

Proposed Changes for USEPA Method 3050B, Metals Digestion, Incorporating Incremental Sampling Methodology

Jay Clausen

Physical Research Scientist

Hanover, NH

April 24, 2014

US Army Corps of Engineers

Surface Soil Sampling Issues

- Non-representative results using conventional grab surface soil sampling at military sites with metallic residues
- Inability to replicate results (duplicates) with grab sampling
- Poor precision of grab sample results yields large uncertainties when estimating the mean and calculating 95% upper confidence limits (UCLs)
- High grab sample result uncertainties problematic when reported concentration is near a regulatory action level
- Increasing State regulatory insistence to apply Incremental Sampling Methodology (ISM) for all soil sampling

BUILDING STRONG

Decision Units (DUs)

The <u>volume</u> of soil where samples are to be collected and decisions made based on the resulting data.

Source Areas

Exposure Areas

Size, shape, and type of DU are an outcome of systematic planning and depend on site specific data quality objectives.

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

Typical Small Arms Range

Conventional Random Sampling

Conventional Biased Sampling

Conventional Grid-Centered Sampling

Incremental Sampling Methodology (ISM)

Incremental Sampling Methodology (ISM)

Conventional Sampling Versus ISM

Activity	Grab	ISM
Deterministic Sampling	\checkmark	
Decision Unit Layout		\checkmark
Field Splitting	\checkmark	
Air Drying		\checkmark
Sieving		\checkmark
Milling/Grinding	-	\checkmark
Subsampling	1.	\checkmark
Larger Aliquot		\checkmark
		15 N. 28

BUILDING STRONG®

Performance Assessment

- ISM versus Grab samples
- Number of increments/decision unit
- Field splitting appropriateness
- Milling necessity
- Milling equipment comparisons
- Milling sample cross-contamination
- Puck Mill and Roller Mill optimum milling interval
- Digestion mass evaluation
- Digestion time
- Digestion reagent mixture
- Digestion subsampling preparation
- Blank material selection

BUILDING STRONG

Demonstration Sites

How Representative is Your Grab Sample?

	Contaminant Category	Mass Analyzed	Approximate Kitchen				
		by Lab	Equivalent				
	PAHs, PCBs	30g	1 1/2 tbl				
	Dioxins	10g	1/2 tbl				
	VOCs	5g	~ 1 tsp				
1	Metals	1g	~ 1/8 tsp				
	Mercury	0.5g	~ 1/16 tsp				
		Assuming Soil De	nsity = 1.3				
		1 tablespoon (15r	nl) = 20g				
		1 teaspoon (5ml) = 6.5g					
		1/2 tsp (2.5ml) = 3g					

1/8 tsp (0.6ml) = 0.8g

BUILDING STRONG®

Discrete sampling field tools (approximately to scale)

Innovative solutions for a safer, better world

RDC

Small Arms Range Grab Sample Results Lead (mg/kg)

951	868	1061	2868	217	2623	1767	1213	692	44
938	2307	319	19,038	1060	1952	3537	9235	5328	79,020
127	352	1204	1977	809	986	2840	4858	2349	1848

		RSD (%)	285	ERDC
	>10,000	STD	14438	
	1000-10,000	Max	79020	
	1000 10 000	Min	43.9	
	<1,000	Median	1238	
		Mean	5060	
Lege	end	n	30	

Innovative solutions for a safer, better world

BUILDING STRONG®

Number of Grab Samples versus Estimate of Mean

Innovative solutions for a safer, better world

BUILDING STRONG_®

Small Arms Range Results for Seven Grab Samples, Lead (mg/kg)

	951	1061	2868		2623					Mean	10075
			19,038		1952		9235			Median	951
										RSD (%)	42
ſ	051	_			_	_	1212		11		
	951						9235		44	Mean	2129
	127				986			2349		Median	986
										RSD (%)	151
	938			1060			4070	5328	79,020	Mean	13453
l	127			-	_	2840	4858			Median	2840
										RSD (%)	215
										. ,	
ſ	WwW										
l										ER	JL

