

Welcome to the CLU-IN Internet Seminar

Early-life Exposures - Long-term Health Consequences: Session 2, Metals and Metal Mixtures

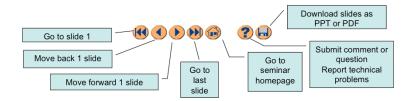
Sponsored by: NIEHS Superfund Research Program

Delivered: March 28, 2012, 1:00 PM - 3:00 PM, EDT (17:00-19:00 GMT)

Instructors:

Robert Wright, Associate Professor of Pediatrics & Environmental Health, Director, Superfund Research Program, Harvard Medical School and School of Public Health (rowright@hsph.harvard.edu)

Rebecca Fry, Assistant Professor, Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health (rfry@email.unc.edu)


Moderator:

Bill Hagel, U.S. EPA, Region 3 (hagel.bill@epa.gov)

Visit the Clean Up Information Network online at www.cluin.org

Housekeeping

- · Please mute your phone lines, Do NOT put this call on hold
- Q&A
- Turn off any pop-up blockers
- Move through slides using # links on left or buttons

- This event is being recorded
- Archives accessed for free http://cluin.org/live/archive/

2

Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.

Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interupt the seminar.

You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? Icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker information, links to the slides and additional resources. Lastly, the button with a computer disc can be used to download and save today's presentation materials.

With that, please move to slide 3.

Chemical Mixtures and Neurodevelopment

Robert O. Wright MD MPH Director, Harvard SRP Associate Professor of Pediatrics

Why should we study Mixtures?

- Real life exposure scenario
- Most Superfund sites are mixtures
 - □ Can guide which chemicals to assess

Why should we study Mixtures?

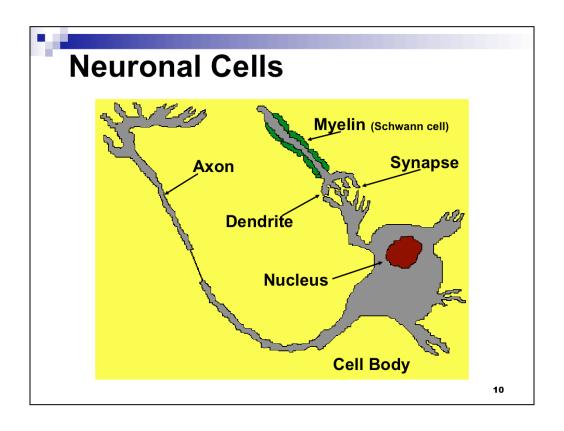
- Mixed Exposures can be thought of as an extension of the "2-hit" hypothesis
 - □1st hit leaves brain in vulnerable state
 - □2nd hit needed to produce toxicity
 - Fits with developmental theories of plasticity

Mixtures may be most relevant to the general population

- High vs low doses of chemicals
- Mixtures may be irrelevant at "high" doses
 - ☐ If blood lead is >100 ug/dL, can a low dose of Mn make any difference?
 - ☐ If blood Pb is 10 ug/dL perhaps a second hit by Mn then becomes relevant

Chemical Mixtures and Brain Development

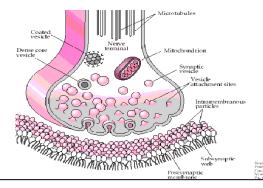
- Metals
 - □ Pb, Mn, As, Hg, methyl Hg,
- Organic chemicals
 - □ PCBs, DDT,
 - □ Solvents
- Pesticides
 - ☐ Organophosphates, Carbamates, pyrethroids
- Drugs of abuse
 - □ GHB, cocaine, benzodiazepine, ketamine


Neurodevelopment-Review

- How do chemicals produce neurotoxicity in the developing brain?
 - ☐ High dose
 - Neurodegeneration, damage, cell death
 - □ Low dose
 - May be no signs of damage
 - Interferes with network formation

Developmental Neurotoxicology

- Vulnerable periods
 - □ Childhood
 - Neurodevelopment
 - □ Elderly
 - Neurodegeneration
- Critical Developmental Windows
 - □ Developmental life stages at which processes occur (i.e. gene expression) which may not occur at other life stages.



