

Welcome to the CLU-IN Internet Seminar

Early-life Exposures - Long-term Health Consequences: Part 1 Brominated Flame Retardants

Sponsored by: NIEHS Superfund Research Program

Delivered: February 3, 2012, 1:00 PM - 3:00 PM, EST (18:00-20:00 GMT)

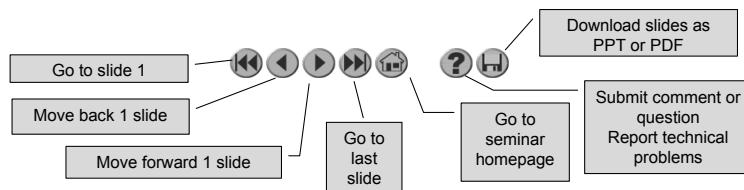
Instructors:

Linda Birnbaum Ph.D., Director NIEHS (birnbaumls@niehs.nih.gov)

Heather Stapleton, Ph.D., Assistant Professor, Duke University, Nicholas School of the Environment (heather.stapleton@duke.edu)

Prasada Rao S. Kodavanti, Ph.D., Neurotoxicology Branch, Toxicity Assessment Division, NHEERL, ORD, US Environmental Protection Agency (kodavanti.prasada@epa.gov)

Moderator:


William A. Suk, Director, Superfund Research Program, National Institute of Environmental Health Sciences (suk@niehs.nih.gov)

Visit the Clean Up Information Network online at www.cluin.org

1

Housekeeping

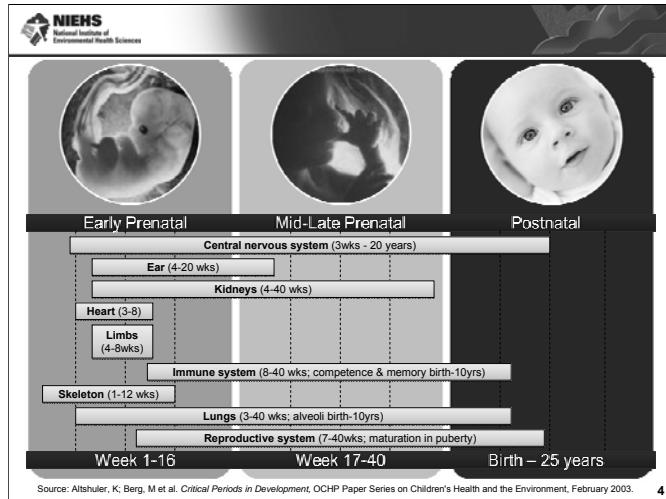
- Please mute your phone lines, Do NOT put this call on hold
 - press *6 to mute *7 to unmute your lines at anytime
- Q&A
- Turn off any pop-up blockers
- Move through slides using # links on left or buttons

- This event is being recorded
- Archives accessed for free <http://cluin.org/live/archive/>

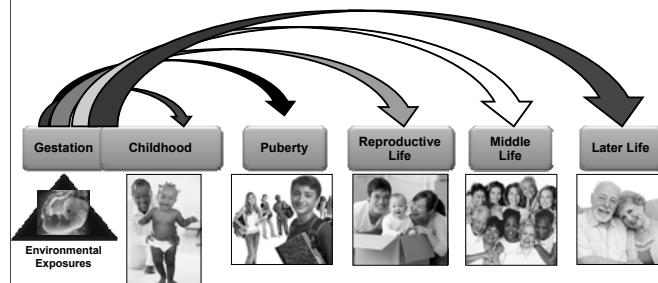
2

Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.

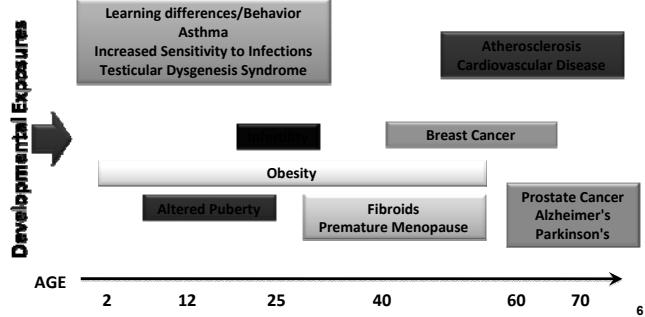
Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interrupt the seminar.


You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker

Early Life Exposures and Brominated Flame Retardants


Linda S. Birnbaum, Ph.D., D.A.B.T., A.T.S
Director

National Institute of Environmental Health Sciences
National Toxicology Program


Risk eLearning Web Seminar
Friday, February 3, 2012

Developmental Origins of Disease: Developmental Stressors Lead to Disease Throughout Life

Diseases over the Lifespan from Developmental Exposures

PBDEs have had a lot of publicity:

found in breast milk, potential human thyroid hormone disruptor and developmental neurotoxicant.

CBS

BFRs do not bind chemically to polymers in textiles or plastics, they can leach out or evaporate from flame retarded products.

Halogenated Fire Retardants

(contain bromine or chlorine and carbon)

Uses (in order, by volume in the U. S.)

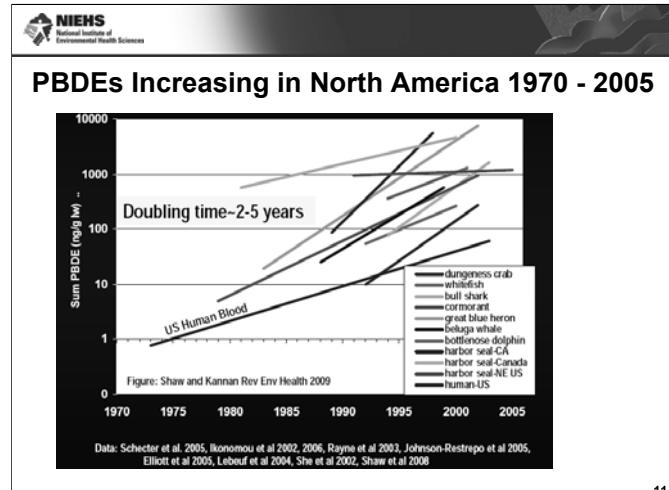
1. Electronics
2. Insulation in Buildings
3. Polyurethane foam
4. Wire and cable

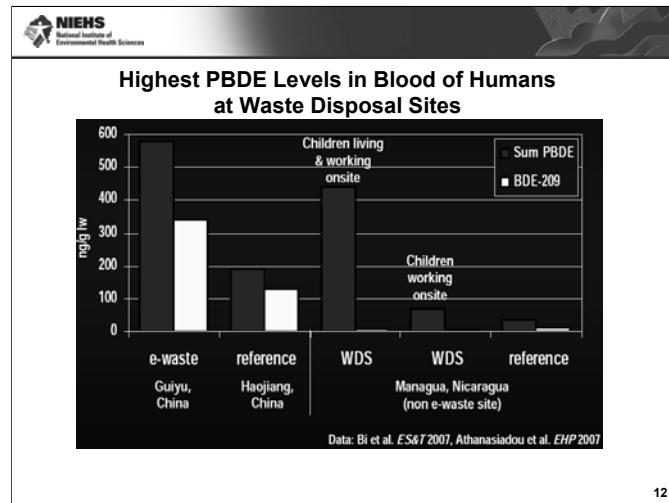
Polybrominated Diphenyl Ethers

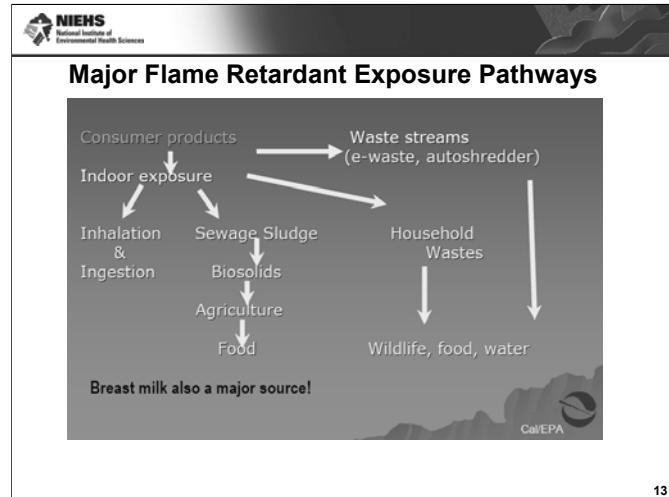
- Prenatal BDE-99 increased mouse birth weight
- Pre- and post- natal exposure to BDE-47 increased rat body weights from birth to puberty (when the study ended)
- Postnatal BDE-47 study, mice exposed 10 days after birth had increased body weights from postnatal day 47 until 4 months of age, when the study ended
- Developing shrimp exposed to BDE-47 had increased cholesterol