Innovative solutions for a safer, better world

BUILDING STRONG_®

ISM versus Grab Samples

Gridded Grab

951	868	1061	2868	217	2623	1767	1213	692	44
938	2307	319	19,038	1060	1952	3537	9235	5328	79,020
127	352	1204	1977	809	986	2840	4858	2349	1848

Biased Random Grab

555			1930			1851	
	47 9						
	501			Ц	1650		

ISM (100-inc)

Systematic

Random

7

2,717

2,718

2,440

2,936

4

	Probability of
	finding 1
	hotspot with
	six grab
1	samples is
1	44%. Finding
	both is 8%

BUILDING STRONG®

n

Mean

Min

Max

RSD

Median

Innovative solutions for a safer, better world

Grab

Grid

30

5,060

1,238

44

79,020

285

Grab

Biased

Random

6

1,161

1,103

479

1,930

62

Number of ISM Increments Needed

	ISM		Percent Relative Standard Deviation (RSD)									
ľ	n	AI	Cr	Cu	Fe	Mn	Ni	Pb	Sb	V	Zn	
	5	3	10	22	4	4	3	25	25	6	9	
	10	8	6	162	4	4	4	32	63	5	154	
	20	27	121	26	22	18	26	30	50	32	15	
	30	3	7	15	10	4	3	14	15	6	6	
	50	3	15	21	10	2	4	11	11	6	10	
	100	3	7	26	4	2	2	17	17	3	15	
	200	6	3	18	4	5	2	4	7	1	11	
	n = numb	er of ind	crements	per MI sa	mple							

ERDC

BUILDING STRONG®

Replicate Comparison for Small Arms Range Berm Soil

Subsample	Metals	Conc.	Metals	Conc.
	(mg/	kg)	(mg	/kg)
Replicates	Cu	Pb	Sb	Cu
1	2,600	360	5.5	99
2	110	330	5.0	90
3	300	920	7.6	87
4	110	300	4.3	99
5	130	280	4.3	130
6	140	2,800	16	90
7	860	1,600	12	88
8	540	330	4.6	99
9	1,200	850	4.2	83
10	130	1,500	4.5	98
11	1,900	380	4.9	99
12	120	330	4.3	110
13	130	290	3.7	80
14	120	300	4.1	87
15	110	820	8.2	84
жЩ.	Samp	le #1	Sam	ole #2

Innovative solutions for a safer, better world

BUILDING STRONG®

Performance Assessment – Sample Processing (Milling) of Soil

Puck Mill

Roller Mill

Pulvisette

Fe, Mn, Cr, V

Mortar and Pestle Alumina cans polyethylene

BUILDING STRONG®

Liner, ceramic chips

Agate balls

Milling Equipment Comparisons

		Percent Relative Standard Deviation (RSD)								
Machine Type	AI	Cr	Cu	Fe	Mn	Ni	Pb	Sb	V	Zn
Unground #1	4	5	257	4	4	7	61	116	4	162
Unground #2	2	5	25	1	1	2	39	69	NA	17
Mortar & Pestle	5	4	39	4	3	3	32	55	4	28
Puck Mill #1	5	4	10	4	4	4	15	21	5	5
Puck Mill #2	1	2	15	4	2	1	4	7	2	10
Puck Mill #3	5	1	16	3	2	2	4	5	2	11
Puck & Ring Mill	6	5	5	4	5	5	5	8	5	6
Ball Mill	1	1	3	1	1	1	1	8	1	2

NA-not analyzed, Bolded values > 15%

BUILDING STRONG®

To Mill or Not To Mill

To Mill or Not To Mill

To Mill or Not To Mill

Puck Mill Optimum Grinding Interval

Roller Mill Optimum Grinding Interval

Comparison Method 3050B to 3050C

Activity	Method 3050B/ Conventional Sampling	Method 3050C/ Incremental Sampling Method
Field sampling	Not explicitly addressed. Typically, grab samples are collected from biased locations	Addressed in Appendix using ISM
Sample mass	200 g	1-2 kg
Sample drying	Optional, not typical	Yes
Sieving	If appropriate use a #10 sieve, samples are typically not sieved	Yes, using a #10 (2-mm) sieve
Milling	Milling is typically not done.	Yes, using appropriate mechanical grinders such as puck or roller mills
Laboratory sub-sampling	No	Yes, using 20-30 increments
Sub-sample mass.	0.5 - 2 g wet weight or 1 g dry weight	2 - 10 g dry weight
		ERDC