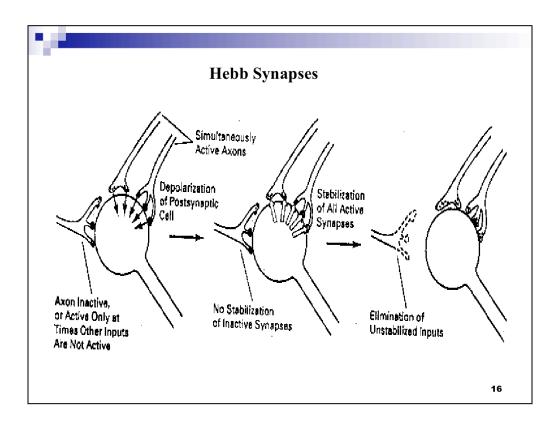
Biological Vulnerability-Neurodevelopment

- Construction of the central nervous system (CNS) begins in utero,
- Continues throughout childhood and involves the production of 100 billion nerve cells and 1 trillion glial cells.
- Cell migrate, differentiate, and form synapses

- Transmit signals between neurons
 - □ Environmental stimuli will cause neurons to fire
 - □ Neuronal/synaptic firing is a signaling process to mold the synaptic architecture of the brain

How does the Brain Build this Network?

- Some of it is stochastic
 - □ Synapses are made by the billions, and in some respects randomly, between neurons.
 - □We make a net gain in synapses from fetal life till about age 2 years
 - ☐ Then the number of synapses in our brain starts to decrease
 - Why?


Synaptic Network

- Environmental Stimuli cause nerves to fire:
- When they fire, neurotransmitters are released into synaptic junctions
 - ☐ This releases growth factors
 - ☐ Signals that this is an important neuronal connection (i.e. it gets used)

Synaptic Pruning

- Environmental stimuli mold the CNS.
 - □ Synapses that produce function are repeatedly fired and kept
 - ☐ Synapses that are dormant are deleted
- In other words there is a "natural selection" process
 - □ Functional synapses release growth factors
 - □ Nonfunctional synapses do not release the growth factors

Weisel and Hubel

- Newborn kittens
 - □ Patch one eye for one month
 - □ Retinal development (specifically the development of neuronal connections) in the patched eye would not occur.
- Patch Adult cat eye for one month
 - □ Compare neuronal networks between patched and unpatched eye
 - No difference than comparing unpatched cats

Implication

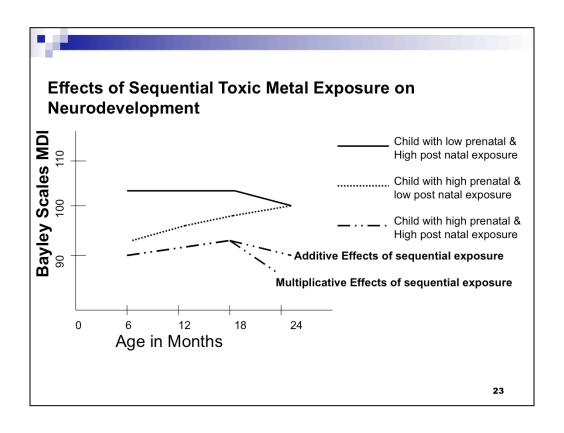
- Natural Selection is not just a process by which genetic variants are selected.
- Neuronal Cells and synaptic networks may also undergo a process of natural selection

So how do Chemicals affect Development?

- Lead as a "paradigm" toxicant
- At "low" doses (blood lead around 5-10 ug/dL)
 - □ Lead will interact with Protein Kinase C
 - Stimulate neurotransmitter release
 - Neurons fire in the absence of an appropriate environmental stimuli
 - □ Lead mimics calcium
 - Calcium is critical to nerve signal transmission
 - Calcium enters neurons during depolarization
 - Lead blocks calcium channels

Lead and the Brain

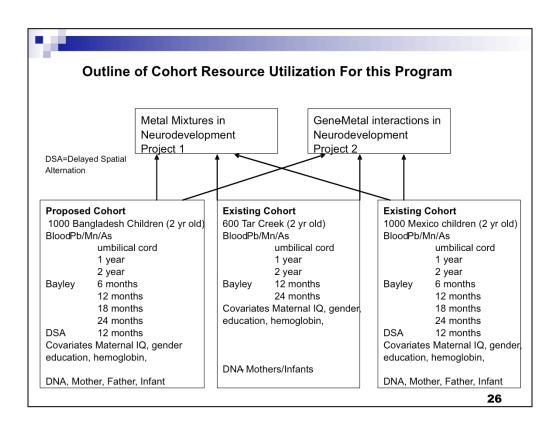
- Net effect
 - □ Lead stimulates nerves to fire in a more stochastic fashion
 - □ Lead also inhibits neurotransmission (both appropriate neurotransmission and inappropriate neurotransmission)
- Makes it hard to think/concentrate
- Changes the underlying synaptic architecture, making it less efficient

