TREECS™ Overview, Validation, Example Applications

M2S2 MC Seminar April 24, 2014

Billy Johnson, ERDC Mark Dortch, LATA subcontractor

US Army Corps of Engineers .

Problem and Need

- Military firing/training ranges contain munitions constituents (MC) residue, including metals and explosives, that could migrate to surface water and groundwater off-installation, potentially threatening range sustainability.
- An assessment tool was needed to forecast if, when, and at what level MC concentrations in off-range media (groundwater, surface water, and sediment) may exceed protective health benchmarks.

BUILDING STRONG

TREECS Solution / Approach

Training Range Environmental Evaluation and Characterization System (TREECS[™]) is a client-based system that provides forecasts of MC fate on and off range based on munitions use and local site conditions for Active Training Ranges and Other than Operational Ranges

<u>Development Approach</u>: Multimedia fate/transport models of limited form were integrated within a modeling framework with graphical user interface (GUI) to expedite assessments with minimal amount of input data.

<u>Status:</u> Release version 5.0, October 2013; obtained CON for Army computers; validated (ERDC/EL TR-12-3); free download from http://el.erdc.usace.army.mil/treecs/

BUILDING STRONG

TREECS Components

- Tier 1, Tier 2, and advanced Tier 2 assessments
- 3 Constituent databases
- Health Benchmark database
- Munitions database
- MC residual mass loading module based on munitions use
- GIS module
- Hydro-geo-characteristics toolkit (HGCT) for estimating input parameters
- Models for soil, surface water, vadose zone, and groundwater
- Simplified user input interfaces for models (GUIs)
- Viewers for results
- Sensitivity and uncertainty module for Tier 2 assessments
- BMP assessment modules

BUILDING STRONG

Can Obtain Uncertainty Confidence Bounds

BUILDING STRONG®

ERDC

Tiered Approach

- Tier 1 (screening)
 - ► Steady-state, no degradation, worst case, highly conservative
 - Requires little data
 - Can be applied very quickly
 - Indicates whether a problem could ever potentially exist; if so, proceed to Tier 2
- Tier 2 (more comprehensive)
 - ► Time-varying, much more realistic and accurate
 - Requires more data
 - Requires more time to set up and apply, but still can be done relatively quickly
 - Can be used to determine when benchmark exceedence may occur
 - Useful for evaluating range management strategies

BUILDING STRONG

Tier 2 Conceptual Model

Soil Model (Tier 2)

MEPAS Vadose & Aquifer Models (Tier 2)

Surface Water Models, RECOVERY and CMS

Advanced Tier 2

- Multiple AOIs
- Complex Pathways
- Multiple Receptor locations
- Green Range BMPs

Innovative solutions for a safer, better world

BUILDING STRONG®

BMP Assessment Capabilities

- Source loading management (types and numbers of munitions fired and when fired, e.g., range rotation)
- Source removal from AOI
 - Soil removal
 - Burning
 - Phytoextraction
 - Selective chunk removal
- Source treatment within AOI (soil amendments and phytotransformation)
- AOI export treatment via sedimentation basin and/or degradation reactor and filter socks
- Down-gradient receiving water treatment

BUILDING STRONG

Validation Applications

- MMR, MA Demo Area 2 for RDX in groundwater
- Fort AP Hill, VA Impact area and SAFRs for RDX, TNT, perchlorate, lead, and copper in surface water, sediment, and groundwater
- West Point, NY Medium and large caliber impact areas for RDX and SAFR for lead, all in surface water and sediment
- Fort Jackson, SC SAFRs for lead, copper, zinc, and antimony in surface water and sediment
- Fort Leonard Wood, MO SAFRs for lead in surface water and sediment

Validation Results

MC	Media	Computed, ppb	Observed, ppb	
Lead	Lake sediment	3,550	6,000	
copper	Lake sediment	1,900	2,900	Also, there
RDX	GW	1.35	0.75 – 1.8	were computed
Lead	Pond sediment	30,100	30,300	values that
RDX	Pond water	0.035	0.023	agreed with observed
RDX	Drainage ditch water	1.13	0.77	values being below
RDX	Creek water	2.2	1.9	detection
Lead	Pond sediment	1,214,000	257,000	
Antimony	Pond sediment	3,000	32,000	
Copper	Pond sediment	88,000	92,000	
Zinc	Pond sediment	105,000	95,000	
R			E	ERDC

