MILITARY MUNITIONS SUPPORT SERVICES

WEBINAR – MAKING DECISIONS INCORPORATING GEOPHYSICS IN THE FS

Andrew Schwartz 10 July 2017

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

TOPICS

- FS nuts & bolts
- Building Alternatives
- Summary

FS NUTS & BOLTS

Some Assembly Required

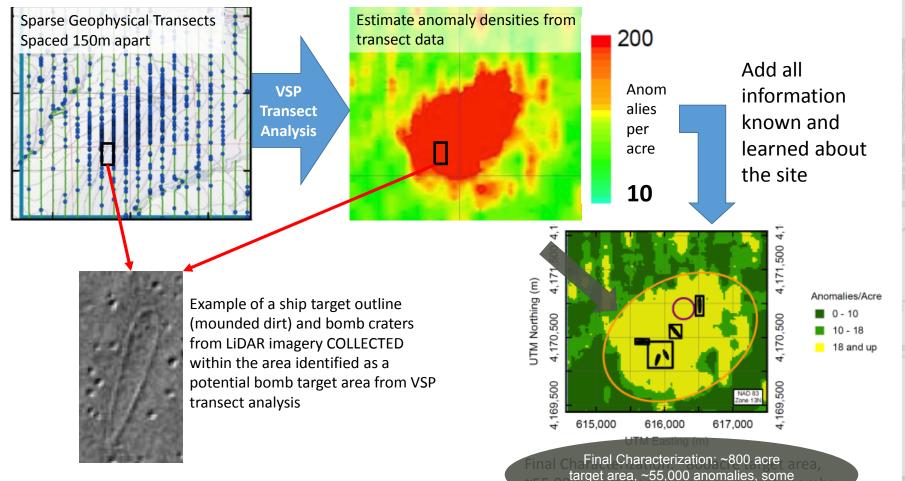
CSM: There's a risk

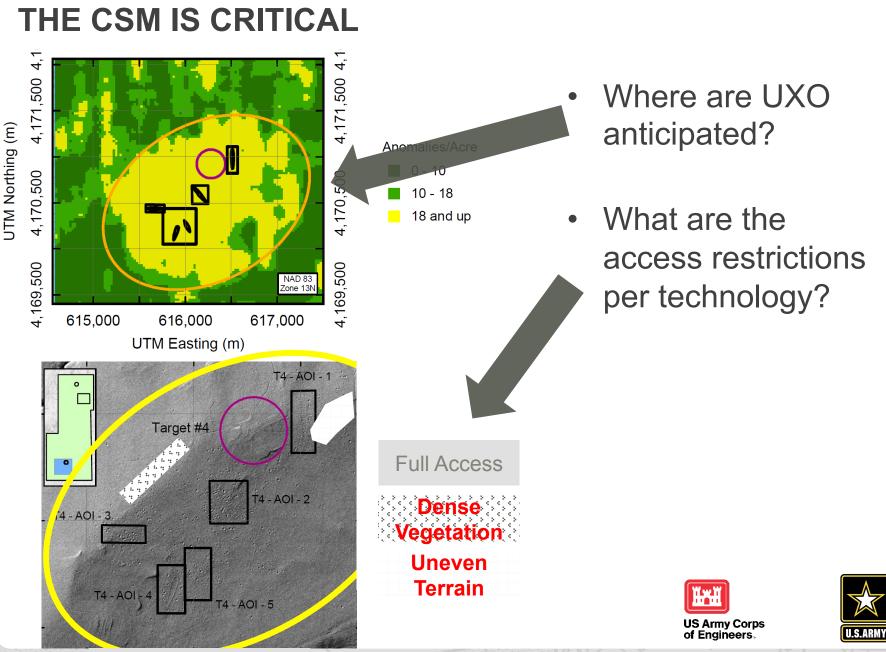
- UXO or DMM suspected
- People use the area
- People might impart energy to an item
- The item might function
- In doing so, harm may come to the user

