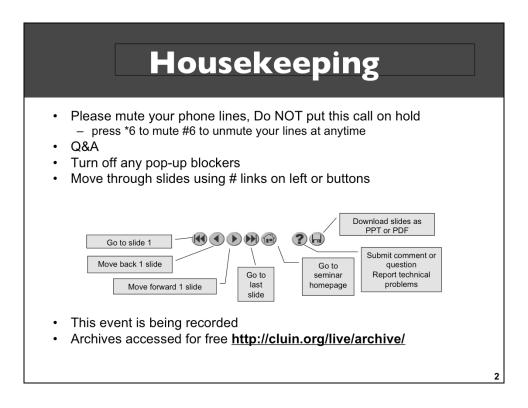


Welcome to the CLU-IN Internet Seminar

Greener Cleanups - EPA's Methodology for Understanding and Reducing a Project's Environmental Footprint (Final)


Sponsored by: U.S. EPA, Office of Superfund Remediation and Technology Innovation Delivered: April 18, 2012, 1:00 PM - 3:00 PM, EDT (17:00-19:00 GMT)

Instructors:

Carlos Pachon, U.S. EPA Office of Superfund Remediation and Technology Innovation (pachon.carlos@epa.gov or (703) 603-9904)
Karen Scheuermann, U.S. EPA Region 9 Environmental Engineer (scheuermann.karen@epa.gov or (415) 972-3356)
Kira Lynch, U.S. EPA Region 10 Superfund Technical Liaison (lynch.kira@epa.gov or (206) 553-2144)
Hilary Thornton, U.S. EPA Region 3 Remedial Project Manager (thornton.hilary@epa.gov or (215) 814-3323)
Doug Sutton, Tetra Tech (doug.sutton@tetratech.com or 732-409-0344)

Moderator:
Carlos Pachon, U.S. EPA Office of Superfund Remediation and Technology Innovation (pachon.carlos@epa.gov or (703) 603-9904)

Visit the Clean Up Information Network online at www.cluin.org

Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.

Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interupt the seminar.

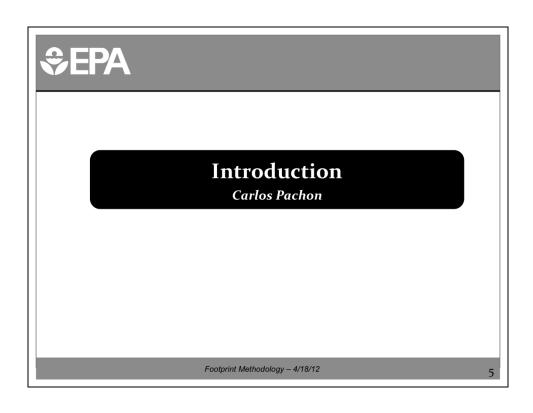
You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? Icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker information, links to the slides and additional resources. Lastly, the button with a computer disc can be used to download and save today's presentation materials.

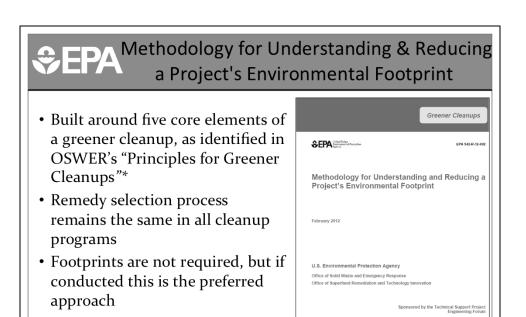
With that, please move to slide 3.

Greener Cleanups EPA's Methodology for Understanding and Reducing a Project's Environmental Footprint (Final)

Carlos Pachon, US EPA HQ (Superfund) Doug Sutton, Tetra Tech GEO Karen Scheuermann, US EPA Region 9 Kira Lynch, US EPA Region 10 Hilary Thornton, US EPA Region 3

Footprint Methodology – 4/18/12


Seminar Outline


GOAL: Introduce EPA's methodology for environmental footprint analysis of remediation projects

- Introduction
- Methodology Overview
- Application of the Methodology
- Key Considerations for Interpreting the Results
- Interpreting and Using the Results
- Next Steps
- Q&A

Methodology is available at www.cluin.org/ greenremediation

Footprint Methodology – 4/18/12

Footprint Methodology – 4/18/12

*http://www.epa.gov/oswer/greenercleanups

Methodology for Understanding & Reducing a Project's Environmental Footprint (2)

Materials

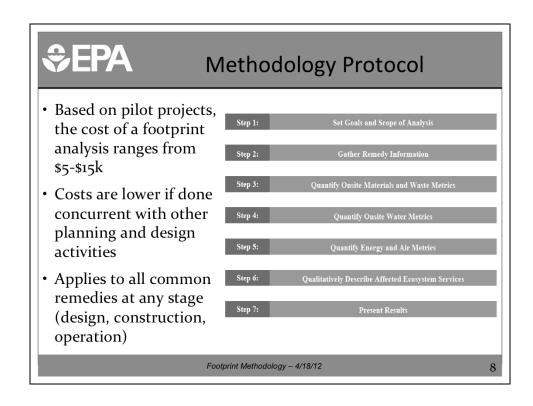
& Waste

Land &

Ecosystems

Energy

Water


Air &

Atmosphere

- Provides common footprint metrics and a process to quantify them
- Designed to be generally compatible with existing "footprinting" tools
- Based on lessons learned from multiple projects
- Goal of an assessment Identify the most significant contributors to a project's environmental footprint and better focus efforts to reduce it
- Includes common conversion factors, contents of materials frequently used for cleanup, and typical energy demands of equipment deployed in the field