9

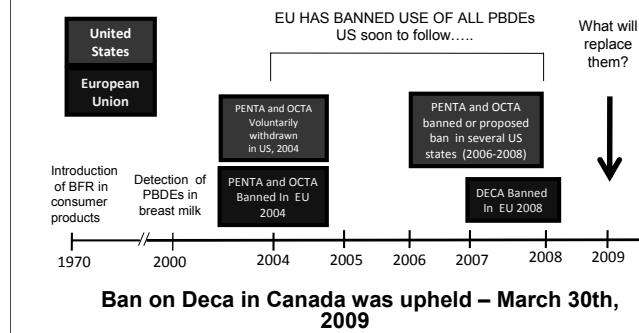
Lilienthal 2006, Suvorov 2009, Gee 2008, Key 2008, van der Ven 2008




Polybrominated Diphenyl Ethers


- **Cryptorchidism**
 - Main et al, 2007
- **Reproductive Hormone Effects**
 - Meeker et al, 2009: Decrease in Androgens and LH; Increase in FSH and Inhibin
 - Meijer et al, 2008: Decrease in Testosterone
- **Reproductive Effects**
 - Eskenazi et al, 2009: Low Birth Weight & Altered Behaviors
 - Harley et al, 2010: Increased time to pregnancy
- **Neurological Effects**
 - Herbstman et al, 2010: Decreased IQ
- **Decreased Sperm Quality**
 - Akutse et al, 2008
- **Diabetes**
 - Lim et al, 2008
 - Turyk et al, 2009 (only in hypothyroid subjects)
- **Thyroid Homeostasis**
 - Stapleton et al, 2011: T4 elevated during pregnancy
 - Chevrier et al, 2010: TSH elevated in pregnancy
 - Meeker et al, 2009: elevated T4 & TBG
 - Dallaire et al, 2009: Elevated T3 from BDE47
 - Eskenazi et al, 2009: Low TSH

10

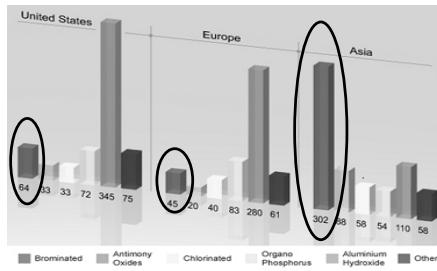


12

13

14

Regulation of BFRs


- TBBPA – not regulated
- HBCD banned in Norway & EU
- “SVHC” Nominated as a “POP” in November 2009
- PBDEs –
 - Penta and Octa targeted for elimination under Stockholm Convention, May 9, 2009
 - Deca – EPA (March, 2010) announced voluntarily US phase-out by 2013

15

Asian Market = BFR Global Concern

Between 2005-2008 uses of BFRs has increased from 139,000 to 246,000 tonnes over 3 years (mostly in Asia).

From: Stephan Posner 2010

16

Considerations for Flame Retardant Alternatives

- Alternative chemicals other than BFRs or other classes of FRs
- Minimize potential for hazard and exposure
- Low persistence and bioaccumulation, for breakdown products as well as parent chemicals
- Low toxicity, less potential for harm when exposure occurs
- Low exposure, less potential for release

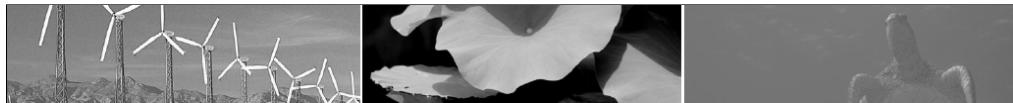
17

Other Considerations for Flame Retardant Alternatives

- Aesthetic and performance considerations: appearance, durability, fire safety
- Process equipment cost
- Alternative technologies, barriers, surface treatments, graphite-impregnated foams
- The main consideration:
Minimize risk to human health and the environment!

18

Thank you!


NIEHS Strategic Plan Website
<http://www.niehs.nih.gov/strategicplan>

Today's Webinar:
Polybrominated Diphenyl Ethers - Exposures and Toxicity

- Heather Stapleton Assistant Professor, Duke University, Nicholas School of the Environment
 - "Early Life Exposure to Flame Retardant Chemicals in Indoor Environments and Impacts on Thyroid Hormone Regulation"
- Prasada Rao S. Kodavanti, Neurotoxicology Branch, Toxicity Assessment Division, NHEERL, ORD, US Environmental Protection Agency (US EPA)
 - "Neurobehavioral, Hormonal, and Reproductive Effects following Developmental Exposure to a Commercial PBDE Mixture, DE-71"

Early Life Exposure to Flame Retardant Chemicals in Indoor Environments and Impacts on Thyroid Hormone Regulation

Heather M. Stapleton
Assistant Professor
Duke University
Nicholas School of the Environment
Durham, NC 27708
Email: heather.stapleton@duke.edu

www.environmentcalifornia.org

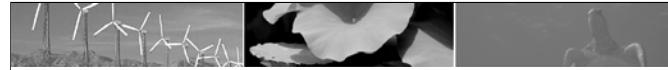
21

Outline

- 1. Introduction and Background**
 - a. What is a flame retardant (FR) and how do they work?
 - b. What regulations govern the use of FRs in products?
 - c. What type of products contain FRs?
 - d. What type of FRs are used in consumer products?
- 2. Early Exposure to PBDEs**
 - a. Serum PBDEs in a Pregnancy Cohort: Associations with Thyroid Hormones and Birth Outcomes
 - b. Toddlers Exposure to PBDEs in Indoor Environments: Exposure Pathways and Associations with SES
- 3. Health Affects Related to PBDE Exposures**
 - a. Toxic Mechanisms reported from *in vitro* and animal studies, effects on thyroid regulation
 - b. Human health effects and neurodevelopment problems in children
- 4. Conclusions/ Discussion**

What is a Flame Retardant?

Definition:


"A substance added or a treatment applied to a material in order to suppress, significantly reduce or delay the combustion of the material" *EHC:192, WHO 1997*

Statistics:

- Every year in the U.S. there are over a million fires reported
- Direct losses account for \diamond billions in damages

23

Regulations That Govern the Use of FRs

Furniture:

- California Technical Bulletin 117
- California Technical Bulletin 603
- Federal Mattress Flammability Standard (CFR 1633)

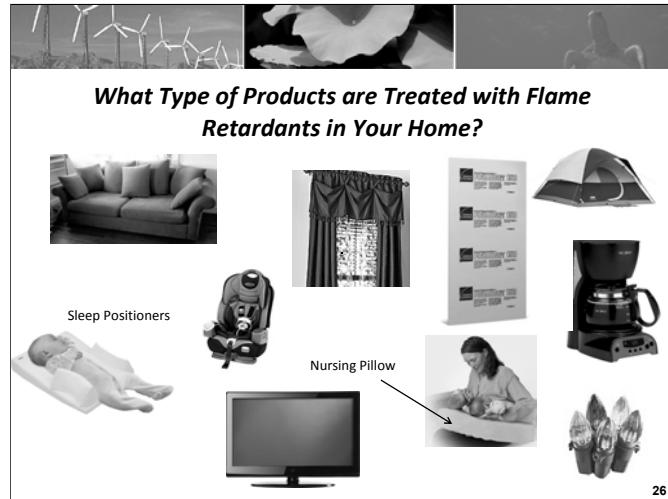
Electronics:

- Underwriters Laboratory Certifications for Insurance purposes (e.g. UL 746 and -94 V-2 – E&E)

Textiles:

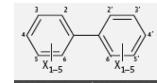
- Children's Sleepwear (CPSC)
- Seats and Drapes in Public Buildings (NFPA 701, CA TB 133)
- Camping Equipment (CPAI-84)

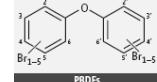
Building and Construction: (variable)



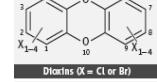
What is TB 117?

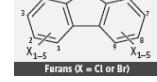
- Promulgated by California Bureau of Home Furnishing and Thermal Insulation, within the Department of Consumer Affairs
- Requires 12-second open flame testing for polyurethane inside furniture
- Has required the use of large quantities of halogenated flame retardants (FR)
- CA standard affected furniture composition throughout the U.S.