FS NUTS & BOLT THIS TALK: USING GEOPHYSICS TO ADDRESS THE SOURCE TERM

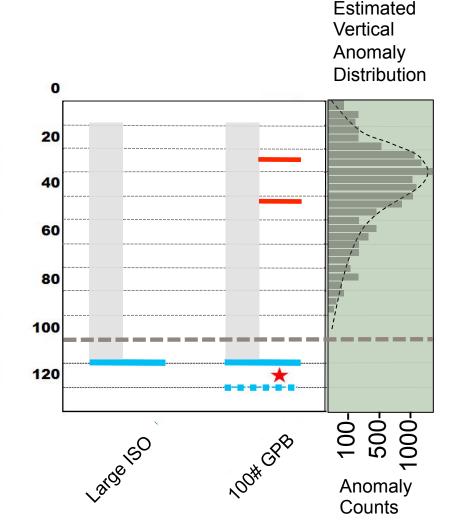
Likely Presence of UXO

Likelihood of Human Interaction

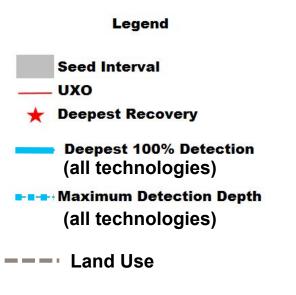

Likelihood of Causing Item Injury Lot Of Overlap ≈ Multiplying Large Probabilities =Unacceptable Risk



GENERAL RESPONSE ACTION: REDUCE (OR ELIMINATE) THE SOURCE TERM


Example for "The Source Term":

are probably bombs



CAD-

THE CSM IS CRITICAL

- How deep are UXO anticipated?
- What are the Pd performance capabilities per technology?

Depth Below Ground Surface (cm)

DETECTION METHODOLOGY PRE-SCREENING PART 1: SITE ACCESS

Detection Methodology	Full Access	Dense Vegetation	Uneven Terrain
Analog	Yes	Yes	Yes
Handheld DGM	Yes	Yes	Yes
Portable DGM	Yes	Yes	Yes
DGM Array	Yes	No	No
Handheld AGC	Yes	Yes	Yes
Portable AGC	Yes	Yes	Yes
Towed AGC	Yes	No	No

DETECTION METHODOLOGY PRE-SCREENING PART 2: PERFORMANCE

Detection Methodology	Pd (Anticipated*)	Meets 2000 DOD & EPA MGMT Principles
Analog	90%	No
Handheld DGM	100%	Yes
Portable DGM	100%	Yes
DGM Array	100%	Yes
Handheld AGC	100%	Yes
Portable AGC	100%	Yes
Towed AGC	100%	Yes

*Sources: ESTCP Demonstration Reports, 1998 to present

SOME ASSEMBLY REQUIRED

To build Alternatives we have:

- Process options (i.e. methods)
- Expected Pd for each
- Where they can be used

Also Need:

- Baseline Risk
- Path to show alternative gets to an acceptable end-state
 - Quick revisit of the four Matrices...

MATRICES 1 & 2

Accessibility Matrix: Likelihood of Encounter			MRS Access Conditions					
			Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)		
	•	MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional		
Amount of MEC ¹ Evidence	•	The area is identified as a Concentrated munitions Use Area (CMUA) where MEC is known or suspected to be present in surface and subsurface.	Bas Frequent eline	Likely	Occasional	Seldom		
	•	A DERP response action has been conducted to clear surface MEC, AND a subsurface response action was performed with a technology capable of achieving up to 90% Pd*	Occasional	Seldom	Unlikely	Unlikely		
Amo	•	A DERP response action has been conducted to clear surface and subsurface MEC (UU/UE not achieved	Seldom	Seldom	Unlikely	Unlikely		
	•	A DERP response action has been conducted to achieve UU/UE.	Unlikely	Unlikely	Unlikely	Unlikely		

800 Acre Bomb Target Example

*Independent DOD performance evaluation of analog mag&flag has shown a 90%Pd can be achieved for 100# bombs (practice and live).