Footprint Methodology – 4/18/12

/



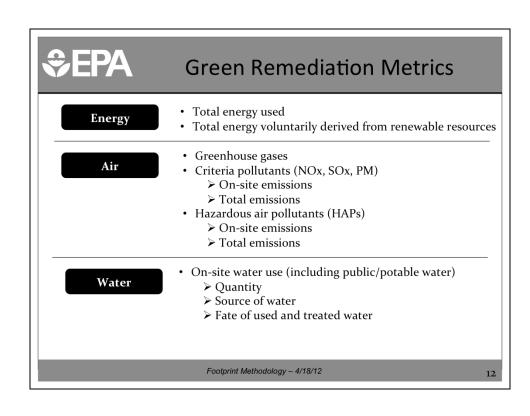
Methodology Document

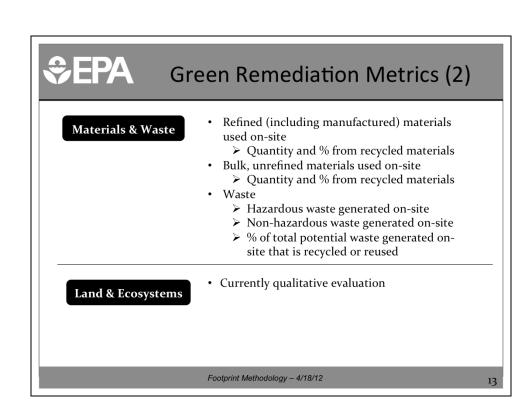
- Main section: The basics of an environmental footprint
 - Introduction
 - Metrics
 - Footprint methodology
 - Considerations for interpreting the footprint
 - Approaches to reducing the footprint
- Appendices: The "mechanics" of a footprint
 - A. Exhibits
 - B. Tables/data presentation formats
 - C. Footprint reduction scenarios
 - Materials and Waste (3)
 - Water (3)
 - Energy and Air (2)

Methodology is available at www.cluin.org/greenremediation

Footprint Methodology – 4/18/12

Methodology Applicability


Does the methodology call for life-cycle assessment (LCA)?

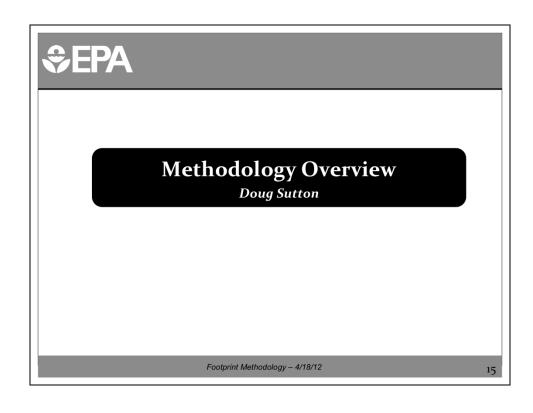

- It calculates the green remediation metrics but does not apply an "impact assessment" as typically needed in a full LCA
- Materials and waste target the on-site use and generation rather than off-site (boundary difference)
- · Energy and emissions have fairly broad system boundaries

Does the methodology consider social and economic factors?

- The methodology focuses on the environmental footprint of a contaminated site remediation project
- Social and economic factors are addressed in EPA cleanup programs through existing processes such as community involvement requirements and EPA's Superfund Redevelopment Initiative

Footprint Methodology – 4/18/12

Methodology Applicability


Where and when is the methodology used?

- The methodology process and results are of value . . .
 - > For all types of cleanup projects
 - ➤ For all cleanup programs
 - > Throughout the various phases of a cleanup project

How will EPA use the methodology?

- Train EPA technical staff on ways to understand and reduce the footprint
- Conduct footprint analyses at its own sites when and where appropriate
- Facilitate the evaluation of environmental footprint studies submitted to EPA by outside parties

Footprint Methodology – 4/18/12

Materials & Waste Highlights

- Straightforward accounting of materials used on-site
 - > Refined/manufactured (e.g., steel, chemicals)
 - ➤ Unrefined/minor processing (e.g., soil, sand, gravel)
- Straightforward accounting of waste generated on-site
 - ➤ Hazardous
 - ➤ Non-hazardous
 - ➤ Percentage recycled or reused
- Example tables for organizing input and results

Much of section is rules of thumb or general assistance for creating an inventory of materials and waste

Footprint Methodology – 4/18/12

Water Highlights

- Straightforward accounting of on-site water use, considering sitespecific factors
 - ➤ Source of water used
 - ➤ Quantity of water used
 - ➤ Use of water
 - ➤ Fate of water after use

Use of site-specific factors allows for development of site-specific water use metric