25


PBDE Commercial Mixtures		
Congener (# of Br atoms)	% of Mixture	Product Applications
PentaBDE Commercial Mixture (DE-71; Phased out 2004)		
BDE 47 (4)	38.2	
BDE 85 (5)	2.96	
BDE 99 (5)	48.6	
BDE 100 (5)	13.1	
BDE 153 (6)	5.44	
BDE 154 (6)	4.54	
OctaBDE Commercial Mixture (DE-79; Phased out 2004)		
BDE 153 (6)	8.66	
BDE 154 (6)	2.68	
BDE 183 (7)	42.0	
BDE 196 (8)	10.5	
BDE 197 (8)	22.2	
BDE 207 (9)	11.5	
DecaBDE Commercial Mixture (Saytex 102E)		
BDE 206 (9)	2.19	
BDE 207 (9)	0.24	
BDE 208 (9)	0.06	
BDE 209 (10)	96.8	

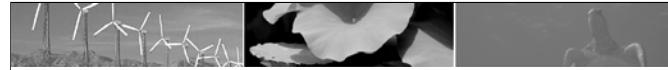
27


(La Guardia et al 2006)


PCBs (X = Cl) and PBBS (X = Br)

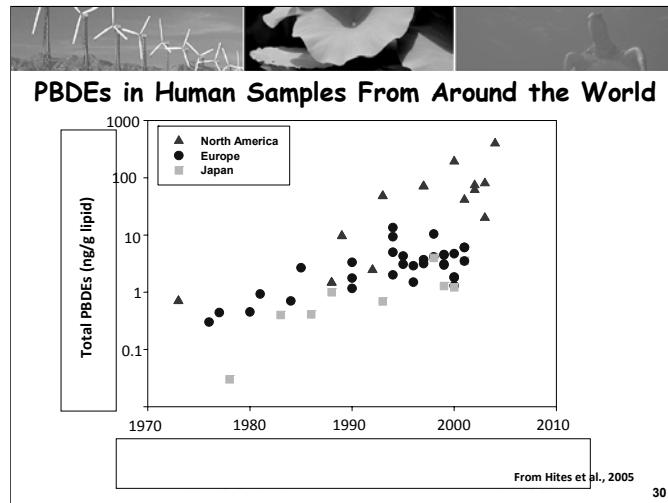
PBDEs

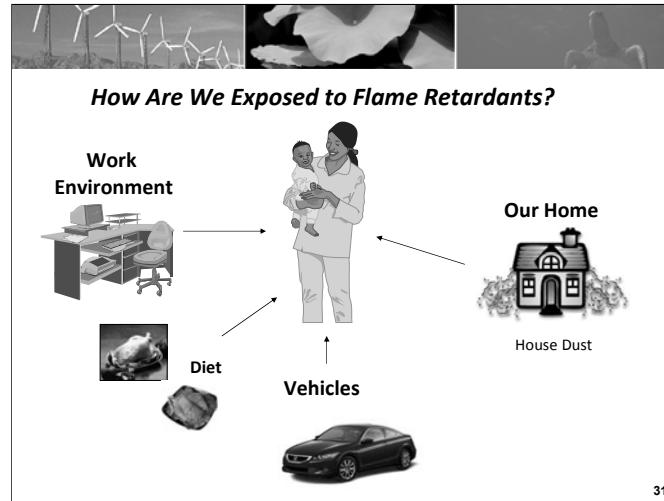
Dioxins (X = Cl or Br)

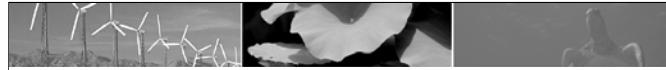


Furans (X = Cl or Br)

Toxic Effects from PBDEs


■ PBDEs have chemical structures which are very similar to known cancer causing and toxic compounds: **PCBs, dioxins, furans, etc.**


■ Laboratory studies now demonstrate that PBDEs have very similar toxic effects as these legacy contaminants.



Major Concerns about PBDEs

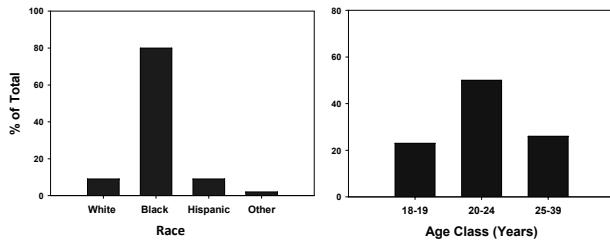
- Rapidly accumulating in humans and environment
- Hormonal disruption
 - Animal exposure studies have observed decreases in thyroid hormone levels (Zhou et al., 2001; Tomy et al. 2004)
 - Associations between PBDEs and thyroid hormones (Turyk et al., 2008; Chevrier et al., 2010) and reduced fecundability (Harley et al., 2010) in human population
- Developmental effects
 - Associations between cryptorchidism and PBDEs in male infants (Main et al., 2007);
 - Associations between PBDE exposure at birth and neurodevelopment measures in children (Roze et al., 2009; Herbstman et al., 2010);
- Cancer?
 - Structures similar to known carcinogens (PCBs, PBBs)

Previous Studies on PBDE Exposure

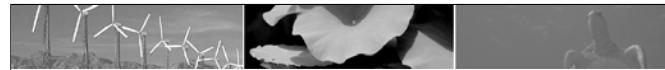
- Exposure models had suggested that *infants* would receive the highest exposure among various age classes due to breast milk ingestion (Jones-Otazo et al., 2005; Schecter et al. 2003)
- Studies in US *adults* have observed significant associations with both diet (Wu et al., 2007; Fraser et al., 2010) and dust (Johnson et al., 2010)
- Fewer studies on children's exposure:
 - Rose et al. (2010) reported levels in 2-5 year old children in California and found concentrations 2-50X higher than adults
 - Windham et al. (2010) measured PBDEs in 6 to 8 year old girls from California and Ohio; significantly higher concentrations in CA vs Ohio; higher in blacks compared to whites
- Quiros-Alcalá et al. (2011) measured PBDEs in dust from low-income households; concentrations were among highest measured
- Zota et al. (2010) wrote perspective article on PBDEs and socio-economic disparities

Associations between Polybrominated Diphenyl Ether (PBDE) Flame Retardants, Phenolic Metabolites, and Thyroid Hormones during Pregnancy*Heather M. Stapleton,¹ Sarah Eagle,¹ Rebecca Anthopoulos,¹ Amy Wolkin,² and Marie Lynn Miranda^{1,3}*¹Nicholas School of the Environment, Duke University, Durham, North Carolina, USA; ²National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ³Department of Pediatrics, Duke University, Durham, North Carolina, USA**Objectives of Study**

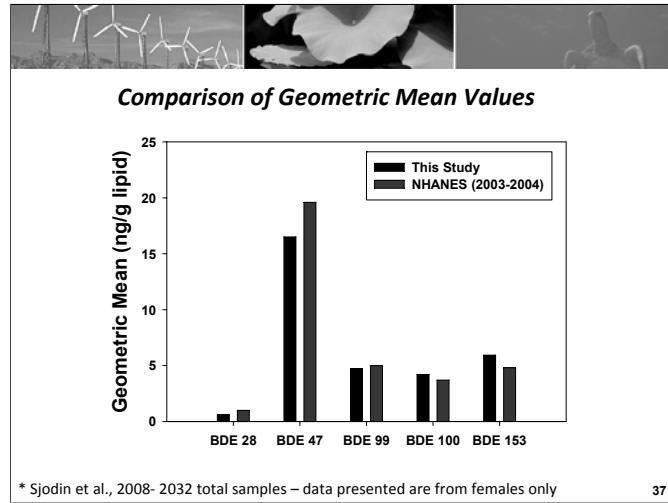
- To measure the levels of PBDEs and their phenolic metabolites in serum collected from pregnant women during 3rd trimester;
- To determine if there are any significant associations between serum PBDE levels and thyroid hormone levels in pregnant women;
- To examine associations between PBDE levels and birth outcomes.


Methods

- Pregnant women attending the Lincoln Community Health Center (Durham, NC, USA), who are part of a larger cohort of women currently enrolled in a pregnancy outcomes study, were approached and asked to participate in this study. (>34 weeks gestation)
- Two tubes of blood were collected during a routine blood draw (thyroid hormones and PBDEs).
- Thyroid hormones analyzed by Duke University Hospital Clinical Laboratory for:
Thyroid Stimulating Hormone (TSH); Thyroxine (T4)
(free and total) and Triiodothyronine (T3) (free and total)
- Serum analyzed for PBDEs and phenolic metabolites using mass spectrometry



Population Demographics (n=137)

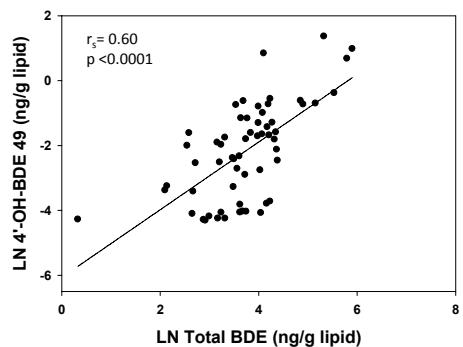



Individuals recruited between September 2008- June 2010

PBDEs						
Concentrations in ng/g lipid (n=137)						
Congener	Detection Frequency	MDL	Min	Max	Geometric Mean	95 th Percentile
BDE 26	38.7	1.2-3.0	<1.2	16.9	N/A	6.00
BDE 47	94.9	2.0-4.5	<2.0	297.5	16.5	114.4
BDE 99	64.2	2.0-4.5	<2.0	249.1	4.72	49.8
BDE 100	89.1	1.2	<1.2	107.5	4.19	25.9
BDE 110	16.1	1.2	<1.2	10.5	N/A	4.58
BDE 153	96.4	1.2	<1.2	67.6	5.93	32.3
BDE 154	48.2	1.2	<1.2	52.9	N/A	7.59
ΣPBDEs				694	36.6	228

