

Trial Use of the USACE Risk Management Method

Case Studies, Initial Findings and Panel Discussion

Case Study 1

Fort Hancock FUDS

Thomas Bachovchin, P.G. <u>Thomas.Bachovchin@ertcorp.com</u> 703-389-3938

James Stuby, P.G. James.Stuby@ertcorp.com

Fort Hancock Case Study #1

Project Overview

- Project Name: Fort Hancock
- Location: Monmouth County, NJ
- **Project No.** C02NJ000403
- ΔCost to Use: Minimal Impact
- State Concurrence: Yes
- Key Interest in this Project:
 - Nation's First Proving Ground. Heavily used public beach approximately 5-10 miles from New York City. Sensitive species (globally rare maritime holly forest) that cannot be disturbed.
 - Site has been in the RI Stage for a long period (due to staggered ROEs from National Park Service for individual MRSs, processed as Addenda): RI Work Plan finalized 2011--RI Addendum #3 Report finalized 2018.

Beach Environment

- Open pubic access
- Dunal topography
- Sensitive species
 - Cannot be cut
 - Prevents some access

Results of the RI

- Multiple MRSs derived from range firing points and impact/target areas
- Multiple munition types recovered from various MRSs, including 75 mm projectiles, 3-in Stokes mortars, 5-in and 8-in projectiles (5-in and 8-in shown below)
- Presentation focuses on MRS-4 (shown in red)

Fort Hancock Case Study #1

MRS-4 DGM Investigation

- 16,700 LF of transect data
- VSP analysis of anomaly clusters
- 14 100ft x 100ft grids with 100% excavation
- 474 anomalies investigated
- CMUA delineated in center of target area

Fort Hancock Case Study #1

Focus on MRS-4

- CMUA
- 3,000 yd target area
- MEC: 3-in Stokes mortar, 75mm projectile (shown below), plus misc MD
- MRS footprint was ultimately reduced to CMUA based on MEC and MD finds

Summary of Risk Management Matrices (RMM) – Matrix 1

Likelihood of Encounter (Amount of MEC versus Access Conditions)		Access Conditions (frequency of use)				
		Regular	Often	Intermittent	Rare	
Amount of MEC	Category I (Most)	Frequent	Frequent	Likely	Occasional	
	Category II	Frequent	Likely	Occasional	Seldom	
	Category III	Likely	Occasional	Seldom	Unlikely	
	Category IV	Occasional	Seldom	Unlikely	Unlikely	
	Category V	Seldom	Seldom	Unlikely	Unlikely	
	Category VI (Least)	Unlikely	Unlikely	Unlikely	Unlikely	

- Likelihood of Encounter
 - Amount of MEC based on CMUA, with confirmed MEC (75mm projectile and 3-in Stokes) in subsurface
 - Access Conditions based on Intermittent access (inland from shore, low pedestrian traffic, semi-dense natural vegetation barriers)
 - Matrix 1 is OCCASIONAL

Summary of RMM - Matrix 2

Severity of Explosive Incident (Severity vs. Likelihood of Encounter)		Likelihood of Encounter (from Matrix 1)					
		Frequent	Likely	Occasional	Seldom	Unlikely	
Severity	Catastrophic/Critical	А	А	В	В	D	
	Modest	В	В	В	С	D	
	Minor	В	С	С	С	D	
	Improbable	D	D	D	D	D	

- Severity of Incident
 - Severity is Catastrophic/Critical based on explosion of either MEC item
 - Likelihood of Encounter is Occasional based on Matrix 1
 - Matrix 2 score is 'B'

Fort Hancock Case Study #1

Summary of RMM – Matrix 3

Likelihood of Detonation		Likelihood to Impart Energy on an Item			
(Sensitivity vs. Likelihood to Impart Energy)		High	Modest	Inconsequential	
>	High	1	1	3	
Sensitivity	Moderate	1	2	3	
ensi	Low	1	3	3	
S	Not Sensitive	2	3	3	

- Likelihood of Detonation
 - Sensitivity is Moderate based on HE associated with the MEC items
 - Likelihood to Impart Energy is Modest based on this being an undeveloped inland area with low pedestrian traffic
 - Matrix 3 score is '2'

Summary of RMM – Matrix 4

Acceptable and Unacceptable Site Conditions		Result from Matrix 2				
		А	В	С	D	
3 m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable	
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable	
R Z	3	Unacceptable	Acceptable	Acceptable	Acceptable	

- Site Conditions
 - A Matrix 2 score of B and a Matrix 3 score of 2 results in Unacceptable Site Conditions
 - Analysis indicates that moving down or to the right of the table, Acceptable conditions could be achieved if:
 - $\,\circ\,$ the likelihood of encountering the MEC item was lesser, or
 - o the likelihood of imparting energy was lesser

Fort Hancock Case Study #1

The Positive

- Allows for bright line of acceptable vs unacceptable—easy for lay person to understand.
- Standardization of process across a variety of situations (e.g., addresses 'MD only' sites, as well as MEC sites).
- Helps focus/guide the remedy selection process and how to achieve "acceptable" site conditions.

Fort Hancock Case Study #1

The Challenge

- Regulator approved individual matrices...
 - But provided comment suggesting that the RMM requires a higher standard of field investigation in order to properly apply it, i.e., questioned the ability to retrofit the RMM to older data/investigation design.
 - Requested verification that a properly designed investigation, with reviewed/approved DQOs, had been conducted such that the RMM selections could be supported, <u>or</u>
 - Indicated that more data that aligns with tool requirements may need to be collected.

The Response

- While the initial RI investigation design was developed/approved in 2011, USACE was able to justify that the RMM could be reasonably applied, noting that:
 - The Work Plan-approved investigation design, based on UXO Estimator and VSP, included sufficient transects, cluster analysis, and intrusive grid investigations, to meet the project-specific MEC concentration threshold DQOs.
 - The RMM was able to be retrofit to the older data because the site-specific investigation design was appropriately rigorous and DQOs were met. But also, in this specific case, the MRS was obviously contaminated making the application of the RMM relatively straightforward.
 - The matrices only provide examples of MEC concentration thresholds, and for situations where
 contamination is not obvious, making a distinction between "MEC presence based on historical discoveries"
 and "MEC presence suspected based on historical evidence of munitions use", for example, may require
 constructing and achieving a more rigorous MEC concentration DQO in order to support the selection.
- This response has been accepted by the regulator, and the RI was finalized.