. Suite 1420	
Honolulu, HI 96814	

Project: Johnson Atoll TPH Investigation Project Number: 179600.05.01.01 Project Manager: Jeff Cotter

Reported: 11/24/03 07:41

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

_					•						
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3K11008:	Prepared 11/11/03	Using I	Dry Weight								
Blank (3K11008-B	LK1)										
Dry Weight		100	1.00	%							
Batch 3K17042:	Prepared 11/13/03	Using T	OC Prepar	ation							
Blank (3K17042-B	LK1)										
Fractional Organic Car	rbon - Low	ND	0.00100	g/g							U
Fractional Organic Car	rbon - High	ND	0.00100	"							U
Fractional Organic Car	rbon - Average	ND	0.00100	"							U
LCS (3K17042-BS	1)										
Fractional Organic Car	rbon - Low	0.0308	0.00100	g/g	0.0300		103	80-120			
Fractional Organic Car	rbon - High	0.0351	0.00100	"	0.0300		117	80-120			
Fractional Organic Car	rbon - Average	0.0326	0.00100	"	0.0300		109	90-110			
Duplicate (3K1704	2-DUP1)					Source: E	3K0154-	05			
Fractional Organic Car	rbon - Low	0.00374	0.00100	g/g		0.00171			74.5	25	
Fractional Organic Car	rbon - High	0.00626	0.00100	"		0.00852			30.6	25	
Fractional Organic Car	rbon - Average	0.00507	0.00100	"		0.00462			9.29	25	
Matrix Spike (3K1	7042-MS1)					Source: E	B3K0154-	05			
Fractional Organic Car	rbon - Low	0.00936	0.00100	g/g	0.00708	0.00171	108	70-130			
Fractional Organic Car	rbon - High	0.0123	0.00100	"	0.00708	0.00852	53.4	70-130			
Fractional Organic Car	rbon - Average	0.0108	0.00100	"	0.00708	0.00462	87.3	70-125			

North Creek Analytical - Bothell

CH2M Hill - HonoluluProject:Johnson Atoll TPH Investigation1585 Kapiolani Blvd. Suite 1420Project Number:179600.05.01.01Reported:Honolulu, HI 96814Project Manager:Jeff Cotter11/24/03 07:41

Notes and Definitions

- A-01 Sample analyzed at a dilution due to coelution with internal standard.
- D Data reported from a preparation or analytical dilution.
- D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- G-01 Results reported for the gas range are primarily due to overlap from diesel range hydrocarbons.
- J Estimated value.
- Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
- Q-02 The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
- Q-03 The percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte already present in the sample.
- Q-16 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to interference from coeluting organic compounds present in the sample.
- S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- U Analyte included in the analysis but not detected.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

Chromatograms

Page 2

Page 2

Mon Nov 10 09:15:31 2003

Quantitation Report

Quantitation Report

Page 2

K13056.D K0603L5F.M Fri Nov 14 07:25:33 2003

K13057.D K0603R5R.M Fri Nov 14 07:04:22 2003

K13059.D K0603R5R.M Fri Nov 14 07:04:31 2003

K13061.D K0603R5R.M Fri Nov 14 12:25:58 2003

K13063.D K0603R5R.M Fri Nov 14 12:26:07 2003

K13064.D K0603L5F.M Fri Nov 14 12:20:20 2003

K13066.D K0603L5F.M Fri Nov 14 12:20:31 2003

K13067.D K0603R5R.M Fri Nov 14 12:26:27 2003

K13068.D K0603L5F.M Fri Nov 14 12:20:42 2003

K13071.D K0603R5R.M Fri Nov 14 12:26:44 2003

K13072.D K0603L5F.M Fri Nov 14 12:21:02 2003

K13073.D K0603R5R.M Fri Nov 14 12:26:51 2003

K19043.D K0703A5R.M Thu Nov 20 10:26:19 2003

Vial: 34 Data File : C:\HPCHEM\3\DATA.SEC\K19041.D Operator: GAP Acg On : 19 Nov 2003 11:16 pm Inst : GC #5 Sample : B3K0154-09 Multiplr: 1.00 Misc : 1x w nw sg addon : SURR.E IntFile Quant Time: Nov 19 23:48 2003 Quant Results File: K0703A5R.RES Quant Method : C:\HPCHEM\3\METHODS\K0703A5R.M (Chemstation Integrator) : TPH-D Rear Method Title Last Update : Fri Nov 07 17:01:07 2003 Response via : Multiple Level Calibration DataAcq Meth : K0703A5F.M Volume Inj. : Signal Phase : Signal Info : K19041.D\FID2B Response_ 45000 40000 35000 30000 25000 20000 15000 10000 5000 7.00 0 (erphen) Chlorooc etrahydro 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 2.00 4.00 6.00 8.00 0.00 Time