Innovative solutions for a safer, better world

Ϋ́ Ψ Υ 1101

Validation Results

- All model results are within a factor of 4 or less of measured for all validations except antimony at Ft. Jackson which was off by a factor of 10
- Model results for HE and perchlorate were more accurate than for metals due to complexities associated with metal solubility and sorption

BUILDING STRONG

TREECS Input General Requirements

- MCs of interest and their properties
- Range munitions use and associated parameters
- Meteorology and hydrologic parameters
- Media properties/site-specific inputs (soil, vadose, groundwater, surface water, sediment)

Most applications require a few days to find information and assess for input, a few hours to set up the model, and a few days to make assorted runs and assess results. Models run within seconds, making Monte Carlo simulations practical.

Tier 2 Application to Borschi Watershed near Chernobyl for ⁹⁰Sr

This demonstrates the ability of the system to model legacy sites (Other than Operational Sites)

BUILDING STRONG®

Borschi Watershed

- 3 km south of CNNP
- 8.5 km²
- Sandy soil underlain by clay marl
- Primarily formerly cultivated land and planted forests with two seasonal wetlands
- Flows into a cooling pond drainage ditch and then into the Pripyat River

BUILDING STRONG

Strontium-90 at Study Site

- Half life = 29 years
- Specific radioactivity = 143 Ci/g
- Approximate Borschi watershed inventory for year 2000 = 1.0 E13 Bq
- Watershed stream exit activity conc. (Bq/L) was monitored to estimate watershed export of 1.27 E10 to 1.62 E10 Bq/yr for 1999 2001, with average = 1.43 E10 Bq/yr, or <u>annual export of 0.14% of 2000 inventory</u>

BUILDING STRONG

Conceptual Site Model

Modeling Approach

- Only the Tier 2 soil model was needed (includes interflow pathway), recharge assumed lost
- No surface water model was used since watershed outlet is part of AOI or location of soil model export flux
- No AOI loading, only initial Sr inventory in 2000
- Information from site studies was used to estimate interflow, mobile/exchangeable fraction of Sr, and Sr partitioning to soil K_d

BUILDING STRONG

Computed Baseline Results

Borschi Conclusions

- Export of ⁹⁰Sr from the Borschi watershed to surface water is predominantly a result of soil pore water containing dissolved Sr being diverted to surface waters that eventually flow out of the watershed
- The percentage of non-exchangeable adsorbed Sr and the soil-water K_d are the two most sensitive and uncertain factors affecting the amount of export
- This application demonstrated how TREECS[™] can be applied for a radionuclide

BUILDING STRONG

Application of TREECS to Ft. Leonard Wood, MO, for Lead Fate From SAFRs 20-22

Lead observation station at Falls Hallow bridge, 3.2 km from ranges

ERDC

Document by ERDC TN-EQT-13-2

This study demonstrates the ability of the system to model an Operational Training Range

Innovative solutions for a safer, better world

BUILDING STRONG®

Application Procedure

- Used TREECS GIS to aid setting inputs, e.g., soils and erosion
- Used Tier 2 with surface water component
- Used Contaminant Model for Streams for surface water driven with average annual flow
- Applied site-specific inputs for soils, hydrology, etc.