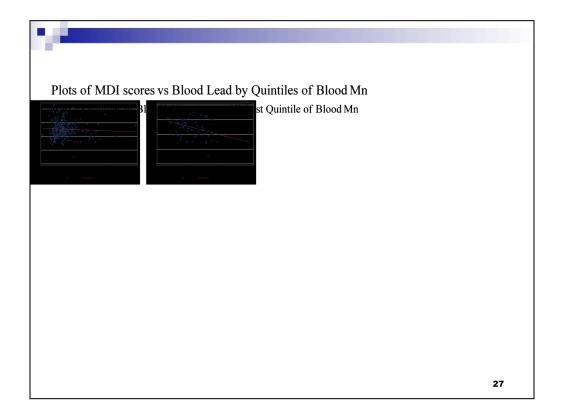

Childhood Lead Poisoning

- □Lead exposure introduces noise to the process of synaptic pruning
 - Which synapses are chosen for survival and which regress becomes more random
- □Net effect if prolonged- is that the underlying neuronal networks are less efficient.
- □Structurally no damage is evident
- □Functionally, deficits are measurable.

Plasticity

- The brain's capacity to diminish the effects of toxic insults through structural/functional changes
 - ☐ This occurs through the same processes as synaptic selection
 - ☐ In other words plasticity allows for new connections to be made which improve function following an insult
- Maladaptive vs adaptive plasticity




- Uses existing infrastructure/data in 2 ongoing cohorts of neurodevelopment and metals
 - □ Mexico City, Tar Creek
 - □ Measure As, Mn, Pb
- Use existing infrastructure on a 3rd cohort designed to assess reproductive health study in Bangladesh on Arsenic
 - ☐ Add follow-up and neurodevelopment measures
 - Add Pb and Manganese measure

Design

- Prenatal exposure biomarkers in mother
 - □2nd, 3rd trimester, delivery
- Post natal exposure biomarkers in child
 - □ 1 and 2 years of age
- Bayley Scales of infant development
 - □1 and 2 years of age
- Either Pooled across cohorts
 - □ Or as a meta-regression

Current work

- Finishing Year 2
 - □Pooling vs meta-regression
 - Meta data issues
 - □Biomarkers
 - All blood
 - Avoids issues that come up if using biomarkers from different matrices
 - □Urine vs blood vs hair
 - Different half lives

Other complexities

- Different doses in different cohorts
 - □ Bangladesh>Mexico>Tar Creek
- Which developmental windows are important for mixtures?
 - □ Repeated measures of exposure at different life stages
- Interactions may occur across time
 - □ Prenatal may modify 1 year blood Metal

Summary

- Low level chemical exposures may be more relevant in children
- Low level chemical mixed exposures may also be more relevant in children
- Our program is designed to test 2 and 3 way interactions among Pb, Mn and As
 - □ 2 way Mn-Pb interactions already demonstrated

Summary

- Chemical mixtures reflect real life
- While complex, understanding the variance in dose response curves requires understanding mixed exposures
- Ignoring mixed exposures will lead to biased effect estimates

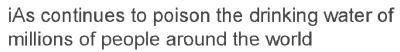
Summary

- Like understanding G X E interactions mixtures research requires
 - □ Large sample sizes
 - □Validation in multiple populations
 - □ Complex analytical approaches

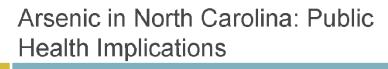
HEALTH IMPLICATIONS OF EARLY LIFE EXPOSURE TO TOXIC METALS

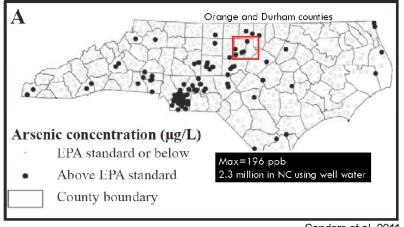
REBECCA FRY, PH.D.