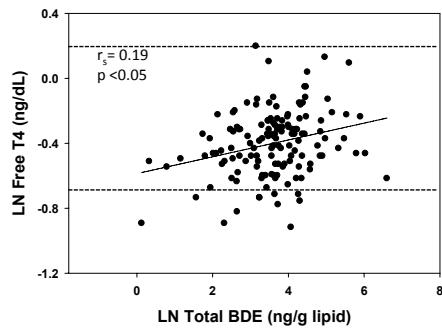
**BDE 209 quantified but not reported here. Blank levels were too high for accurate quantification

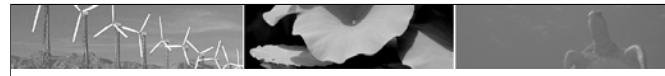
PBDE Metabolites/Alt BFRs


A sub-set of the serum extracts (n=57) were quantified for 2,4,6-tribromophenol (246-TBP) and the following OH-BDE standards:
6-OH-BDE 47, 4'-OH-BDE 49, 6'-OH-BDE 49, 6-OH-BDE 99

Results (ng/g lipid)

Analyte	Detection Frequency	MDL	Min	Max	Geometric Mean	95 th Percentile
246-TBP	38.2	1.4-2.5	<1.4	150.7	N/A	119.7
4'-OH-BDE 49	71.9	0.03	<0.03	3.92	0.11	2.32
6-OH-BDE 47	66.7	0.03	<0.03	10.8	0.17	5.82


Correlation Between PBDEs and OH-BDEs

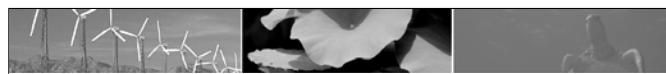

39

Association Between PBDEs in Pregnant Women and Thyroxine (T4)

**Same trend observed for total T4 ($r_s = 0.20$; $p < 0.05$)

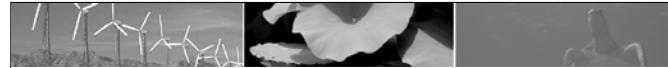
Multiple Linear Regression Models for Thyroid Hormones (Controlling for Maternal Characteristics)

Thyroid Hormone	Explanatory Variables									
	LN BDE 47		LN BDE 99		LN BDE 100		LN BDE 153		LN Σ BDE	
	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI
TT4	0.42*	0.05, 0.78	0.32*	0.02, 0.63	0.41*	0.003, 0.82	0.12	-0.35, 0.58	0.50*	0.06, 0.94
LN FT4	0.05**	0.01, 0.08	0.02	-0.09, 0.05	0.02	-0.02, 0.08	0.05*	0.006, 0.09	0.05*	0.01, 0.09
LN TSH	0.07	-0.02, 0.16	0.04	-0.04, 0.11	0.01	-0.09, 0.11	0.03	-0.08, 0.14	0.06	-0.04, 0.17
LN T3	0.04	-0.01, 0.08	0.01	-0.03, 0.05	0.001	-0.05, 0.05	0.01	-0.04, 0.07	0.02	-0.03, 0.08
LN FT3	0.01	-0.01, 0.03	0.003	-0.01, 0.02	0.0004	-0.02, 0.02	-0.02	-0.04, 0.01	0.01	-0.02, 0.04


**P<.01 *P<.05

CI: Confidence Interval

These models report the individual BDE congener-thyroid hormone association after controlling for smoking status, maternal race, age, gestational age at blood draw, and parity.


•Significant associations with T4, but no significant associations with TSH or T3

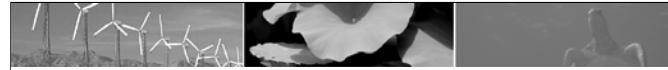
•No significant associations noted between thyroid hormones and phenolic metabolites; however, a negative relationship between TT3 and OH-BDE 49 was suggestive ($p = 0.08$).

Observed Relationships between Thyroid Hormones and PBDEs			
Cohort	↑TSH	↑FT3/TT3	↑FT4/TT4
Human Studies			
USA (n = 297) Herbstman et al., 2008	No effect	No effect	↑BDE 100/BDE 153
USA (n = 405) Turyk et al., 2008	↓BDE 47	No effect	↑ΣBDEs
USA (n=270) Chevrier et al., 2010	↓PBDEs	NM	No effect
USA (n=137) Stapleton et al., 2011	No effect	↓ OH-BDE 49	↑ΣBDEs
USA (n=25) Zota et al., 2011	↑PBDEs/OH-BDEs	NM	No effect
Animal Studies			
Rats Zhou et al., 2001	No effect	No effect	↓PBDEs
American Kestrels Fernie et al., 2005	NM	No effect	↓PBDEs
Tomy et al., 2004 Juvenile Lake trout	NM	No effect	↓PBDEs

NM- not measured

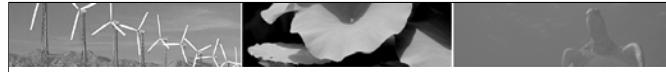
Are Serum PBDEs in Pregnant Women Associated with Negative Birth Outcomes?

- Preliminary analyses indicate that serum PBDEs are negatively associated with infant head circumference in both unadjusted and adjust models;
- No significant associations observed with birth weight or length, although all relationships are negative;
- Harley et al (2011) observed a negative relationship between serum PBDEs and birth weight in CHAMACOS cohort, no relationship with head circumference


Part II: Children's Exposure to Flame Retardants

- Children are spending more time indoors
- Indoor environments are often more polluted than outdoor environments (PBDEs in Dust>>>PBDEs in Soils)
- Children have a high number of hand-to-mouth contacts
- Children are physically in contact with many FR treated products

<http://www.theage.com.au/articles/2006/05/02/1146335739915.html>


44

Serum PBDEs in US Toddlers: Associations with Hand Wipes, House Dust and Socioeconomic Variables
(Stapleton et al. 2012, In Review)

Research Hypotheses:

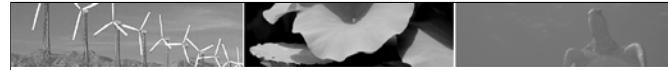
1. Children residing in the US between the ages of 1-3 yrs of age are receiving the highest exposure to PBDEs in the world, due to dust exposure and subsequent hand-to-mouth activities;
2. Dust is the primary source of exposure to young children; not breast milk or diet;
3. PBDE exposure are higher in minorities and families with lower income;

Methods

Recruitment:

- Targeted families with children between the ages of 12 – 36 months; residents residing in central North Carolina;
- Recruited at the North Roxboro Duke Pediatrics Health Clinic, or by letters;
- Recruited Between May 2009 – September 2010
- All families signed informed consent

Sample Collection:

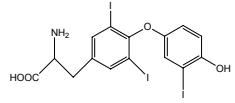

- Blood sample (venipuncture)
- Hand wipe sample (Investigator Collected)
- House dust sample (Investigator Collected)
- Researcher administered questionnaire

46

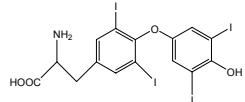
Sample Analysis:

- Serum analyzed for PBDEs (CDC)
- Hand wipes and house dust analyzed for PBDEs and new flame retardants in our laboratory using mass spectrometry

Summary of Toddlers Exposure Data

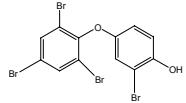

- PBDEs present in all toddler serum samples;
- Significant associations observed between PBDEs in serum and PBDE residues on hand wipes;
- Toddlers exposure to PBDEs is associated with hand-to-mouth behavior, SES, breast milk ingestion and age;
- Are PBDEs an environmental justice issue?

What are the consequences of this early life exposure??

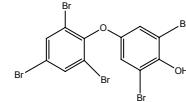


PBDEs are Thyroid Hormone Mimics

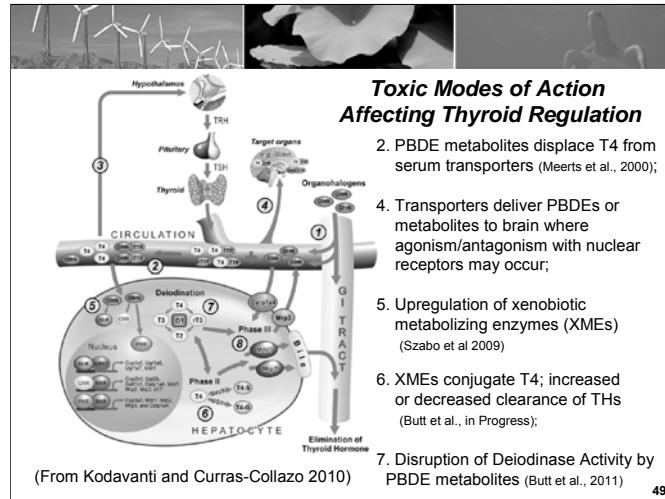
Thyroid Hormones

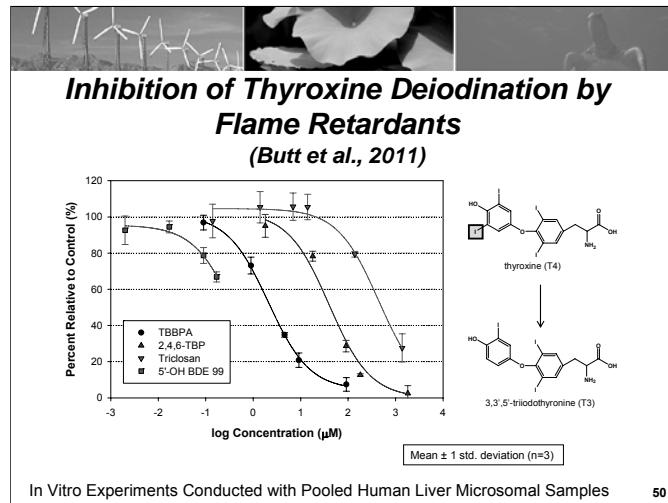


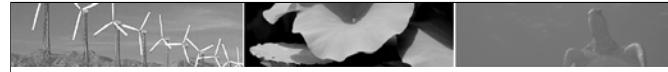
Triiodothyronine (T3)



