ESTCP Classification Demonstration Program

Herb Nelson
Program Manager for Munitions Response
SERDP & ESTCP

Outline

- Classification Technology
 - ♦ Sensors
 - ♦ Analysis
- The ESTCP Demonstration Program
 - ♦ Goals
 - Demonstration Sites
 - ♦ How We Conduct the Demonstrations
 - ♦ How We Report the Results
 - Demonstration Results
 - ♦ Emerging Conclusions

Stages in the Classification Process

- 1. Measure target responses with suitable sensor
 - Classification-specific EMI

- Data Inversion
- Target polarizabilities

- 3. Classify targets based on the features
 - Statistical classifiers
 - Library matching

Electromagnetic Induction Sensors

Typical Electromagnetic Induction Sensor

Excitation Pulse

Electromagnetic Induction Sensors

Typical Electromagnetic Induction Sensor

Induced Target Response

Electromagnetic Induction Sensors

Typical Electromagnetic Induction Sensor

Sense Induced Field

Research & Development in This Area

Multiple Measurements Are Required to Completely Characterize a Target with a Single-Axis Sensor

Multiple Measurements Are Required to Completely Characterize a Target with a Single-Axis Sensor

Multiple Measurements Are Required to Completely Characterize a Target with a Single-Axis Sensor

Advantages of a Multi-Axis Sensor

Advanced EMI Sensors

- New UXO-specific EMI technologies developed and tested under SERDP & ESTCP
- All digital electronics, measuring complete eddy current decay cycle
- Multi-axis, multi-coil data more completely defines target parameters

Advanced EMI Sensors

- New UXO-specific EMI technologies developed and tested under SERDP & ESTCP
- All digital electronics, measuring complete eddy current decay cycle
- Multi-axis, multi-coil data more completely defines target parameters

EMI Signals

- + EMI response signal determined by target properties
 - ♦ Size and Shape
 - Material type and thickness

- Muddled by response variation with target location and orientation relative to primary field
 - ♦ Signal strength varies as sixth power of range

Stages in the Classification Process

- 1. Measure target responses with suitable sensor
 - Classification-specific EMI

- 2. Extract target features from the measured responses
 - Data Inversion
 - Target polarizabilities

- 3. Classify targets based on the features
 - Statistical classifiers
 - Library matching

Measured Decays Convolve Intrinsic Response with Relative Position and Orientation

Measured Decays Convolve Intrinsic Response with Relative Position and Orientation

Measured Decays Convolve Intrinsic Response with Relative Position and Orientation

Polarizabilities → Classification

Intrinsic responses (polarizabilities) along target's principal axis directions fully characterize EMI signal

Size Comparison

Stages in the Classification Process

- 1. Measure target responses with suitable sensor
 - Classification-specific EMI

- 2. Extract target features from the measured responses
 - Data Inversion
 - Target polarizabilities

- 3. Classify targets based on the features
 - Statistical classifiers
 - Library matching

How Do You Get Classified as a TOI - 1

Match a Munition in the Library

How Do You Get Classified as a TOI - 2

Be Part of a Cluster of Similar Items That Turn Out to Be TOI

How Do You Get Classified as a TOI - 3

Be Big and Symmetric

How You Get Classified as Clutter

No Symmetry

Known Clutter Item

ESTCP Classification Demonstrations

- Goal: Validate Discrimination Technologies
 - ♦ Establish performance capability as function of site conditions
 - ♦ Establish operational procedures and costs
 - Documentation and Quality Control
 - ◆ Train government and contractor community
 - Gain regulatory acceptance

- Munitions type
- ♦ Site conditions
- Engagement
 - ♦ Regulators
 - ♦ Stakeholders
 - ♦ Site Managers
 - ♦ Industry

Classification Demonstration Sites

How We Go About This

- Identify the site
- Seed the site for process validation
- Geophysical surveys identify anomalies
- Cued surveys over the anomalies
- The analysts work with data collected over each anomaly
 - ♦ Extract parameters
 - ♦ Use those parameters to classify each anomaly
 - ♦ Construct a ranked anomaly list
 - Determine a threshold
- Then we dig them all to see how they did

Ranked Anomaly List

Initial Ranked Anomaly List

Anomaly ID	Dig on First Pass	Туре	Comment	
2498	Υ		Unable to extract reliable parameters	
247	Υ	105 mm		
1114	Υ	4.2 in	High likelihood TOI	
69	Y	155 mm		
811	Y	81 mm		First Pass
313	N		Unable to classify	Threshold
883	N			
177	N			
	N			
ini	N		High likelihood not TOI	
	N			
	N			
	N			
	N			
	N			
	N			

Final Ranked Anomaly List

Anomaly ID	Dig	Туре	
2498	Υ		
247	Υ	105 mm	
1114	Υ	4.2 in	
69	Υ	155 mm	
811	Υ	81 mm	
313	Υ	105 mm	Final
883	N		Threshold
	N		
•••	N		
1	N		
	N		
5	N		
	N		
3.00	N		
	N		
	N		

Performance Evaluation

Receiver Operating Characteristic (ROC) Curve

Rank	Comment
1	
2	High confidence munition
3	
	Can't make a decision
	Can't make a decision
	High confidence non-munition
N	

Performance Evaluation

Receiver Operating Characteristic (ROC) Curve

Rank	Comment
1	
2	High confidence munition
3	
	Can't make a decision
	Can't make a decision
	High confidence non-munition
N	

Former Spencer Range, TN

Production Contractor Analysis of MetalMapper Data

Performance Improvement

Camp Butner - 2010

Spencer Range 2012

Emerging Conclusions From the Demonstration Program

- Classification has been successful at a wide variety of sites using both vehicular-towed and portable advanced sensors
- Munitions as small as 37-mm projectiles have been successfully classified – 20mms are being tested now
- MetalMapper has similar depth performance to an EM61.
 The smaller, portable sensors are more limited.
- Classification has been successfully employed with anomaly densities as high as 800 per acre
- There is a learning curve for analysts

Potential Savings At a 100-acre Site

For More Information

serdp-estcp.org

Featured Initiatives > Munitions Response Initiatives > Classification Applied to Munitions Response

Or

Search – Classification Applied to Munitions Response