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA


iAs is classified as a Group 1 Carcinogen

SCIENCE VOL 315 23 MARCH 2007 A Sluggish Response to Humanity's Biggest Mass Poisoning Classified as Group 1 Carcinogen by the International Agency for Research on Cancer (IARC): Chronic exposure results in many cancers: skin, bladder, lung, liver, prostate and kidney


Exposure is associated with non-cancer endpoints: neurological disorders, reproductive effects, cardiovascular disease, diabetes


Highest Priority Contaminant of the ATSDR Agency for Toxic Substances and Disease Registry

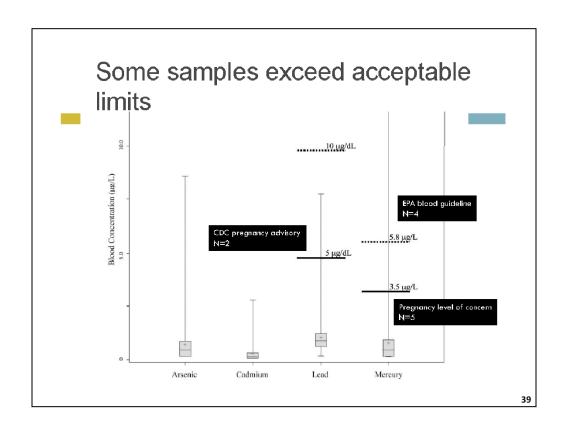
Global nature-almost every continent 40 million exposed to >5 times the WHO limit in South East Asia alone

Sanders et al. 2011

Environment International 38 (2011) 10-16

OPEN @ ACCESS Freely available online

Towards Prenatal Biomonitoring in North Carolina: Assessing Arsenic, Cadmium, Mercury, and Lead Levels in Pregnant Women


Alison P. Sanders 1 , Kaye Flood 2 , Shu Chiang 2 , Amy H. Herring 3 , Leslie Wolf 2 , Rebecca C. Fry 1*

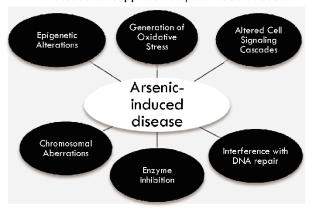
1 Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America, 2 State Laboratory of Public Health, North Carolina Department of Health and Human Services, Raleigh, North Carolina, United States of America, 3 Department of Biostatistics, Gillings School of Global Public Health, and Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, United States of America

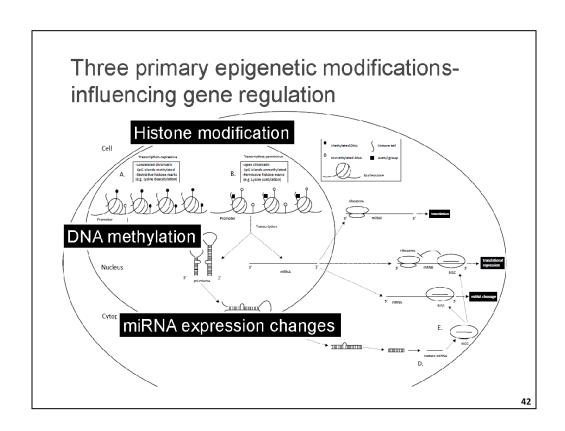
Toxic metals were detectable in pregnant women in North Carolina

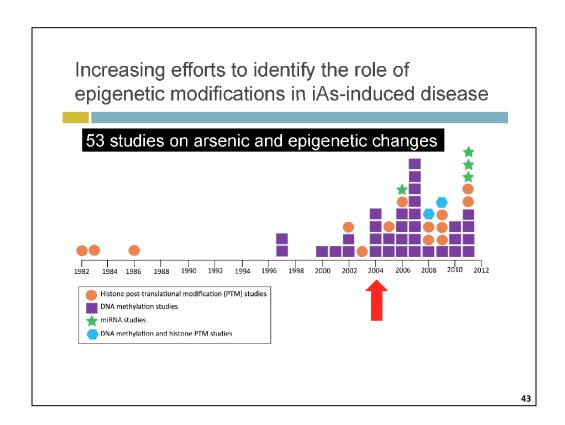
Table 2. Detectable levels and geometric averages of the four toxic metals in women.

Blood Metals	n	% Detected	Geometric Mean ^a (range)
Arsenic	210	65.7	0.445 (<0.23-8.58) μg/L
Cadmium	211	57.3	0.181 (<0.11-2.79) μg/L
Mercury	210	63.8	0.453 (<0.23-11.78) μg/L
Lead	211	100	0.890 (0.19-7.72) μg/dL

County of residence and race were associated with metals levels


Table 4. Linear regression of age-adjusted maternal race on blood metal levels (Beta coefficient and 95% CI).