Matrix 2. Severity of Incident

Severity of Explosive Incident, Matrix 2: Severity vs. Likelihood of Encounter		Likelihood of Encounter ¹¹						
		Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable		
items ¹²	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	Base line	A	В	В	D		
Munitions it	Modest: May result in 1 (or more) injury resulting in emergency medical	В	В	В	с	D		

MATRICES 3 & 4

		Likeliho	od to Impart Energy on a	n Item ¹⁴
Muniti	ood of Detonation, Matrix 3: ons Sensitivity vs. Likelihood gy to be Imparted	<i>High</i> e.g., areas planned for development, or seasonally tilled	<i>Modest</i> e.g., undeveloped, wildlife refuge, parks	<i>Inconsequential</i> e.g., not anticipated, prevented, mitigated
ibility	High (e.g., classified as sensitive)	1	1	3
y: ¹³ Susceptibility Detonation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	Baseline	2	3
Sensitivity: ¹³ (to Deto	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3
	Not Sensitive	2	3	3

Matrix 3. Likelihood of Detonation

800 Acre Bomb Target Example

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2							
		AB		С	D				
Ē	1	Baseline	Unacceptable	Unacceptable	Acceptable				
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable				
Re	3	Unacceptable	Acceptable	Acceptable	Acceptable				

Note: Multiple conditions may exist within an MRS, such that unique baselines risks can be established for the multiple explosive hazards that are present within the same property. Acceptable conditions indicate input factors are collectively determined to support a negligible risk. Project teams shall consider the nature of the specific item within the MRS and the probability to encounter in order to support the selection on the scale.

MATRICES 3 & 4 – QUICK LOOK AT METHODS

Matrix 3. Likelihood of Detonation

		Likelihood to Impart Energy on an Item ¹⁴					
Likelihood of Detonation, Matrix 3: Munitions Sensitivity vs. Likelihood of Energy to be Imparted		<i>High</i> e.g., areas planned for development, or seasonally tilled	<i>Modest</i> e.g., undeveloped, wildlife refuge, parks	<i>Inconsequential</i> e.g., not anticipated, prevented, mitigated			
ibility	High (e.g., classified as sensitive)	1	1	3			
y: ¹³ Susceptibility Detonation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	Pd<1	2	Pd ~¹, =1			
Sensitivity: ¹³ to Detc	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3			
Sensit	Not Sensitive	2	3	3			

800 Acre Bomb Target Example

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2							
		А	В	С					
Ēm	1	Unacceptable	Una Co pstable	Unacceptable	Pd<1 & Acceptable				
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable				
Re	3	Unacceptable	A Po table	Acceptable	⊳G ab∓ap l e				

Note: Multiple conditions may exist within an MRS, such that unique baselines risks can be established for the multiple explosive hazards that are present within the same property. Acceptable conditions indicate input factors are collectively determined to support a negligible risk. Project teams shall consider the nature of the specific item within the MRS and the probability to encounter in order to support the selection on the scale.

ASSEMBLING ALTERNATIVES 800 ACRE BOMB TARGET EXAMPLE

Alternative		Proc	esses	Anticipated Risk Outcome (Matrix 4)	
#1	No Action	none			Unacceptable (A1)
#2	ICs	Pamph	llets, Mailings, Zoning		Unacceptable (A1)
#3	100% AGC	Open		Towed Single	Acceptable (D3)
		Rough	Terrain	Portable	_
		Wooded		Handheld	
#4	DGM	DGM p	Open	Towed Array	Acceptable (B3)
	Mapping & AGC Cueing	Mapping	Woods & Rough Terrain	Portable DGM	
#5	DGM Only	Open		Towed Array DGM	Acceptable (B3)
		Woods & Rough Terrain Portable DGM			
#6	Analog	Handh	eld magnetometer	Unacceptable (B1)	
#7	Analog & ICs				Acceptable (B3)
					JS Army Corps of Engineers.

COSTING ALTERNATIVES

EACH SYSTEM requires between one and three QC and one and three Validation seeds per day.