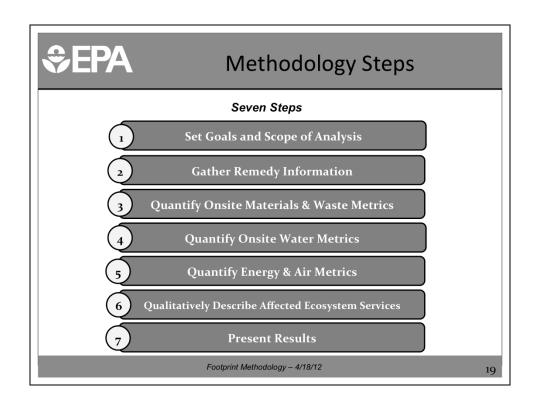
Footprint Methodology – 4/18/12

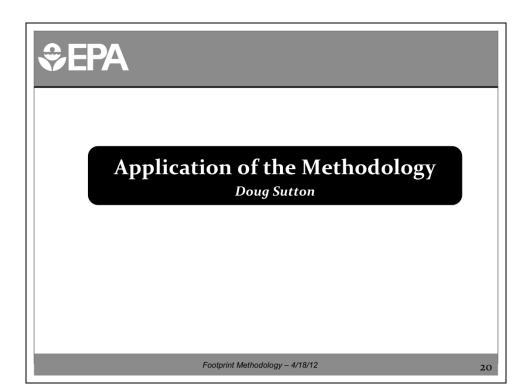
1/

Energy & Emission Highlights

- Three-step process
 - > Inventory remedy materials and services
 - > Calculate electricity and fuel use
 - ➤ Convert electricity, fuel, materials, and into energy and air metrics
- Organize calculations into four categories
 - ➤ On-site (similar to Scope 1 in EO 13514)
 - ➤ Electricity generation (Scope 2 in EO 13514)
 - ➤ Transportation (part of Scope 3 in EO 13514)
 - ➤ Other off-site materials and services (part of Scope 3 in EO 13514)
- Provides help estimating and calculating values
- Helps with determining appropriate level of detail
- Provides referenced footprint conversion factors

Footprint Methodology – 4/18/12


18

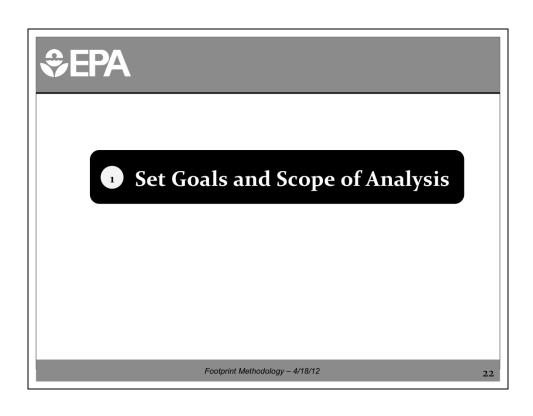

Uses some info from

Materials & Waste

and from Water

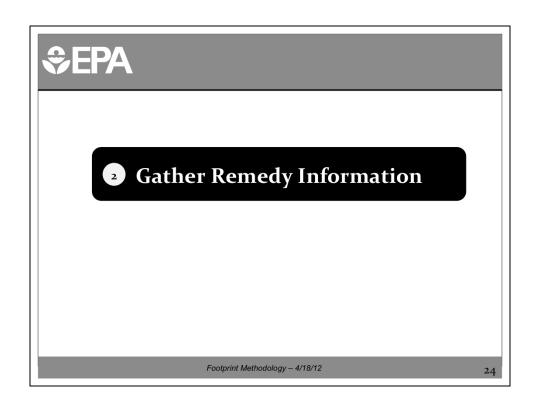
Sections

Example Application


Application at a hypothetical P&T system

- P&T system designed to treat arsenic
- System expected to operate for 30 years
- Treatment plant removes arsenic through co-precipitation
 - ➤ Intensive chemical usage
 - > Substantial waste generation
- Discharge treated water to the nearby creek
- Local electricity generation mix similar that of California
- Remedy is in design stage
- Results used to help identify green remediation practices to be included in system design

Footprint Methodology – 4/18/12


2.

Set Goals and Scope of Analysis

- · Scope of analysis
 - > System construction, O&M, and performance monitoring
 - ➤ Focus on groundwater remedy only
 - ➤ Assume system is used for other purposes at conclusion of remedy
- Study boundary is established by EPA methodology
- Functional unit of analysis
 - ➤ Remedy life-cycle from construction through operation
 - ➤ Substantial waste generation

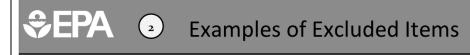
Footprint Methodology – 4/18/12

Remedy Item/Activity Number, depth, and design of extraction wells Quantity/Information 6-inch wells, 600 ft total

Remedy Item/Activity	Quantity/Information
Number, depth, and design of extraction wells	6-inch wells, 600 ft total
Length, size, and type of piping	3,000 ft of 6-inch HDPE
Extraction rate	700 gpm
Treatment plant construction	80 ft x 100 ft x 30 ft
Information for estimating utility use	Pumps, mixers, HVAC, lighting
Information for estimating waste generation	Influent loading
Information for estimating chemical use	Influent loading
Monitoring program (frequency, locations, parameters)	Annual, 100 wells, arsenic
Transportation distances	Various