	Asian	Hispanic	NHB	NHW (ref)	
As	0.51 (0.14-0.88)*	-0.13 (-0.35-0.08)	0.12 (0.02-0.23)*		
Cd	0.39 (0.01-0.77)*	0.20 (-0.02-0.41)	0.25 (0.15-0.36)**	-	
Hg	0.64 (0.23-1.05)*	- 0.07 (-0.31-0.16)	0.01 (-0.11-0.12)	-	
Pb	-0.01 (-0.24-0. <u>22</u>)	-0.08 (-0.21-0.05)	-0.07 (-0.13-0.00)*	-	

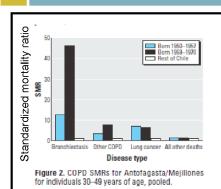

NHW served as the referent group.
*p<0.05;
**p<0.001;
Metal levels were log-transformed.

Complications in associating arsenic with cancer endpoints

- □ iAs is not a point mutagen
- □ iAs is generally negative in standard animal carcinogenesis studies
 - Research supports complex mode of action

in utero exposure to iAs in rodentsalarming findings

In utero exposure is associated with adult onset disease


exposure to arsenic during gestation results in 5-fold increase in hepatocellular carcinomas

Gene expression changes in livers of offspring exposed to arsenic *in utero* when reach adulthood

DNA methylation changes in target tissues-ER- α showed hypomethylation

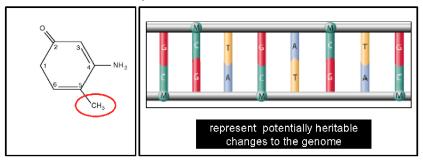
Waalkes, M. P. et al Toxicol Appl Pharmacol, 198. 377-384 (2004b).
Waalkes, M. P., et al, Journal of the National Cancer Institute, 96. 466-474 (2004a).
Xie, Y., et al, Toxicology, 236. 7-15 (2007).

Prenatal iAs exposure in humans: alarming findings

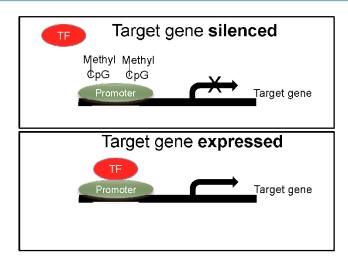
Long term health effects

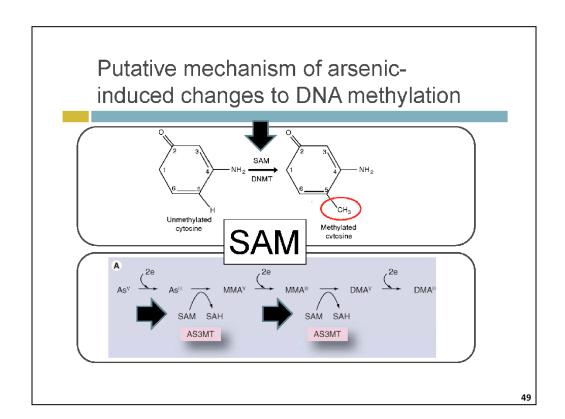
Increased mortality from liver and lung cancer from prenatal and early childhood arsenic exposures

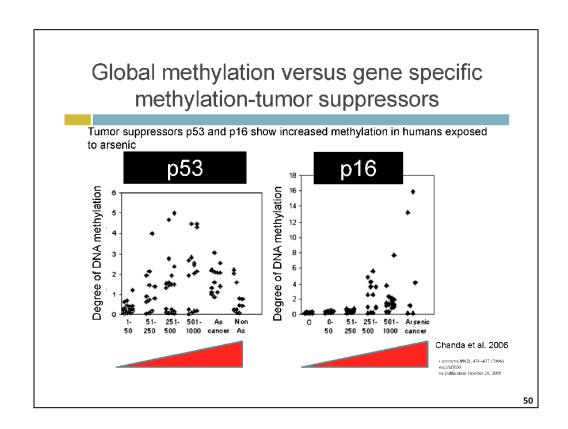
(Liaw et al., 2008; Smith et al., 2006).


Prenatal exposure in humans and adult disease

Adult disease from early life exposure


increased evidence for a role of epigenetic dysregulation in arsenic-induced disease


Epigenetic modification of interest: DNA methylation of cytosines


Methylation of Cytosine tends to occur at CpG sites CpG sites are enriched in islands

DNA methylation at promoter regions can impede target gene expression

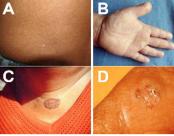


How different are the

methylated genomes

of healthy individuals versus individuals with signs of arsenicosis??