BUILDING STRONG®

Environmental Status

- ITRC issued ISM guidance, Feb 2012. <u>http://www.itrcweb.org/ISM-1/</u>
- AK, HI issued regulatory requirements for ISM, 2010-12
- Other States in progress of developing guidance
- USEPA issued Federal Facilities Forum Issue Paper: Site Characterization for Munitions Constituents.

• EPA-505-S-11-01.

http://www.epa.gov/fedfac/pdf/site_characterization_for_munitions_constituents.pdf

- ERDC-CRREL issued ESTCP reports on recommendations, demonstration, and cost & performance
- ERDC-CRREL working with USEPA to modify Method 3050B, new guidance, Method 3050C, 2015?

BUILDING STRONG

ERDC ISM Documentation

- Clausen et al. 2013. Cost and Performance of Incremental Sampling Methodology (ISM) for Metallic Residues, ESTCP Project ER200918. ERDC/CRREL TR-13-10. <u>http://acwc.sdp.sirsi.net/client/search/asset/1030100</u>
- Clausen et al. 2013. Demonstration of Incremental Sampling Methodology for Soil Containing Metallic Residues. ERDC/CRREL TR-13-9. http://acwc.sdp.sirsi.net/client/search/asset/1030080
- Clausen et al. 2013. Incremental Sampling Methodology (ISM) for Metallic Residues. ERDC/CRREL TR-13-5. <u>http://acwc.sdp.sirsi.net/client/search/asset/1029240</u>

BUILDING STRONG

ERDC ISM Documentation (Cont.)

- Clausen et al. 2012. Evaluation of Sampling and Sample Preparation Modifications for Soil Containing Metal Residues. ERDC TR-12-01. <u>http://acwc.sdp.sirsi.net/client/search/asset/1006020</u>
- Clausen et al. 2012. Metal Residue Deposition from Military Pyrotechnic Devices and Field Sampling Guidance. ADA562327. <u>http://handle.dtic.mil/100.2/ADA562327</u>
- Clausen *et al.* 2010. Sample preparation and digestion considerations for determining metal deposition at small arms ranges. *Int. J. Env. Anal. Chem.* **90**(12):903-921. <u>http://www.tandfonline.com/doi/abs/10.1080/03067310903353495</u>

BUILDING STRONG

DOD/USACE ISM Documentation

- DoD. 2014 (In Review). OACSIM Guidance on Implementation of Incremental Sampling (IS) of Soil for the Military Munitions Response Program.
- USACE. 2014 (In Press). Technical Guidance for Military Munitions Response Actions. IGD 14-01. Dec 2013. (to be published as EM 200-1-15)
- DoD. 2013. Environmental Field Sampling Handbook. April 2013.

http://denix.osd.mil/edqw/upload/DoD-Environmental-Field-Sampling-Handbook.pdf

 USACE. 2009. - Implementation of Incremental Sampling of Soil for Military Munitions Response Program. IGD 09-02. July 2009.

Imptp://www.itrcweb.org/ism-1/references/IGD_9-02v2.pd ERDC

Innovative solutions for a safer, better world

BUILDING STRONG

Conclusions

- Conventional grab soil samples <u>do not</u> yield a representative result of the area of interest (DU) when metallic residues are present
- Small grab sample populations have high error for situations with heterogeneously distributed contaminants
- Grab sample error can be reduced by increasing population size, however question of affordability
- Incremental Sampling Methodology (ISM) yields results representative of the area of interest
- ISM yields lower total error, which is quantifiable
- ISM requires far fewer samples than conventional grab samples and results in lower total project cost

BUILDING STRONG

ERDC