DGM Sensor Productivity in Acres/Hour (ac/hr)* Includes AGC Single Sensor Productivity								
Productivity Rate		Flat	Gently Rolling	Heavy Rolling	Flat w/ Gorges	Rolling w/ Gorges	Mountainous	
Vegetation ≢ HEAVY	Person Portable	0.29	0.29	0.26	0.26	0.23	0.15	
	Array	0.87	0.87	0.78	0.78	0.69	0.45	
Vegetation 📕 HEAVY	Person Portable	0.29	0.29	0.26	0.26	0.23	0.15	

Analog Sensor Systems (M&F) in Acres/Hour (ac/hr)*									
Productivity Rate	Flat	Gently Rolling	Heavy Rolling	Flat w/ Gorges	Rolling w/ Gorges	Mountainous			
ALL SITE CONDITIONS (after site preparation)	0.36	0.36	0.32	0.32	0.29	0.18			

*Values used in RACER MEC Remedial Action Models (FY18 version)

COSTING ALTERNATIVES

Key Points To Getting It Right

- Anomaly Densities play huge role \rightarrow VSP
- Mapping Rates are mostly terrain dependent
- Huge trade-offs often between mapping rates and cueing/ digging rates
- Vegetation removal: if needed for one method, probably needed for all (some may be less than others)
 →Geographic Information System
- Terrain conditions rarely homogeneous throughout →GIS and Digital Elevation Models
- Seeding Rates are per system, per day
- "One size" rarely fits the whole MRS

EXAMPLE COST MODEL FOR 800 ACRE BOMB TARGET

	HYBRID MODEL Proportion Of Site AGC Detection nalies in AGC detection area Dynamic DGM related costs	25%	Dynamic + Cued w/ AGC	Cued Only, regular DGM for detection	DGM Only	Mag&Flag Only
Mob/Demob	\$25,000		\$25,000	\$25,000	\$25,000	\$25,000
Surface Sweep	\$800,000		\$800,000	\$800,000	\$800,000	\$0
Seed Emplacement	\$80,640		\$80,640	\$80,640	\$20,690	\$281,250
Mapping costs	\$1,710,000	n/a	n/a	\$2,280,000	\$2,280,000	\$802,187
Dynamic MetalMapper Survey and Analysis		\$840,000	\$3,360,000	n/a	n/a	n/a
Cued MetalMapper Collection and Analysis	\$980,000	\$505,680	\$995,680	\$1,975,680	n/a	n/a
Seeds Dug	\$53,760		\$53,760	\$53,760	\$53,760	\$75,000
Native UXO Dug	\$30,000		\$30,000	\$30,000	\$30,000	\$30,000
Clutter Dug**	\$1,680,000		\$1,680,000	\$1 ,680,000	\$6,720,000	\$8,400,000
Fixed Costs			\$250,000	\$250,000	\$250,000	\$250,000
Additional mark-up for AGC QC & accreditation	25%	\$1,738,770	\$1,550,020	\$1,525,020	\$0	\$0
TOTAL		\$8,693,850	\$8,825,100	\$8,700,100	\$10,179,450	\$9,863,437

Key Elements: • RACER for productivity • M&F Digging efficiency

- 5X anomalies for M&F mapping Seeding is per system
- Premium for DAGCAP

FS PITFALLS & FAUX PAS

- Pre-screening all digital solutions just because you have a large area MRS
 - ► Follow the process
 - Decisions require realistic Pd estimates
 - ► Run the cost models
- Analog methods will require site-specific Treatability Studies for meaningful Pd Estimates
 - ► Inherently cannot claim 100% because there is **No Traceability**
 - DGM Treatability Studies largely no longer needed
- Get the anomaly counts correct for each technology
 - ► Analog operators detect and flag up to 10x more than DGM or AGC
- Don't assume Dig and Sift is the only path to UU/UE.
 - ► Use the vertical CSM
- Estimate seeding costs based on realistic production rates