Study Site in Zimapan, Mexico Established high levels of iAs in water


Sites of Funded Studies of Dr. Styblo

Zimapan, Mexico is an area of endemic arsenic with **established high levels** in drinking water affecting the study site (Valenzuela et al. 2005, Del Razo).

Individuals in Zimapan, Mexico show signs of arsenicosis

hypopigmentation I

hyperkeratosis

exposure and skin lesions is established in Zimapan Mexico (Valenzuela et al. 2009).

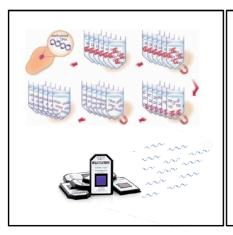
The association of inorganic arsenic

Bowen's disease

Epidermoid cancer

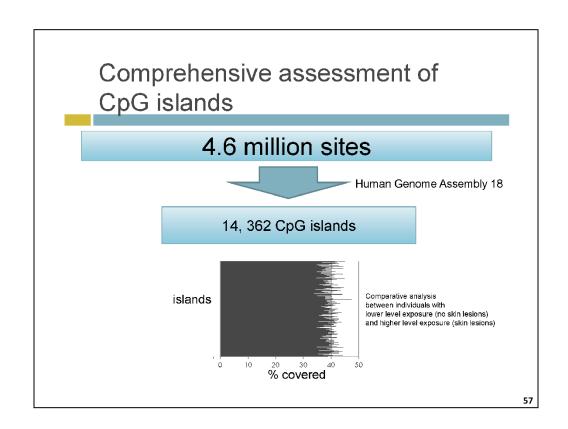
Photo courtesy of M. Styblo

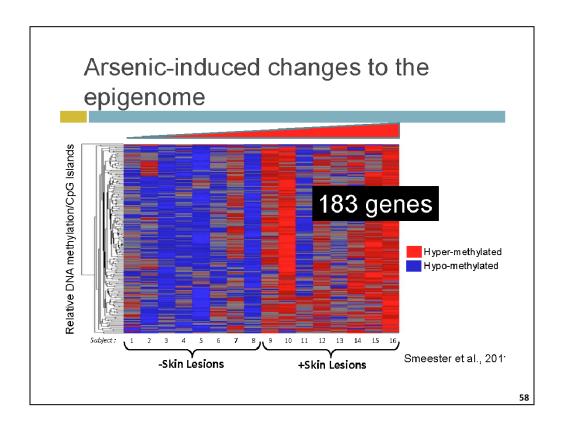
Study Population characteristics in Zimapan Mexico


	N (mean)	% (SD)
Population	147	
Female	109	74.2
Age	(29)	(16.3)
Water consumption (L/day)	(1.8)	(0.8)
Skin lesions	50	34.0

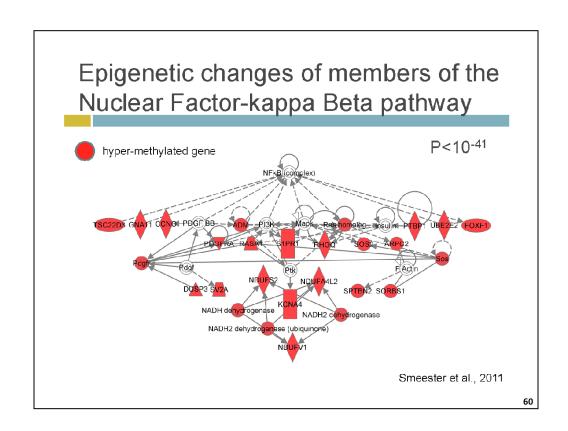
A subset of females selected for epigenomic analysis

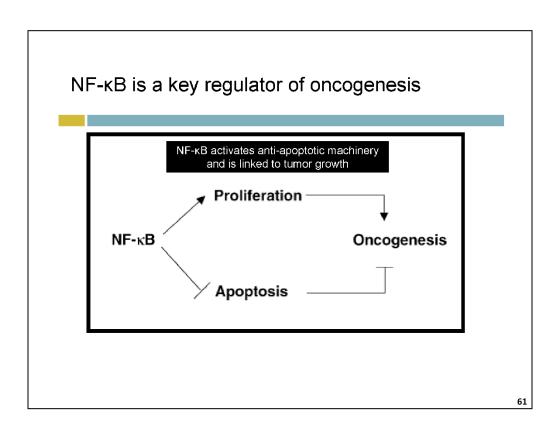
Blood was drawn for lymphocyte DNA extraction Apply methylation technology to DNA