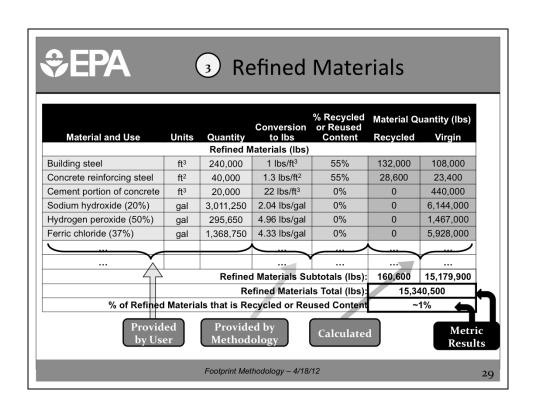
Typical information from Feasibility Study, Design, Implementation/O&M, and Optimization

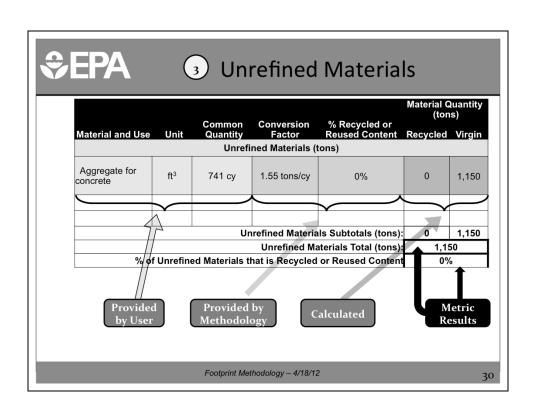
Footprint Methodology – 4/18/12

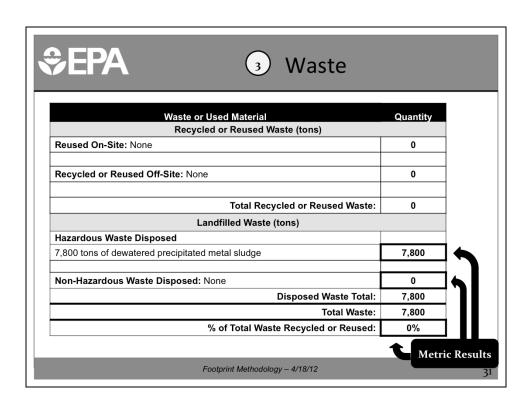

Screening Limits

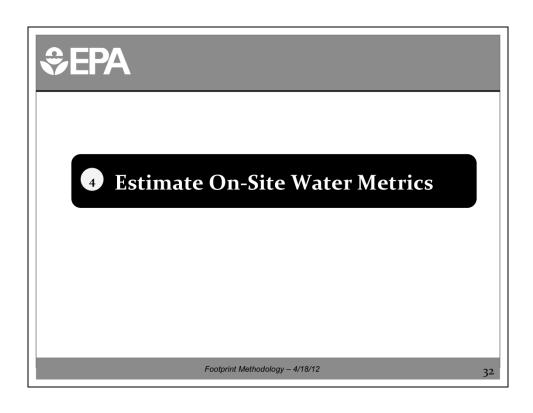
- · Screening limits to refine input information
 - Exclude items with estimated footprint contribution smaller than 1% of largest footprint contribution
 - ightharpoonup Exclude items with estimate footprint smaller than a specified magnitude

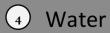

Metric	Units	Largest Contributor	Largest Contribution	1% of Largest Contribution	Magnitude Limit	Screening Limit
Refined materials	ton	NaOH	3,072	31	1	31
Unrefined materials	ton	Aggregate	1,150	12	1	12
Waste	ton	Sludge	7,800	78	1	78
Public water	gal	Poly blending	360,000,000	3,600,000	5,000	3,600,000
On-site NOx+SOx+PM10	lb	Nat. gas	7,100	71	100	100
On-site HAPs	lb	Nat. gas	5	0.05	10	10
Total energy use	SU	Electricity	39,000,000	390,000	1,000	390,000

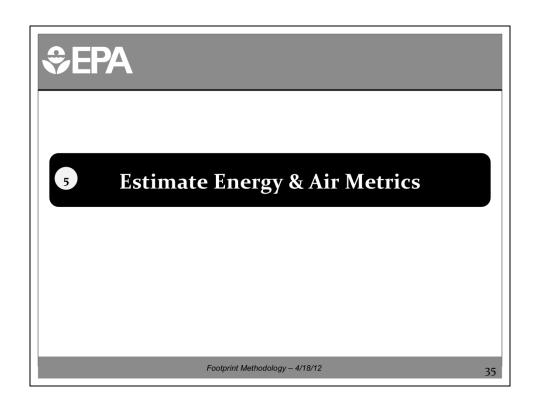

Based on professional judgment, exclude items with a footprint smaller than the "screening limits"