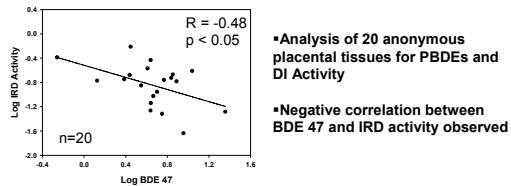
Thyroxine (T4)

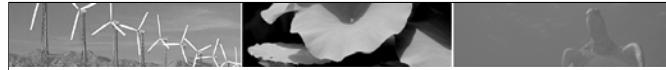

PBDE Oxidative Metabolites



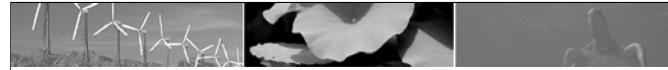

T3-like OH-BDE

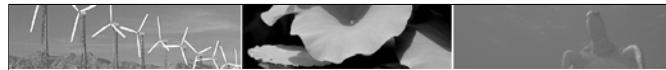
T4-like OH-BDE





Do PBDEs/OH-BDEs Inhibit DI Activity In Vivo?


- Fathead minnows exposed to DecaBDE (10 µg/g) for 28 days experienced a 74% decrease in DI activity relative to controls (Noyes et al. 2011);
- Type 3 deiodinase is essential in buffering thyroid hormones between the mother and fetus during pregnancy. Type 3 DI knock-out mice were shown to have significant fetal growth restrictions (Hernandez et al., 2006,2007);


Neurodevelopmental Effects Observed in Animal Studies

- PBDEs shown to affect development of fetal human neural progenitor cells *in vitro* which was mediated by thyroid hormone signaling (Schreiber et al. 2010)
- Studies conducted in rodent models observed significant alterations in spontaneous behavior and habituation, deficits in learning and memory, and changes in cholinergic nicotinic receptors, primarily occurring when exposure occurs during "rapid brain growth" (Eriksson et al., 2001,2002; Viberg et al., 2003, 2006, 2007).
- Mice exposed to BDE 209 during rapid brain growth were observed to have altered expression of CAMKII, GAP-43 and BDNF in different regions of the brain (Viberg et al., 2007).

***Neurodevelopmental Deficits Associated with
PBDEs in Children***
(Herbstman et al. 2010)

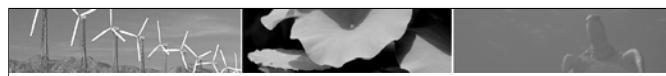
- PBDE levels in cord blood at birth were negatively associated with:
 - Mental Developmental Index at 24 months of age (BDEs 47, 99, and 100, univariate and adjusted models);
 - Full and Verbal IQ at 48 months (BDE 47 and 100, adjusted models);
 - Full and Performance IQ at 72 months (BDE 100 and 153; univariate and adjusted models)

If PBDEs are now phased out....does the problem go away????

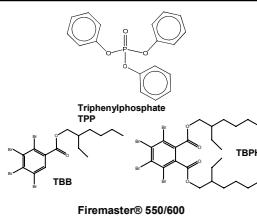
**ENVIRONMENTAL
Science & Technology**

ARTICLE
pubs.acs.org/est

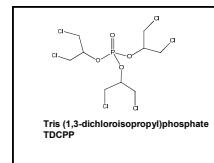
Identification of Flame Retardants in Polyurethane Foam Collected from Baby Products

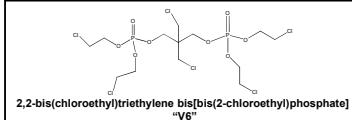

Heather M. Stapleton,¹* Susan Klosterhaus,² Alex Keller,² P. Lee Ferguson,³ Saskia van Bergen,⁴ Ellen Cooper,² Thomas F. Webster,² and Aileen Riumi²

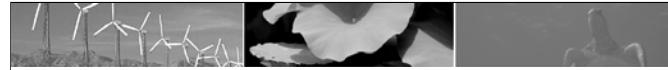
¹Nicholas School of the Environment, Duke University, Durham, North Carolina, United States
²San Francisco Estuary Institute, Oakland, California, United States
³San Francisco Estuary Institute, Oakland, California, United States
⁴Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States
⁵Department of Chemistry, University of California, and Green Science Policy Institute, Berkeley, California, United States


 Supporting Information

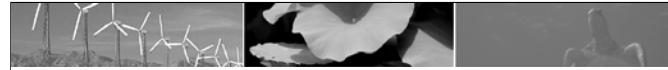
ABSTRACT: With the phase out of PentaBDE in 2004, alternative flame retardants are being used in polyurethane foam to meet flammability standards. However, insufficient information is available on the identity of the flame retardants currently in use. Baby products containing polyurethane foam may also contain flame retardants. We analyzed 101 samples of polyurethane foam from baby products to identify the flame retardants used in baby products and their concentrations. Flame retardants were detected in 80% of the baby products. The most common flame retardant was tris(1,3-dichloroisopropyl) phosphate (TDCPP) (detection frequency 50%), followed by components typically found in the Firemaster500 commercial mixture (detection frequency 17%). Five samples contained PBDE congeners commonly associated with PentaBDE; consecutive readers with PBDEs are still


54


New Use Flame Retardants Detected in Furniture and in House Dust



Firemaster® 550/600


Tris (1,3-dichloroisopropyl)phosphate

Conclusions

- Exposure to PBDEs occurs during early development;
- PBDEs are significantly associated with circulating thyroid hormone levels during pregnancy;
- Maternal PBDE levels are associated with deficits in birth outcomes (e.g. birth weight and head circumference)
- Children have higher body burdens than adults and toddlers may represent the age class with the highest exposure to PBDEs;
- PBDEs on hand wipes are a better predictor of serum PBDE levels in toddlers compared to house dust;
- PBDE exposure may be an environmental justice issue;
- PBDEs affect thyroid hormone regulation via multiple mechanisms which may be influencing growth and neurodevelopment;
- New flame retardants on the market need to be studied to understand whether any human health concerns are warranted.

Acknowledgements

• Research funding provided by National Institute of Environmental Health Sciences
(Grant number R01 ES016099)

- Dr. Marie Lynn Miranda and Rebecca Anthopoulos (Duke University), Drs Thomas F. Webster and Deborah Watkins (Boston University)
- Laboratory Group: Sarah Eagle, Katie Douglas, Smriti Sharma, Dr. Craig Butt, Dr. Ellen Cooper, Dr. Wu Dong, Pamela Noyes (PhD candidate), Elizabeth Davis (PhD candidate), Simon Roberts (PhD student), Laura Dishaw (PhD student), Laura Macaulay (PhD student), Thomas Fang (PhD student), Alex Keller (undergraduate),
- Beth Patterson, recruiters, and the study participants

Neurobehavioral, Hormonal, and Reproductive Effects Following Developmental Exposure to a Commercial Mixture, DE-71

Prasada Rao S. Kodavanti

*NeuroToxicology Branch
NHEERL/ORD
Research Triangle Park, NC*

Co-authors:

Cary Coburn, Virginia Moser, Robert MacPhail, Sue Fenton,
Tammy Stoker, Jennifer Rayner, K Kannan and Linda Birnbaum
Joyce Royland, Witold Winnik and Oscar Alzate

NIEHS Superfund Webinar – February 3, 2012


United States Environmental Protection Agency

58

OUTLINE OF TALK

- What are Brominated Flame Retardants?
 - Benefits, market demand, and use
- Types of BFRs
 - TBBPA
 - HBCD
 - PBDEs – Environmental contamination
 - Human exposure
 - Structural similarities with PCBs
 - Similarities in health effects with PCBs
- Developmental effects of a commercial PBDE mixture
 - Neurobehavioral effects
 - Hormonal effects
 - Reproductive effects

Benefits of BFRs

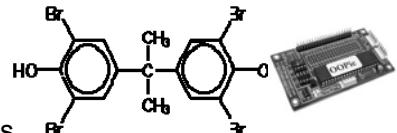
(as per industry/BSEF)

Fire regulations require a high degree of protection
(Fires kill 3000 people, injure more than 20,000 people, and result in property damages exceeding \$11 million in US alone)