K19041.D K0703A5R.M Thu Nov 20 10:26:05 2003

K18047.D K0703A5R.M Wed Nov 19 13:45:15 2003

K18049.D K0703A5R.M Wed Nov 19 13:45:31 2003

Vial: 67 Data File : C:\HPCHEM\3\DATA.SEC\K22027.D Operator: EJE Acq On : 23 Nov 2003 _3:52 am : GC #5 Inst Sample : b3k0154-09RE1 -09 Multiplr: 1.00 Misc : w Al ant 11-23-03 : SURR.E IntFile Quant Time: Nov 23 7:33 2003 Quant Results File: K0603L5R.RES Quant Method : C:\HPCHEM\3\METHODS\K0603L5R.M (Chemstation Integrator) : EPH Rear Method Title Last Update : Fri Nov 07 14:17:41 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M Volume Inj. : Signal Phase : Signal Info : K22027.D\FID2B Response_ 95000 90000 85000 80000 75000 70000 65000 60000 55000 50000-45000-40000-35000 30000 25000 20000 15000 10000 5000 10.15 6.78 17.06 0 -5000 -10000 - C18 A 12 - C16 5.05 Chlorooc ő C25 8 ŝ 16ę 800 ຮ່ 23 ò ò 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 8.00 Time 0.00 2.00 4.00 6.00

K22027.D K0603L5R.M S

Vial: 68 Data File : C:\HPCHEM\3\DATA.SEC\K22029.D **Operator: EJE** : 23 Nov 2003 Acq On 4:34 am : GC #5 Inst Sample : b3k0154-09RE1 Multiplr: 1.00 Misc : w Ar -01 241 60f 11-23-03 IntFile : SURR.E 7:36 2003 Quant Results File: K0603R5R.RES Quant Time: Nov 23 Quant Method : C:\HPCHEM\3\METHODS\K0603R5R.M (Chemstation Integrator) : EPH Rear Method Title Last Update : Fri Nov 07 18:34:11 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M Volume Inj. : Signal Phase : Signal Info : K22029.D\FID2B Response_ 45000 40000 35000 30000 25000 20000 15000 10000 5000 6.86 9.33 0 80 1-C22 5 SS 30.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 2.00 4.00 6.00 8.00 0.00 Time Page 2 Sun Nov 23 07:37:00 2003 K22029.D K0603R5R.M

Vial: 69 Data File : C:\HPCHEM\3\DATA.SEC\K22039.D Operator: EJE : 23 Nov 2003 7:58 am Acq On : GC #5 Inst Sample : b3k0154-l2RE1 Multiplr: 1.00 Misc : w Al -12 and 11-23-03 : SURR.E IntFile Quant Time: Nov 23 11:13 2003 Quant Results File: K0603L5R.RES Quant Method : C:\HPCHEM\3\METHODS\K0603L5R.M (Chemstation Integrator) : EPH Rear Method Title Last Update : Fri Nov 07 14:17:41 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M Volume Inj. : Signal Phase : Signal Info : K22039.D\FID2B Response_ 95000 90000 85000 80000 75000 70000 -65000 60000 55000 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 13.11 6.78 17.05 15.37 7.92 0 -5000 -10000 - C18 A - 010 -Chlorooc g C23 12 - C16 8 5 <u>è</u> 5 88 ġ C25 ຮ່ ò 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 2.00 6.00 8.00 0.00 4.00 Time