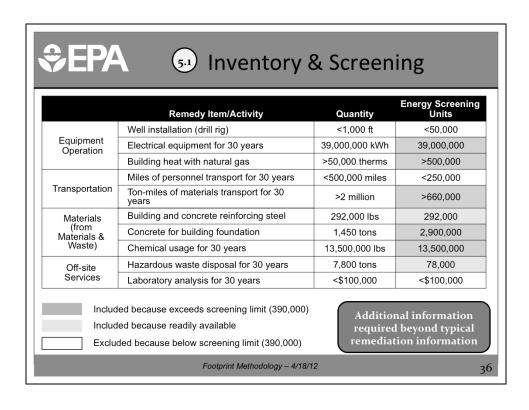

Footprint Methodology – 4/18/12

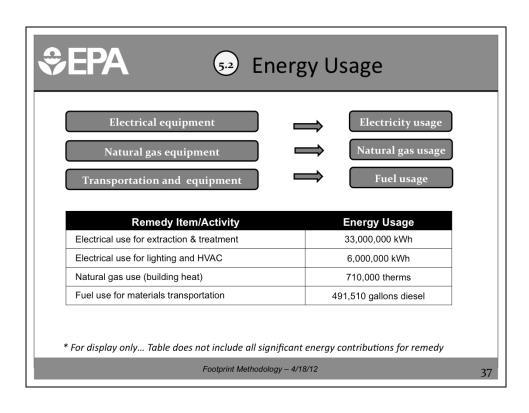


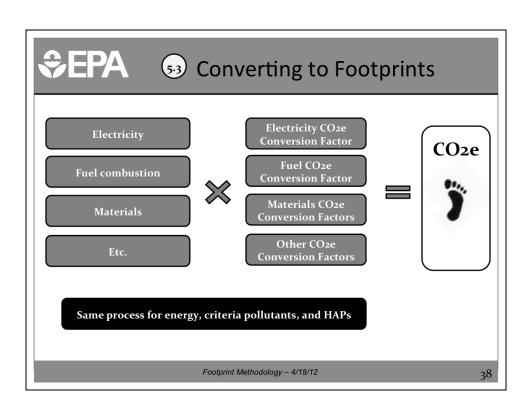

Metric	Example Excluded Items
Refined materials	PipingWell casing and groutValves fittingsProcess equipment & controls
Unrefined materials	Sand for well construction
Waste	Used sampling equipment Used gloves Packaging
Public water	Water for equipment decontamination Water for well drilling
On-site NOx+SOx+PM10	Gasoline powered generators for sampling
On-site HAPs	Gasoline powered generators for sampling
Total energy use	Gasoline powered generators for sampling Personnel transport Heavy equipment transport




Water Resource	Description of Quality of Water Used	Volume Used (1000's gallons)	Uses	Fate of Used Water
Public water supply	Potable	360,000	Blending polymer	Creek
Extracted groundwater Aquifer: "Shallow"	Marginal quality	11,000,000	Treatment	Creek
Surface water Intake Location: None		None		
Reclaimed water Source: None		None		
Collected/diverted storm water		None		
Other water resource		None		


Footprint Methodology – 4/18/12



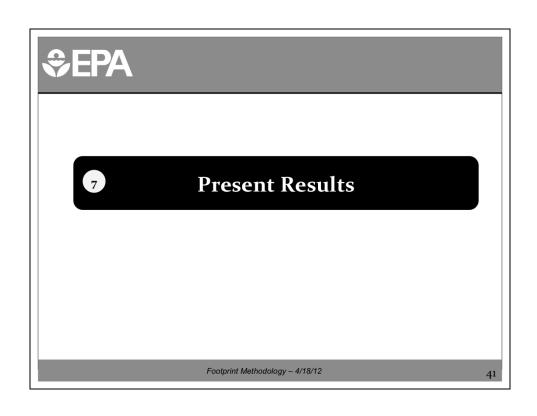

Water Resource	Description of Quality of Water Used	Volume Used (1000's gallons)	Uses	Fate of Used Water
Public water supply	Potable	360,000	Blending polymer	Creek
Extracted groundwater Aquifer: "Ogallala"	Vital Aquifer	11,000,000	Treatment	Creek
Surface water Intake Location: None		None		
Reclaimed water Source: None	None			
Collected/diverted storm water	None			
Other water resource	None			

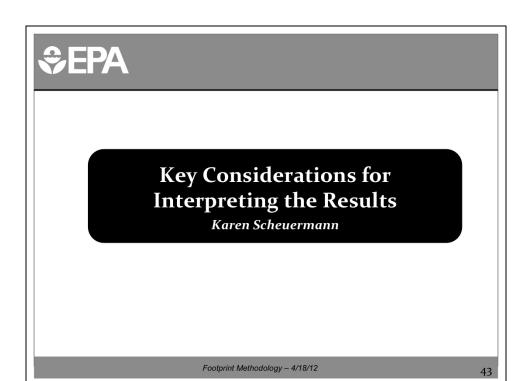
Footprint Methodology – 4/18/12

© EPA 53 Converting to Footprints

	Inventory Component	Quantity	Energy Footprint (MMBtus)	CO2e Footprint* (tons)
On-site	On-site elec. use Natural gas use Equipment use	39,000,000 kWh 710,000 therms 1,010 gals fuel	133,000 73,000 134	0 4,650 11
Elec. Gen.	Electricity gen.	39,000,000 kWh	269,000	16,497
Transportation	Diesel	491,510 gallons	68,000	5,530
Off-site	Materials Waste disposal Electricity trans. Public water Other	17,500,000 lbs 7800 tons 39,000,000 kWh 360,000,000 gals Other	310,000	19,022
Total			853,000	45,710

^{*} Only energy and CO2e footprints shown for example. Criteria pollutants, and HAPs not shown.


Footprint Methodology – 4/18/12


Qualitatively Describe Effects on Ecosystem Services


In its current form, the methodology suggests the use of qualitative descriptions of the effects of a remedy on land and ecosystem services such as nutrient uptake and erosion control. Concepts related to ecosystem services are available online from EPA's Ecosystem Services Research Program at http://www.epa.gov/ecology.