Flame retardants save lives and property

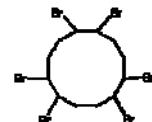
\$ 2 billion/year industry; 300 million kg/year; US usage – 1/3

Cost-effective


BFRs prevent the spread of fires or delay the time of flashover, enhancing the time people have to escape

United States Environmental Protection Agency 60

BFRs: Family of 75 substances with different properties


- TBBPA
(Tetrabromobisphenol A)
Reactive (90%) & Additive (10%)
– Primary use – Electronics/circuit boards

Hexabromocyclododecane (HBCD)

Additive

Used in Electronics; Textile Backings
Thermal Insulation in Buildings

Polybrominated diphenyl ethers

Additive, Used in cushions, Sofas etc

PBDEs: High Production Volume Chemicals (Common name: Bromkal, Tardex, Saytex)

3 commercial mixtures (Penta and Octa no longer made)

- Penta-BDE (*used in foam; 40% tetra, 45% penta, 6% hexa*)
 - 18.3 million pounds per year in the Americas
 - 98 % of world use is in the Americas
 - All congeners **highly bioaccumulative**
 - 86 to 99% of congeners found in human tissues
- Octa-BDE (*plastics, textiles; 10% hexa, 40% hepta, 30% octa, 20% nona*)
 - 3.0 million pounds per year in the Americas
- Deca-BDE (*plastics, textiles; 98% deca and 2% nona*)
 - 53.6 million pounds per year in the Americas

United States Environmental Protection Agency

62

“They’re everywhere”

PBDEs are now ubiquitous environmental contaminants:

- Indoor and outdoor Air**
- House and office dust**
- Rivers and lakes and sediments**
- Sewage sludge**
- Remote Arctic regions (i.e., long-range transport)**
- Food**
- Biota (terrestrial & marine mammals, fish, humans)**

United States Environmental Protection Agency 63

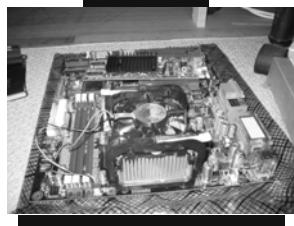
PBDE Point Sources

Chemical Plants

Wastewater Treatment Plants

Landfills

United States Environmental Protection Agency 64


PBDE Non-Point Sources

Plastics

Furnishing Foam

Electrical Circuitry

Furnishing Foam

United States Environmental Protection Agency 65

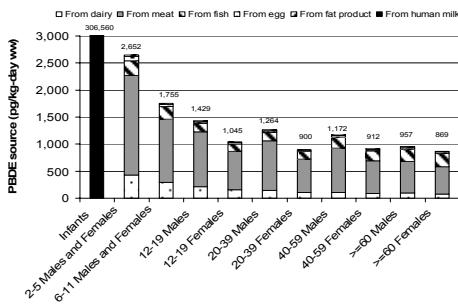
Human Exposure

Breastmilk

Maternal transfer to fetus

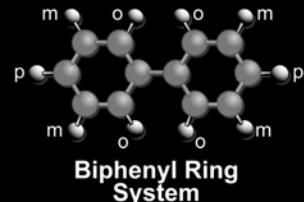
Diet (esp., fish)

Indoor, house & office dust, outdoor air


Occupation

United States Environmental Protection Agency 66

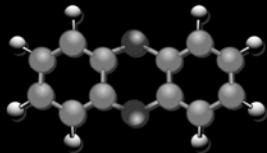
PBDE Dietary Intake of U.S. Population by Age and Food Group (Schecter et al., 2006)



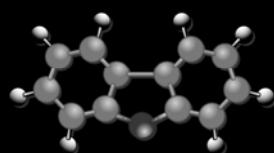
United States Environmental Protection Agency 67

Why do we care about Polybrominated diphenyl ethers?

- ➡ **Persistent, bioaccumulative, and structurally similar to PCBs, DDT, and other POPs.**
- ➡ **Levels are rapidly increasing in the environment and biological samples**
- ➡ **Effects seen in animals are similar to those seen with PCBs**



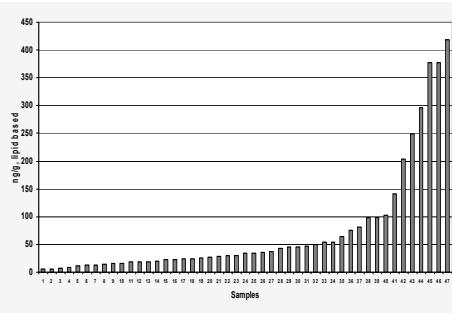
Biphenyl Ring System



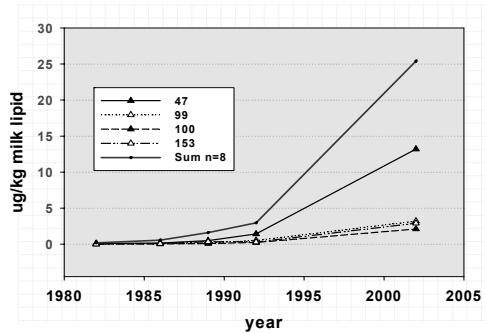
Diphenyl Ether Ring System

PBDEs are structurally similar to PCBs

Dioxin Ring System



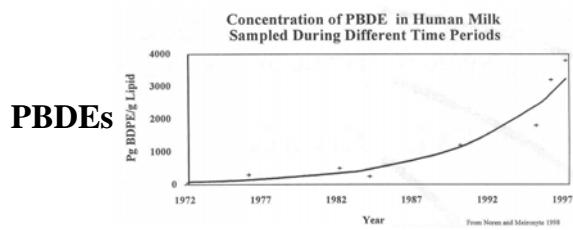
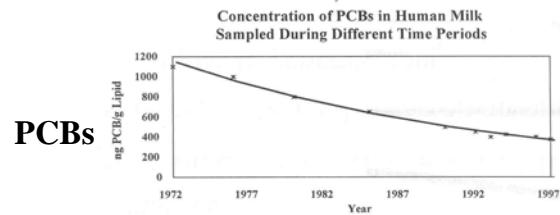
Dibenzofuran Ring System



Levels are increasing in the biological samples

**Total PBDEs in 47 human milks
from Texas, 2002 (ppb lipid)
[Mean – 73.9; Median – 34.0 (6.2-418.8)]
(Schecter et al., SOT 2003)**

**Time Trends of PBDEs in
Canadian Breast Milk
(Ryan and Patry, 2002)**

United States Environmental Protection Agency **70**

Are PBDE levels approaching to those of PCBs

PBDEs are increasing while PCBs and other POPs are decreasing in Human Milk in Sweden (Norén and Mieronyté, 1997)

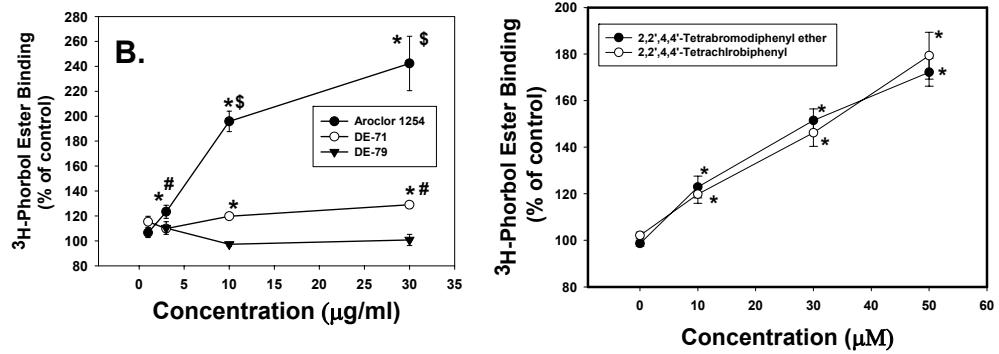
United States Environmental Protection Agency **71**

Are PBDE levels approaching to those of PCBs

Comparison of approximate PBDE adipose levels to PCB adipose levels among Californians

PBDE	PCB	Difference (PCB/PBDE)
PBDE-47 (33 ng/g)	PCB-153 (170 ng/g)	5-fold
sum PBDE (86 ng/g)	sum PCB (690 ng/g)	8-fold