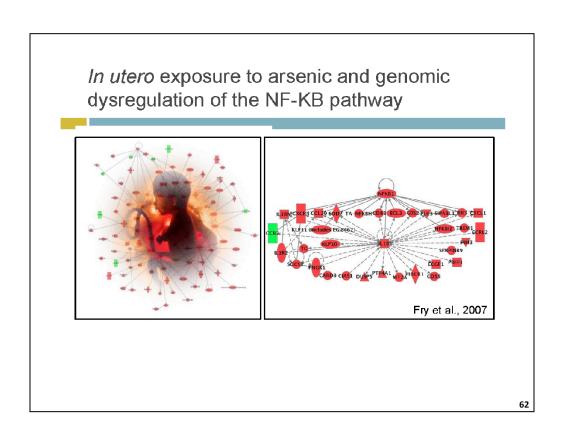

Using a genome-wide DNA methylation technology to assess epigenetic alterations

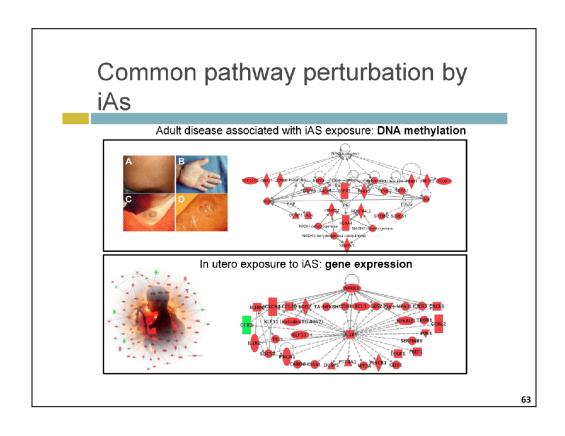


Methylated CpG Island Recovery-Chip assay

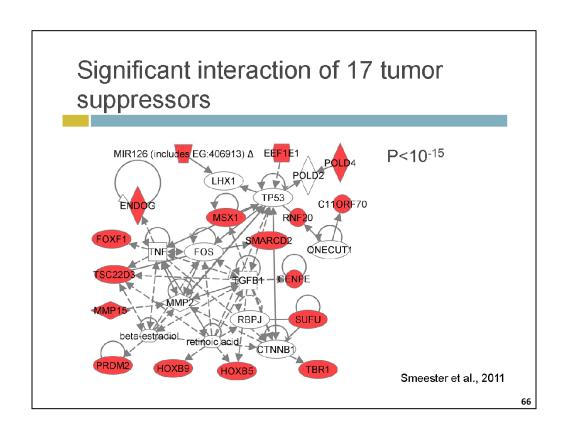

Methyl binding complex MBD2b/MBD3L1

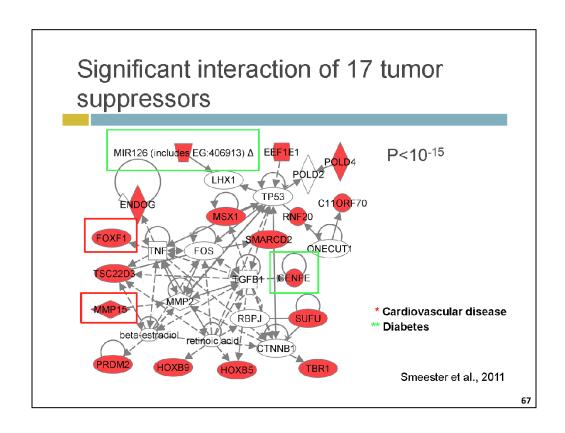

- •Affymetrix Human Promoter 1.0R arrays
- •4.6 million probes representing over 14, 000 human promoter regions with islands
- •translating to ~59 percent of annotated CpG islands



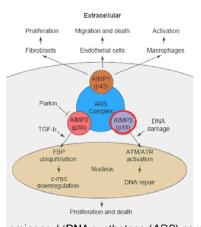


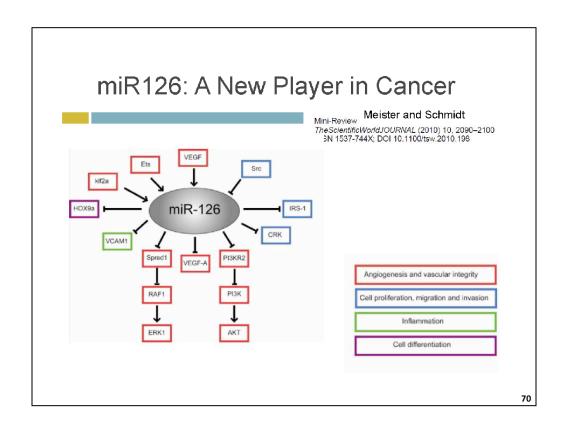
Is there an enrichment for biological pathways that are epigenetically altered?