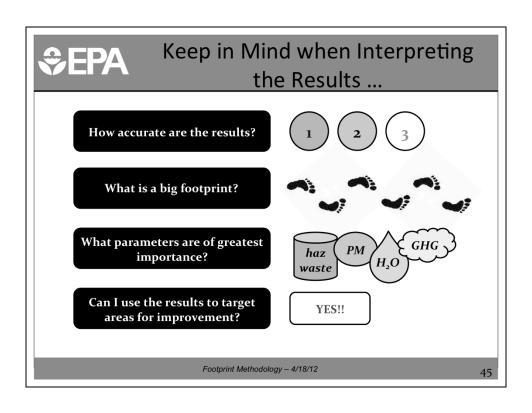
Footprint Methodology – 4/18/12

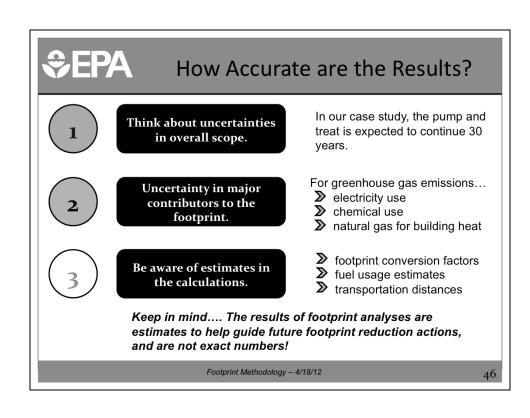
	Environmental Footpr	Í.
	Parameter	Footprint
	Total Energy	853,000 MMBtu
	% from Renewable Energy	0%
	GHG Emissions	45,710 tons
Vhat	Total Criteria Pollutant emissions	637,000 lbs
es this	On-site Criteria Pollutant emissions	7,800 lbs
iean?	Total HAP emissions	4,100 lbs
	On-site HAP emissions	6 lbs
	Public water use	360,000,000 gallons
What do do with it?	Other on-site water use	Marginal impact
	Refined materials use (% from recycled material)	15.3 million lbs (1%
	Unrefined materials use (% from recycled material)	1,150 tons (0%)
	Hazardous waste	7,800 tons
	Non-hazardous waste	0 tons
	% of total on-site waste recycled or reused	0%

What activities/materials are being omitted?

- Materials used in small amounts
- · Infrequent activities

What are the greatest sources of error or uncertainty?

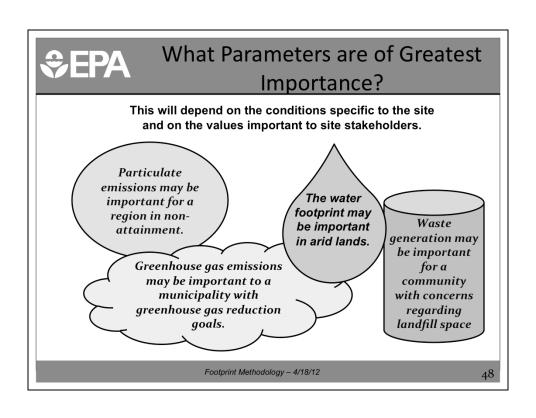

- · Undetermined aspects of remedy design
- Remedy timeframes
- Footprint conversions factors

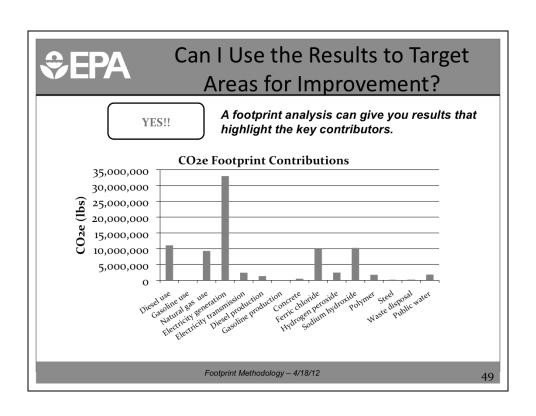

How can the analysis address these uncertainties?

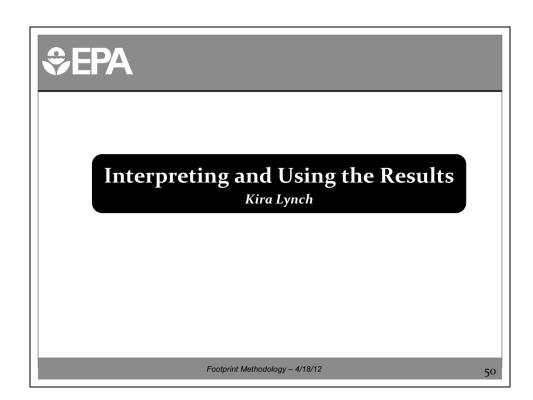
- Evaluate alternative designs
- Perform sensitivity analyses
- · Conduct additional research

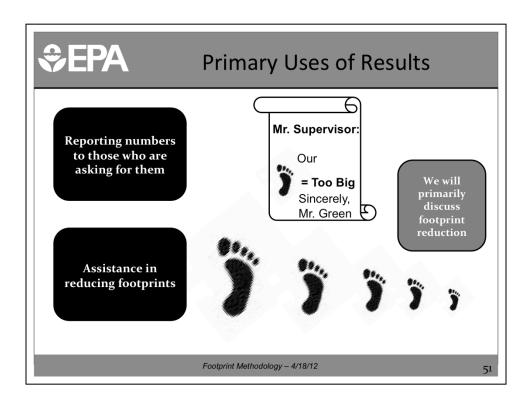
Document the sources of error and uncertainty and how they are addressed

Footprint Methodology – 4/18/12

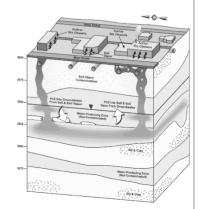

What is a Big Footprint?