... and PBDE levels are increasing

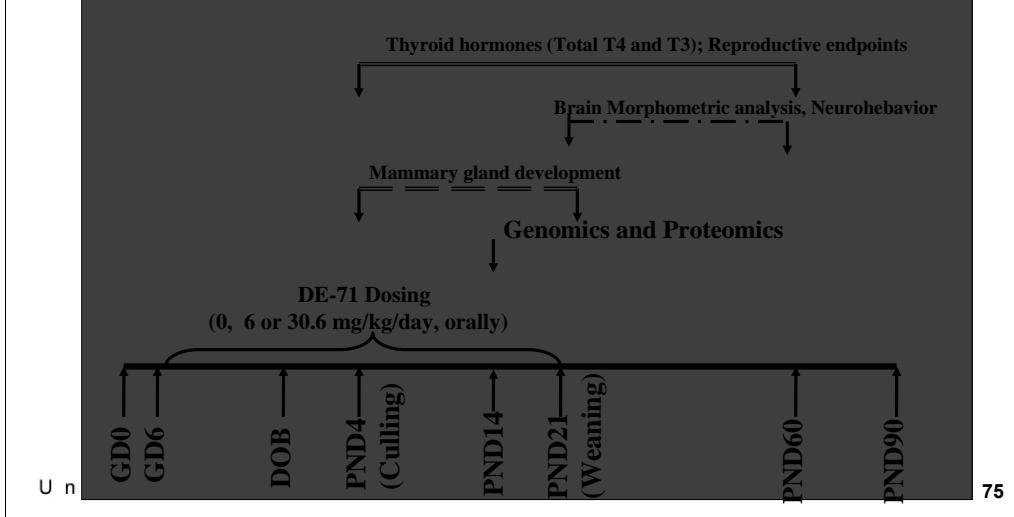

Developmental Neurotoxicity of PBDEs, similar to PCBs

- **Both mice and rats**
Mice very sensitive (clear effects at 0.8 mg BDE-99/kg) in infantile period
- **Sensory and Cognitive Effects**
- **Mechanism Unknown**
 - Depression in serum T4
 - Effects on Intracellular signaling
 - Effects on neurotransmitters

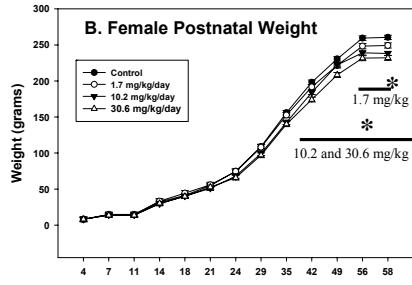
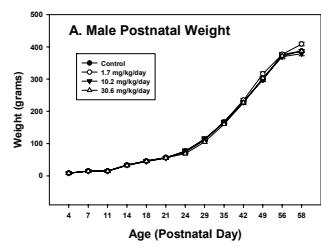
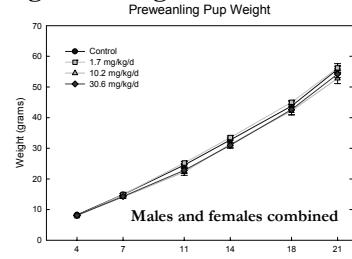
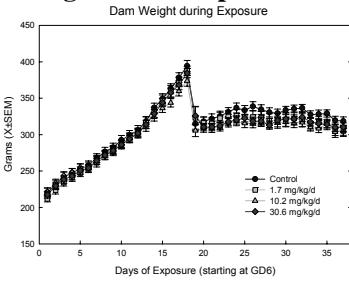
Neurochemical effects of PBDEs, similar to PCBs

(Kodavanti and Ward, 2004)

PBDE 47 and PCB 47 are equally efficacious on a molar basis.

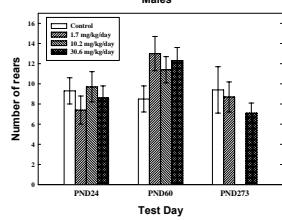

74

United States Environmental Protection Agency

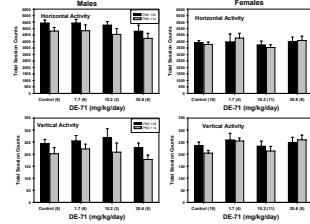




Developmental Exposure to DE-71

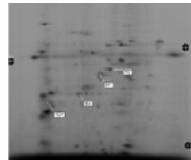
Dosing and Testing Paradigm

No effect on Dam weight or preweaning pup weight. However, there is a significant drop in female offspring weight starting at PND 29.


United States Environment

76


cy


Open-Field Rearing Males

Motor activity

No significant effect on Neurobehavior except dose-by-age interaction in the number of rears in open field test.

Gel # 76276.

Samples:
This gel compares samples
2M control (PND 14) vs DTM
(DE-71, 50.6mg/Kg)(PND
14).

Tissue:

CEREBELLUM.

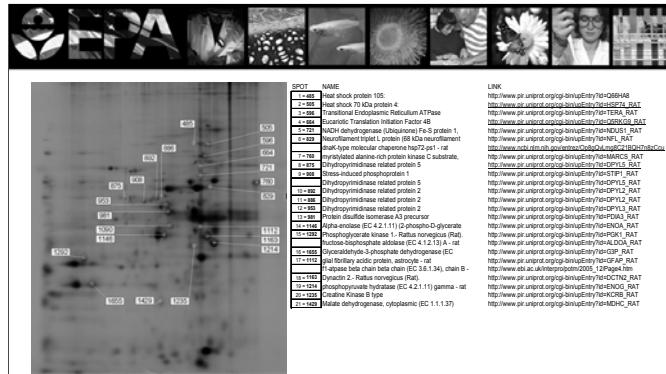
Protein Table T-test and Av Ratio: Treated / Control

Pos. Master No. Appearance T-test Av. Ratio t-ANOVA

1 1024 6(9) 0.048 1.57 0.048

2 951 9(9) 0.046 1.59 0.044

3 041 9(9) 0.046 1.62 0.046

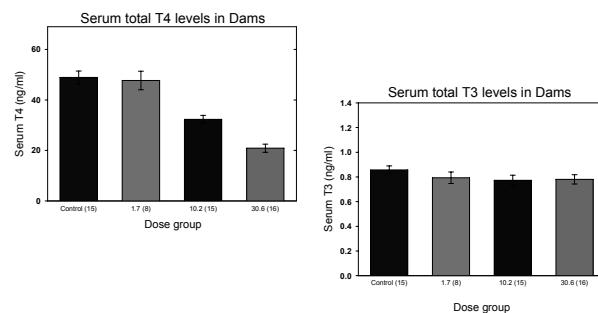

4 792 9(9) 0.044 1.34 0.044

Sample (Band/Spot On Gel)	Protein Name	Species	Database Accession ID ¹	Mr (kDa)	MS/MS Score	Peptide Assigned (Max Score) ²	PIB ³
03-792	Kerat-1: Rat scroogeus (Rat)	Rattus scroogeus	Q1VHIV ⁴ _RAT	401881.1	187	139	10
03-792	Heterogeneous nuclear ribonucleoprotein H2 - scroogeus (Rat)	Rattus scroogeus	Q6AY09_RAT	492623.3	184	133	10
03-792	High1 protein: Rat scroogeus (Rat)	Rattus scroogeus	Q49888_RAT	301673.1	132	113	10
04-841	BCG13B96 NID - scroogeus (Rat)	Rattus scroogeus	AAH78896	470982.2	151	406	10
05-864	Albamin: Rat scroogeus (Rat)	Rattus scroogeus	Q1AAAH_RAT	391291.2	1200	820	10
06-1024	AF441524 NID - Mni scroogeus (Rat)	Rattus scroogeus	AAAT6992	37063.2	285	269	10
06-1024	Albamin: Rat scroogeus (Rat)	Rattus scroogeus	Q5U3X3_RAT	687141.47	37	37	10

**Proteins in Cerebellum with significant changes
following developmental exposure to DE-71 at PND 14.
Four proteins were affected by chemical exposure.**

78

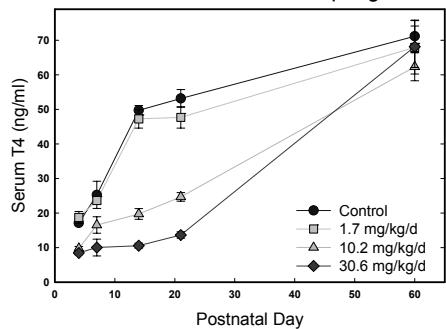
United States Environmental Protection Agency


Proteins in Hippocampus with significant changes following developmental exposure to DE-71 at PND 14. Fifty two proteins were affected, but only few shown in the table. These proteins belong to energy metabolism, calcium signaling and growth of the nervous system.

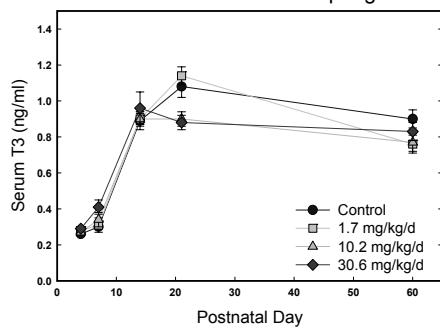
79

United States Environmental Protection Agency

Decreased Thyroxine in Dams PND22

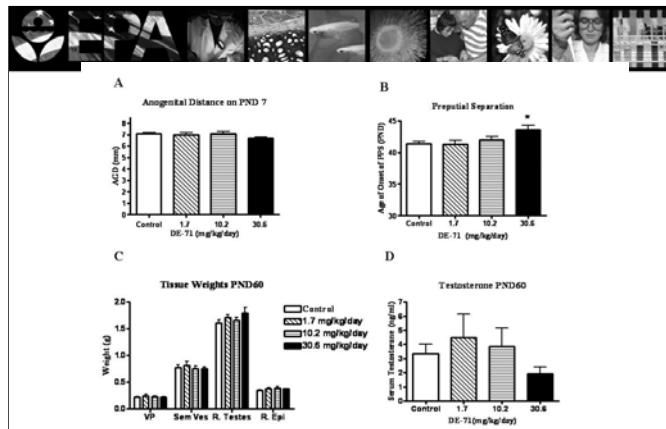

United States Environmental Protection Agency

80

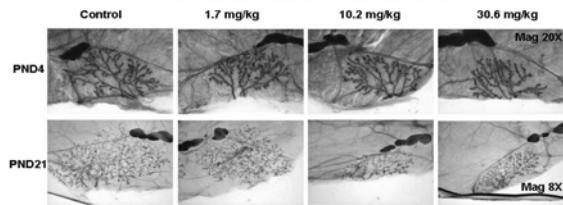


Decreased Thyroxine in Pups

Serum T4 in Male Offspring



Serum T3 in Male Offspring


Females similarly affected

United States Environmental Protection Agency

Prepubertal Mammary Gland Morphology

DE-71 affected mammary gland development significantly at PND 21.