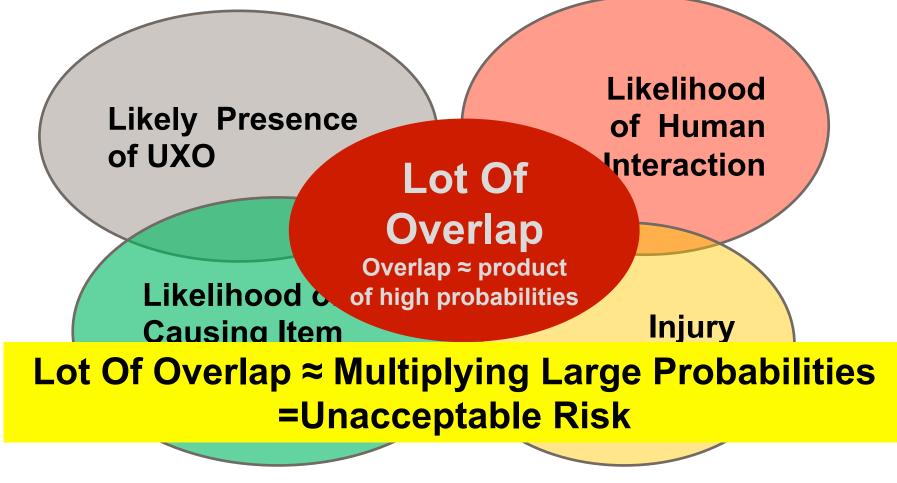
SUMMARY

FS Informs the Proposed Plan PP must be informed by:

- Performance (Pd) \rightarrow what might be missed
- Cost \rightarrow What is the real cost for better Pd
- Benefit →What is the benefit in using more expensive systems

Andy's philosophy: "The more people understand what to expect from the remedy we recommended in the Proposed Plan, the more likely FUDS will achieve *Response Complete In Our Lifetime*"

DETECTION TECHNOLOGY SCREENING PART 3: COST


Detection	Mapping & Digging				QC	Validation
Technology	Open		Wooded		Seeds*	Seeds*
Analog	\$	\$\$\$\$ \$\$\$\$	\$	\$\$\$	\$\$\$\$\$	\$\$\$\$\$
Handheld DGM	\$\$	\$\$\$\$ \$\$	\$\$	\$\$\$	\$\$	\$\$
Portable DGM	\$	\$\$\$\$	\$\$\$	\$\$?	\$\$	\$\$
DGM Array	\$	\$\$\$\$	n/a	n/a	\$\$	\$\$
Handheld AGC	\$\$\$\$	\$	\$\$\$\$	\$	\$\$\$	\$\$\$
Portable AGC	\$\$	\$	\$\$\$\$	\$	\$\$\$	\$\$\$
Towed AGC	\$\$	\$	n/a	n/a	\$\$\$	\$\$\$

*Basis: EM 200-1-15 QC Seeding Requirements & AGC QAPP Template, Ver. 1

FS NUTS & BOLT RI RISK SUMMARY

FS NUTS & BOLTS REMEDIAL ACTION OBJECTIVE - REVIEW

RI→Baseline Risk→Unacceptable Risk Scenario This means, Per 40 CFR Part 300.430(e)(i), the Lead Agency established remedial action objectives (RAOs) that *specify:*

- contaminants and media of concern
- potential exposure pathways, and
- remediation goals"

AFTER ACTION ASSESSMENT

If Detail Site Model = Conceptual Site Model, Then \rightarrow Project Complete

If Detail Site Model shallower than Conceptual Site Model, Then \rightarrow Project Complete, potential candidate for UU/UE

If Detail Site Model exceeds detection capability, Then →Explanation Of Significant Difference, may need additional response via LUCs or removals in lifts.

FS NUTS AND BOLTS THE REMEDIAL ACTION OBJECTIVE

RAO achieved through one or more General Response Actions to address unacceptable risk:

- Modify Behavior
- Restrict Access
- Perform a Physical Removal

Different processes available for each GRA. Examples:

- Signage as an Institutional Control
- Fencing as an Engineering Control
- Geophysical detection and UXO recovery as a physical removal

Individually or grouped together, GRA processes form the alternatives.