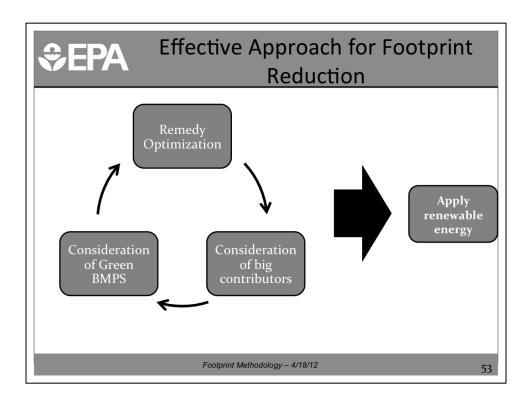

- What is the right benchmark for comparison?
-) How does the footprint for a particular remedy compare to...
 - footprints of similar remedies in your organization's portfolio?
 - your organization's overall footprint?
 - footprints of other similar remedies?
- * Are there goals that you or your organization set for...
 - magnitude of footprint reductions
 - percentage footprint reduction
- Are there footprint reduction goals that have been recommended for your organization by another party?

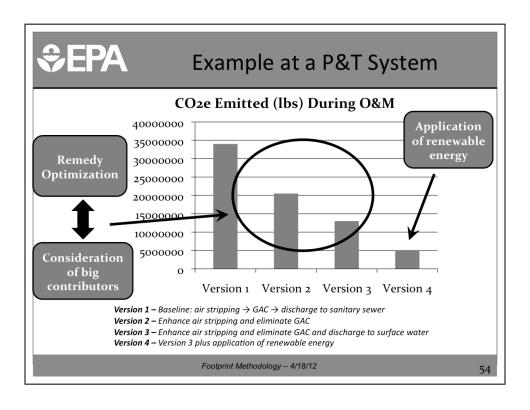

A small percentage reduction of a large footprint can be a large magnitude reduction

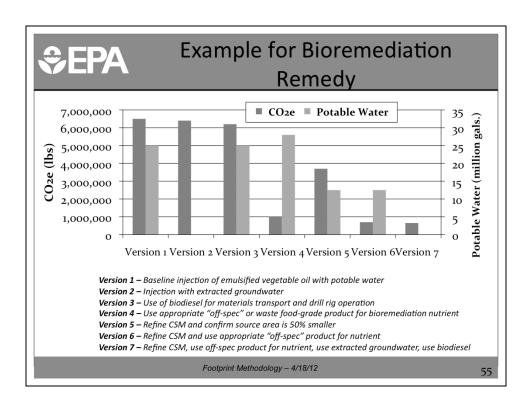

Footprint Methodology – 4/18/12

17

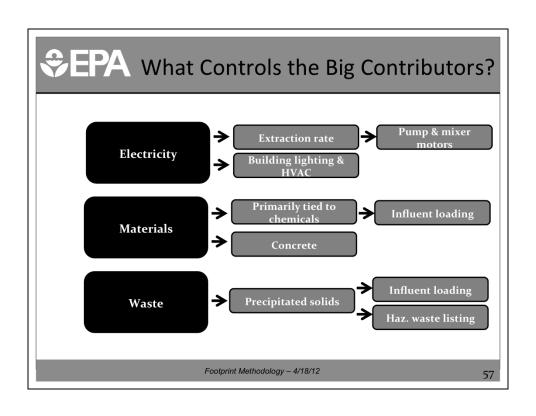



PEPA Approaches to Footprint Reduction


Small environmental footprints are consistent with good science and engineering


- · Minimizing footprints and large footprint reductions come from...
 - ➤ An accurate conceptual site model (CSM)
 - > Well-characterized source areas and contaminant plumes
 - ➤ Appropriate remedy selection
 - ➤ Sound engineering
 - ➤ Streamlined performance monitoring

Footprint Methodology – 4/18/12



Back to Our Example P&T System

What are the big contributors?

Footprint Parameter	Primary Contributors
Total Energy	Electricity & Materials
GHG Emissions	Electricity & Materials
Criteria Pollutant emissions	Electricity & Materials
HAP emissions	Electricity & Materials
Public water use	Polymer blending
Other on-site water use	GW Extraction
Off-site water use	Electricity & Materials
Refined materials use & % from recycled material	Chemicals
Unrefined materials use & % from recycled material	Aggregate for concrete
Hazardous waste	Influent loading
Non-hazardous waste	N/A

Footprint Methodology – 4/18/12

Addressing Big Contributors

CSM Related

- Can we optimize the extraction rate?
- Can source removal/stabilization reduce influent concentration?

Process Optimization

- Are there substitutes for process components that can reduce electricity or chemical use?
- Are motors oversized or throttled back? Are variable frequency drives used where appropriate?