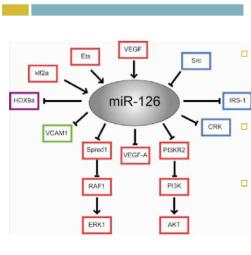


Are there tumor suppressors that have altered promoter methylation?


Gene Symbol	Entrez Gene Name	Associated Disease/ altered pathway		
C11orf70	chromosome 11 open reading frame 70	testicular cancer ¹		
CENPE	centromere protein E, 312kDa	hepatocellular carcinoma ^{2,} type 2 diabetes ³		
EEF1E1	eukaryotic translation elongation factor 1 epsilon 1	p53 inactivation ⁴		
ENDOG	endonuclease G	hepatocellular carcinoma ⁵		
FOXF1	forkhead box F1	breast cancer cell lines and invasive ductal carcinomas ⁶		
нохв5	homeobox B5	lung cancer cells ⁷		
нохв9	hor			
MIR126	17 tumor cupproceore			
MMP15	17 tumor suppressors			
MSX1	Silencing associated with			
POLD4				
PRDM2	tumor development			
RNF20				
		proto-oncogene suppression ¹³		
SMARCD2	SWI/SNF related, matrix associated, actin dependent	prostate cancer ¹⁴		
	regulator of chromatin, subfamily d, member 2			
SUFU	suppressor of fused homolog	altered hedgehog signaling ¹⁵		
	T-box, brain, 1	breast cancer ¹⁶		
TBR1				
TBR1 TSC22D3	TSC22 domain family, member 3	antiproliferative		



EEF1E1/AIMP3 controls p53



- Silencing of AIMP3 impairs activity of ATM/ATR to activate p53
- We have identified increased promoter methylation of AIMP3 in individuals with arsenic poisoning

aminoacyl-tRNA synthetase (ARS) complex

miR126: A New Player in Cancer

Mini-Review Meister and Schmidt
The Scientific World JOURNAL (2010) 10, 2090–2100
ISSN 1537-744X; DOI 10.1100/tsw.2010.198

 Silencing of miR-126 is associated with numerous cancers:

 lung, stomach, cervix, bladder, prostate, colon

 We have identified increased promoter methylation of miR126 in individuals with arsenic poisoning

Systems Biology Applied to Samples from iAs-Exposed Humans

- Toxic metals are poisoning individuals around the globe, including populations in North Carolina
- Many genes (182) are **hypermethylated** in individuals exposed to arsenic and with signs of arsenicosis
- □ NF-kB pathway is epigenetically altered in individuals with arsenicosis and altered in newborns exposed to arsenic
- □ These are enriched for a **tumor suppressor complex** hypermethylated in individuals with arsenicosis (new targets identified including miR-126)

University of North Carolina at Chapel Hill

Fry Lab

Kathryn Bailey, Ph.D.
Margaret Ann Benton
Qian Liu
Julia Rager
Lisa Smeester
Allison Sanders
<u>Collaborators</u>

Zuzana Drobná, Ph.D. Xiaojun Guan, Ph.D. Hemant Kelkar, Ph.D. Miroslav Stýblo, Ph.D.

MIT Leona Samson, Ph.D.

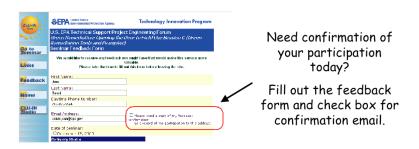
The HamnerJingbo Pi, Ph.D., Hao Zhang

NIEHS

Mike Waalkes, Ph.D. Paul Wade, Ph.D.

Center for Research &
Advanced Studies,
National Polytechnic Institute
(CINVESTAV-IPN)
Luz M. Del Razo, Ph.D.

Juarez University, Durango State, Mexico


Gonzalo G. García Vargas M.D., Ph.D.

Funding

NIEHS (ONES): R01ES019315 NIEHS CEHS UNC: P30ES010126 NIEHS Superfund: P42 ES005948

Resources & Feedback

- To view a complete list of resources for this seminar, please visit the <u>Additional Resources</u>
- Please complete the <u>Feedback Form</u> to help ensure events like this are offered in the future