United States Environmental Protection Agency

83

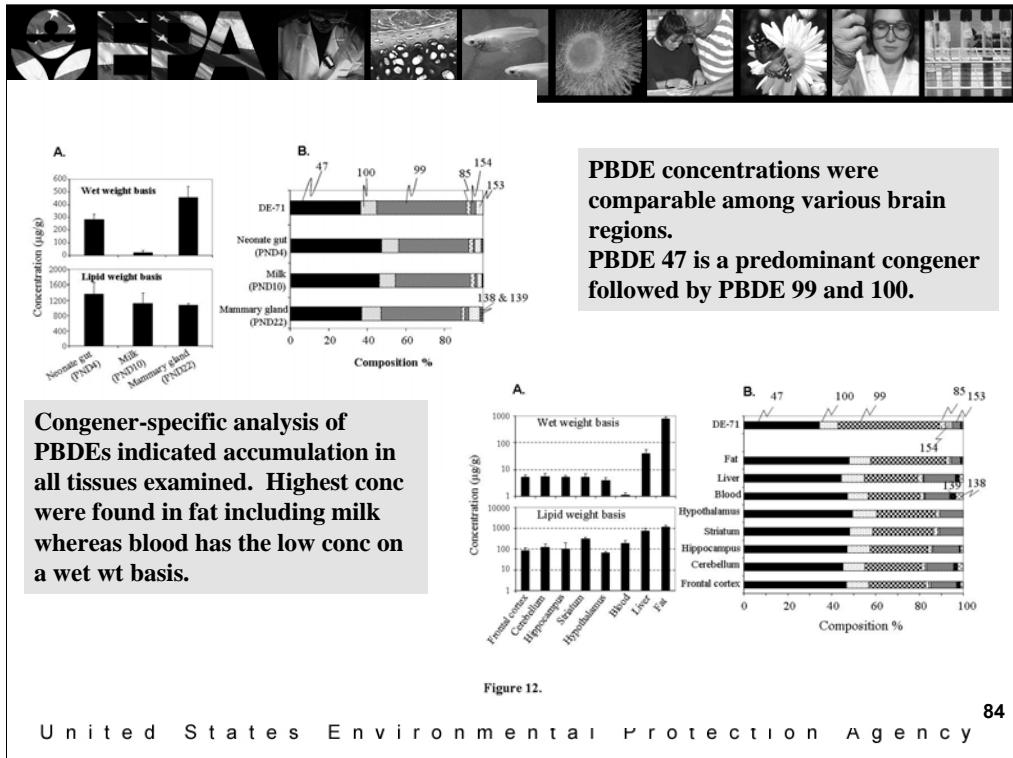


Figure 12.

Summary

Developmental exposure to DE-71

- ⇒ No dramatic effect on Neurobehavior, but proteins related to energy metabolism, calcium signaling and growth of the nervous system were affected.
- ⇒ Caused severe hypothyroxinemia in dams and offspring
- ⇒ Affected male reproductive system (anogenital distance, preputial separation)
- ⇒ Affected mammary gland development in females
- ⇒ Highest conc were found in fat including milk.
PBDE conc were comparable among brain regions, but still lower than liver and fat.

85

United States Environmental Protection Agency

Potential Risk Assessment of PBDEs

(Proposed by Dr. Deb Rice)

Since there is not sufficient pharmacokinetic data for extrapolation from rodents to humans, one approach could be to compare current levels of PBDEs in humans with the levels of PCBs that are known to produce adverse human health effects including developmental neurotoxicity which is considered to be one of the most sensitive endpoints.

Studies from Netherlands & Germany documented adverse effects associated with cognition when breast milk levels of PCBs were in the range of 263-1615 ng/g (median = 690 ng/g).

In North America (TX and NC), PBDEs in breast milk were reported to be in the range of 6-1078 ng/g with a median of 34-58 ng/g, which is ten times less than those of PCBs.

In North America (NY), cord blood conc varied from 1 to 955 ng/g with a median of 19 ng/kg

However, the top 5% of population have levels similar to PCBs and this may pose a risk.

Since the effects of PCBs and PBDEs are mostly additive and some times synergistic, the levels of PBDEs at current level may be producing adverse health effects.

Additional research is needed to better assess the risk associated with exposure to these persistent chemicals.

86

United States Environmental Protection Agency

**Thank you
for your attention**

87

United States Environmental Protection Agency

Upcoming Webinars

- **Session II: Metals and Metal Mixtures**
 - March 28th, 1:00 – 3:00 PM ET
 - **Robert Wright (Harvard School of Public Health):**
Neurodevelopmental consequences of mixed metal exposures (Pb, As, Mn), comparing different developmental windows.
 - **Rebecca Fry (University of North Carolina):** Prenatal exposure to cadmium, poor birth outcomes, and inflammatory mechanisms.
- **Session III: PCE and Phthalates**
 - April 2nd, 1:00 – 3:00 PM ET
 - **Ann Aschengrau (Boston University School of Public Health):**
Early life exposure to PCE-contaminated drinking water and later-life neurotoxic effects.
 - **Rita Lock-Caruso and John Meeker (University of Michigan School of Public Health):** Phthalate exposure and preterm birth in Puerto Rico: environmental, genetic, demographic, and behavioral factors.

Other SRP Early-Life Exposure Researchers

- Camenisch, Todd. P42ES004940, University of Arizona, *Project: "As Effects On Cardiovascular Development and Disease"*
- Corley, Richard. P42ES016465, Oregon State University, *Project: "Cross-Species Comparison of Transplacental Dosimetry PAHs"*
- Furlong, Clement. P42ES004696, University of Washington, *Project: "Biomarkers of Susceptibility to Environmentally-Induced Diseases"*
- Karagas, Margaret. P42ES007373, Dartmouth College, *Project: "Epidemiology, Biomarkers and Exposure Assessment of Metals"*
- Lantz, Robert. P42ES004940, University of Arizona, *Project: "Pulmonary Response to Toxicants in Susceptible Population"*
- Lasley, Bill. P42ES0004699, University of California-Davis, *Project: "Assessing Adverse Effects of Environmental Hazards on Reproductive Health"*
- Sharma, Surendra. P42ES013660, Brown University, *Project: "Genetic Stress and Toxicant-induced Pregnancy Disruption"*
- Slotkin, Theodore. P42ES10356, Duke University, *Project: "Developmental Neurotoxicants: Sensitization, Consequences, and Mechanisms"*
- Smith, Allan. P42ES004705, University of California-Berkeley, *Project: "Arsenic Biomarker Epidemiology"*

<http://tools.niehs.nih.gov/srp/search/index.cfm>

89

Thank you!

Webinar Planning Committee:

EPA

Xabier Arzuaga
Sally Darney
Trish Erickson
Charles Maurice

NIEHS

Astrid Haugen
Jerry Heindel
Claudia Thompson

NIEHS - SRP

Beth Anderson
Danielle Carlin
Heather Henry
Edward Pope
Meredith Shoemaker
Bill Suk
Maureen Avakian, MDB, Inc
Justin Crane, MDB, Inc

ATSDR

Deborah Burgin
Olivia Harris

ATSDR

Resources & Feedback

- To view a complete list of resources for this seminar, please visit the **Additional Resources**
- Please complete the **Feedback Form** to help ensure events like this are offered in the future

United States Environmental Protection Agency
Technology Innovation Program
U.S. EPA Technical Support Project Engineering Forum
(Green Remediations Opening the Door to Field Use Session C (Green
Remediation Tools and Examples))
Seminar Feedback Form

We would like to receive any feedback you might have that would make this service more valuable.
Please take the time to fill out this form before leaving this site.

First Name: Jean
Last Name: Breen
Daytime Phone Number: 703-603-9024
Email Address: breen.jean@epa.gov
Date of Seminar: October 15, 2009
Delivery Media

Please send a copy of my feedback confirmation as a record of my participation to this address

Need confirmation of
your participation
today?

Fill out the feedback
form and check box for
confirmation email.