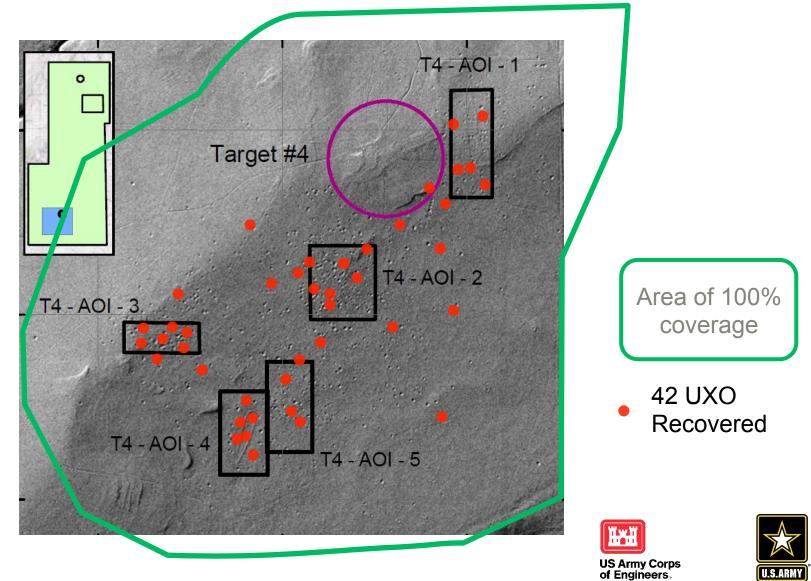
The nine criteria screen alternatives in the FS

Engineers

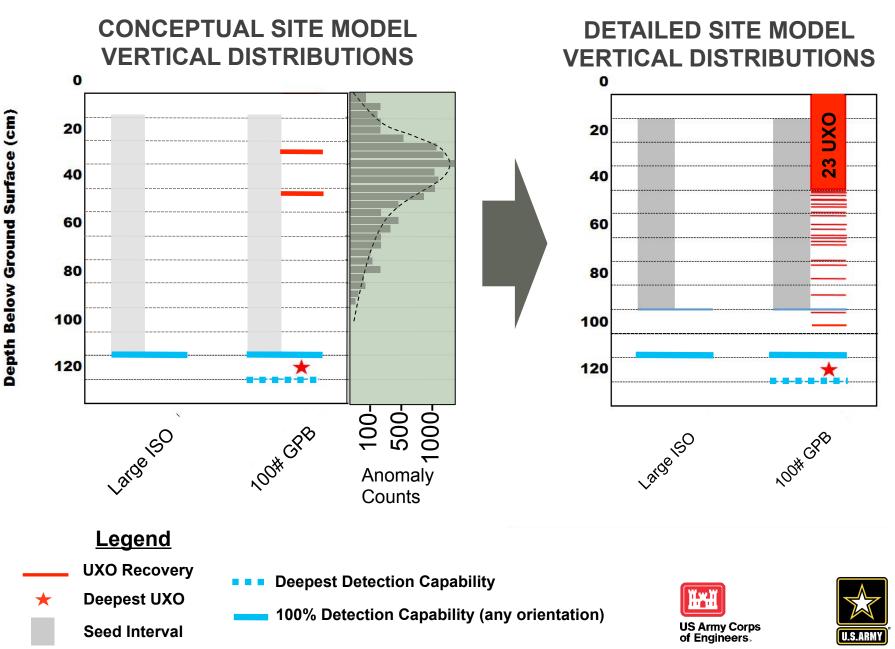
ASSEMBLING ALTERNATIVES 800 ACRE BOMB TARGET EXAMPLE

Alter	native	Processes			Anticipated Risk Outcome (Matrix 4)	
#1	No Action	none		Unacceptable (A1)		
#2	ICs	Pamph	llets, Mailings, Zoning	Unacceptable (A1)		
#3 100% AGC		Open		Towed Single	Acceptable (D3)	
		Rough	Terrain	Portable		
		Woode	d	Handheld		
#4 DGM Mapping & AGC Cueing	Mapping	Open	Towed Array	Acceptable (B3)		
		Woods & Rough Terrain	Portable DGM			
#5	DGM Only	Open		Towed Array DGM	Acceptable (B3)	
		Woods	& Rough Terrain			
#4b #5b	Adding ICs to #4 or #5	Pamph	llets, Mailings, Zoning	(Still) Acceptable (B3)		
#5	Analog	Handh	eld magnetometer	Unacceptable (B1)		
#6	Analog & ICs			Acceptable (B3)		

A QUICK LOOK AT AFTER-ACTION ASSESSMENT 800 ACRE BOMB TARGET EXAMPLE


The current and future land use at this MRS is residential farming with plans to build new houses

DD selects an alternative based on AGC methods



DETAILED SITE MODEL HORIZONTAL DISTRIBUTIONS

U.S.ARMY