K22039.D K0603L5R.M

Sun Nov 23 11:13:52 2003

Page 2

Data File : C:\HPCHEM\3\DATA.SEC\111803R\K18025.D Vial: 13 Acq On : 18 Nov 2003 9:24 pm Operator: GAP Sample : GC #5 : B3K0154-09 Inst Misc : 1x AL Multiplr: 1.00 IntFile : SURR.E Quant Time: Nov 19 8:26 2003 Quant Results File: K0603L5R.RES Quant Method : C:\HPCHEM\3\METHODS\K0603L5R.M (Chemstation Integrator) Title : EPH Rear Method Last Update : Fri Nov 07 14:17:41 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M Volume Inj. : Signal Phase : Signal Info : Response_ K18025.D\FID2B 95000 90000 85000 80000 75000 70000 65000 60000 55000 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 6.40 10.15 17.21 0 -5000 -10000 5 C9 - C18 A .C16 Chlorooc C25 c38 8 8 -91 ģ ġ 80 <u>C</u>19-5 4.00 Time 0.00 2.00 6.00 8.00 10.00 12.00 14.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 16.00

K18025.D K0603L5R.M Wed Nov 19 13:43:35 2003

IntFile : SURR.E Quant Time: Nov 19 8:16 2003 Quant Results File:	K0603R5F.RES
Quant Time: Nov 19 8:16 2003 Quant Results File:	K0603R5F.RES
Quant Method : C:\HPCHEM\3\METHODS\K0603R5F.M (Chem Title : EPH Front Method Last Update : Fri Nov 07 18:45:32 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M	station Integrator)
Volume Inj. : Signal Phase : Signal Info :	
ponseK18024.D\FID1A	A Bolina Anger A BAN I Anger
45000	
40000	
35000	
30000	
25000	
20000	
15000	
10000	
5000	
	4
0	
C36 222 318 238 238	
ссо-ссо-ссо-ссо-ссо-ссо-ссо-ссо-ссо-ссо	<u></u>
ne 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00	22.00 24.00 26.00 28.00 3

Data File : C:\HPCHEM\3\DATA.SEC\111803R\K18027.D Vial: 15 Operator: GAP : 18 Nov 2003 10:06 pm Acq On : GC #5 : B3K0154-12 Inst Sample : 1x AL Multiplr: 1.00 Misc : SURR.E IntFile Quant Time: Nov 19 8:26 2003 Quant Results File: K0603L5R.RES Quant Method : C:\HPCHEM\3\METHODS\K0603L5R.M (Chemstation Integrator) Title : EPH Rear Method Last Update : Fri Nov 07 14:17:41 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M Volume Inj. : Signal Phase : Signal Info : K18027.D\FID2B

Data File : C:\HPCHEM\3\DATA\111803F\K18026.D Acq On : 18 Nov 2003 9:24 pm Sample : B3K0154-12 Misc : 1x AR IntFile : SURR.E Quant Time: Nov 19 8:17 2003 Quant Results File:	Vial: 14 Operator: GAP Inst : GC #5 Multiplr: 1.00 K0603R5F.RES
Quant Method : C:\HPCHEM\3\METHODS\K0603R5F.M (Che Title : EPH Front Method Last Update : Fri Nov 07 18:45:32 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M	mstation Integrator)
Volume Inj. :	

Signal Phase : Signal Info :

K10033.D K0703A5R.M Tue Nov 11 06:44:20 2003

Page 2

K10041.D K0703A5R.M Tue Nov 11 06:44:42 2003

Page 2

.

K10060.D K0703A5F.M Tue Nov 11 10:54:26 2003

Page 2

Quantitation Report

Data File : C:\HPCHEM\3\DATA\K10062.D Acq On : 11 Nov 2003 9:18 am Sample : B3K0154-27 Misc : 1x w nw sg addon IntFile : SURR.E Quant Time: Nov 11 10:54 2003 Quant Results File: K	Vial: 33 Operator: GAP Inst : GC #5 Multiplr: 1.00
Quant Method : C:\HPCHEM\3\METHODS\K0703A5F.M (Chems Title : TPH-D Front Method Last Update : Fri Nov 07 16:36:27 2003 Response via : Multiple Level Calibration DataAcq Meth : J2303T5F.M	tation Integrator)
Volume Inj. : Signal Phase : Signal Info :	
ResponseK10062.D\FID1A	
45000 -	
40000	
35000	
30000	: *
25000	
20000	
15000	
10000	
5000	
0-	
ydrio west west wooc	
	22 00 24 00 26 00 28 00 30 00
	<u></u>

K10063.D K0703A5R.M

Page 2

K10065.D K0703A5R.M Tue Nov 11 12:25:39 2003

Page 2

K08091.D K0703A5R.M Mon Nov 10 06:31:53 2003

K08096.D K0703A5F.M Mon Nov 10 06:25:06 2003