TREECS GIS showing AOI

Innovative solutions for a safer, better world

BUILDING STRONG_®

Key Input is Firing Records

ile Reference tallation/AOI Desc constituent Selection Type of loading t @ Impact Zone @ Firing Point @ General Soil Select the muniti @ Default munit @ User defined	es Reports Tools We cription Tier Analysis Selectio on Operational Inputs to be estimated: co Source Zone Co ions database to use: tions database	bsites Options H Site Conditions Do Munitions CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5	Help) Target Health Benchm) master list: 5MM BALL M855 (NSN: 5MM BALL M855 (NSN: 5MM TR M856 (NSN: 5MM RALL M193 (NSN:	arks Inputs Execut : 1305011555459) (DC : 1305011555462) (DC 30501155547) (DOD	te Uncertainty View DDIC: A059) DDIC: A059)	w Results	Query by loading type 🗿	Used record
tallation/AOI Desc onstituent Selection Type of loading t Impact Zone Firing Point General Soil Select the muniti Default munit User defined	cription Tier Analysis Selectio on Operational Inputs to be estimated: Source Zone ions database to use: tions database	Site Conditions Do Munitions CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5) Target Health Benchm master list: SMM BALL M855 (NSN: SMM BALL M855 (NSN: SMM TR M856 (NSN: 1) SMM BALL M193 (NSN:	arks Inputs Execut : 1305011555459) (DC : 1305011555462) (DC 305011555457) (DCD	te Uncertainty View DDIC: A059) DDIC: A059)	w Results	Query by loading type	Used record
Type of loading t Impact Zone Firing Point General Soil Select the muniti Default munit User defined	ion Operational Inputs to be estimated: Source Zone ions database to use: tions database	Munition: CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5	s master list: 6MM BALL M855 (NSN: 5MM BALL M855 (NSN: 5MM TR M856 (NSN: 1) 5MM BALL M193 (NSN-	: 1305011555459) (DC : 1305011555462) (DC 305011555457) (DOD	DIC: A059) DIC: A059)		Query by loading type	Used record
Type of loading t Impact Zone Fining Point General Soil Select the muniti Default munit User defined	to be estimated:	Munition: CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5	s master list: GMM BALL M855 (NSN: GMM BALL M855 (NSN: 3MM BALL M193 (NSN: 13 3MM BALL M193 (NSN:	: 1305011555459) (DC : 1305011555462) (DC 305011555457) (DOD	DIC: A059) DIC: A059)	_ [Query by loading type	Used record
 Impact Zone Firing Point General Soil Select the muniti Default muniti User defined 	O Source Zone O source zone O tions database to use:	CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5	6MM BALL M855 (NSN 6MM BALL M855 (NSN: 6MM TR M856 (NSN: 1, 6MM BALL M193 (NSN:	: 1305011555459) (DC : 1305011555462) (DC 305011555457) (DOD	DIC: A059) DIC: A059)	<u> </u>	Query by loading type 🥥	Used record
 Firing Point General Soil Select the muniti Default muniti User defined 	Source Zone @ ions database to use:	CTG 5.5 CTG 5.5 CTG 5.5 CTG 5.5	6MM TR M856 (NSN: 1 5MM BALL M193 (NSN:	305011555457) (DOD	IC: 40C2)			
 General Soil Select the muniti Default munit User defined 	Source Zone 🥑 ions database to use: tions database	CTG 5.5	SIVIN BALL IN 193 IN SIV	120500020201/0/			Select	for 1000 201
 Default munit User defined 	tions database		6MM TR M196 (NSN: 1	305009144719) (DOD	IC: A068)	-		101 1999-201
User defined		Search:			Find.	/Find Next	RFMSS Filter	to obtain
	munitions database	Munition	used at this site/range:	:				to obtain
		CTG 5.5 CTG 5.5	5MM BALL M855 (NSN: 6MM BALL M193 (NSN:	: 1305011555456) (DC : 1305009263970) (DC	DIC: A059) DIC: A066)		Remove	average
		CTG 9M	M BALL M882 (NSN: 13	305011729558) (DODI	C: A363)			
		010 0.0	3MM TR M856 (NSN: 1.	305012932132) (DOD	IC: AU63)			numbers fire
- Munitions us	sage information:							
Munition:	CTG 5.56MM BALL M855 (NS	N: 1305011555456) (DO	DIC: A059) -					year
Starting yea	ar of simulation: 1941				View	MC Loading Rate		
					0 D			Assumed
Т	Time (yr) Rounds Fi	ed/yr Dud (%)	Low Order (%)	(%)	(%) Sympathetic Duds	Yield (%)		oomo firing
▶ 19	941 1663482	0	0	0	0	0	Help	same inng
* 20	012 1663482	0	0	0	0	0		rates for
4						F.		
							TREECS	1941-2012

BUILDING STRONG®

Computed Total Lead Concentration at Falls Hallow Observation Station

Innovative solutions for a safer, better world

BUILDING STRONG®

Leonard Wood Conclusions

- Computed lead concentration about 5 times observed, but represents an average annual value based on uniform firing rates over 70 years
- Solid lead mean particle size affects dissolution rate and is a highly uncertain input; value of 1 mm assumed; value of 5 mm dropped stream lead concentration five-fold
- Application demonstrated how available site information and other techniques can be used to readily assess MC fate for ranges

BUILDING STRONG

Benefits of using TREECS

- Allows the user to project future conditions
 - Answers the question of whether there will be a problem in the future, and if so, when, how much
- Can be used to develop and assess BMPs
- Can be used to help optimize and prioritize data collection sites for future assessment activities
- Can be used in designing new training ranges to help minimize migration of MC
- Is relatively easy to use with easily manageable and mostly available data requirements