Footprint Methodology – 4/18/12

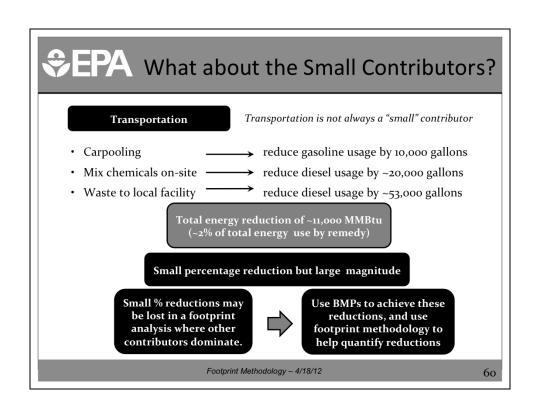
Addressing Big Contributors (2)

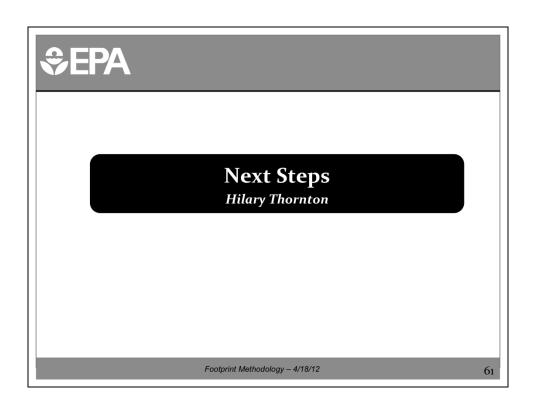
Traditional Energy Efficiency

- Can we adjust building HVAC and lighting operation?
- Can we use more efficient HVAC and lighting technologies?

Managing Waste

• Are there other chemicals (preferably a waste stream) that we can use?


Green BMPs & Renewable Energy


- Can we use renewable or alternative energy?

 - On-site renewable energyPurchased renewable energy
 - **>** Combined heat and power

Footprint Methodology – 4/18/12

Training and Tech Transfer

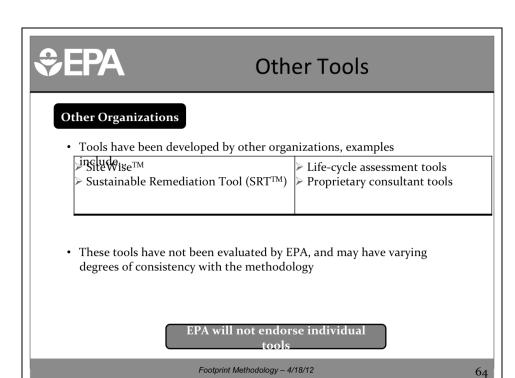
In-house training in 2012 at the

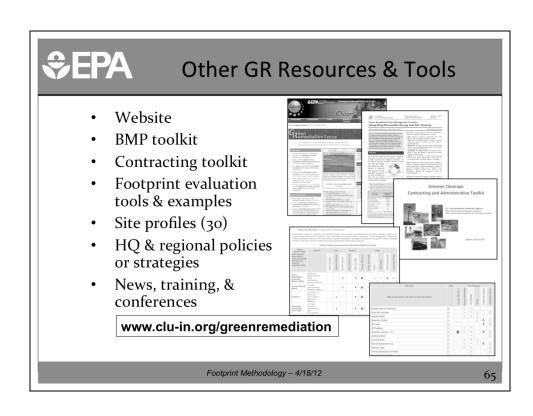
- "Train the Trainer" session at TSP Meeting in Oklahoma City on May 2
- EPA Region 9 on May 16 (Future regional training sessions will be planned as budget & travel permit)
 NARPM in October

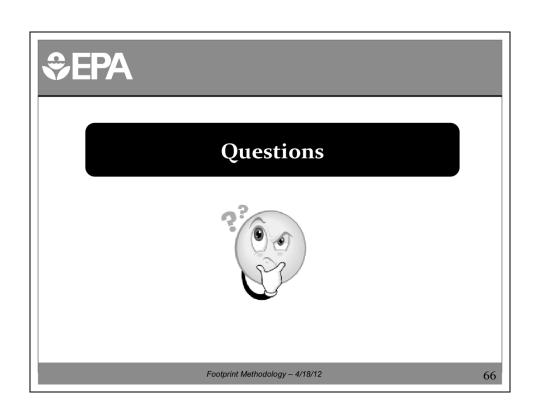
Training via internet seminars www.cluin.org

Additional example applications and case studies will be posted www.cluin.org/greenremediation

Footprint Methodology – 4/18/12


Tools and Support


EPA


- EPA is releasing footprint spreadsheets it uses that are consistent with the final methodology and made publicly available on www.cluin.org/greenremediation.
 - Use of these spreadsheets is optional
 - Spreadsheets are fairly self-explanatory, but do not come with a user manual or technical support
- EPA Green Remediation Coordinators and the EPA Engineering Forum will be available to answer questions regarding the methodology.

Footprint Methodology – 4/18/12

Resources & Feedback

- To view a complete list of resources for this seminar, please visit the **Additional Resources**
- Please complete the <u>Feedback Form</u> to help ensure events like this are offered in the future

Need confirmation of your participation today?

Fill out the feedback form and check box for confirmation email.

New Ways to stay connected!

- Follow CLU-IN on Facebook or Twitter starting April 1, 2012
 - https://www.facebook.com/EPACleanUpTech
 - https://twitter.com/#!/EPACleanUpTech