Formosa Mine, Riddle, Oregon

Spoil soil issues at the Formosa Mine

- Extremely low spoil soil pH (~2.6)
- Abundant phytotoxic metals present
- Abundance of coarse fragments
- High bulk density
- Low organic matter
- Low nutrient status
- High elevation
- Weather extremes
- Exposed ridgetop position

Current plan for Formosa Mine spoil soils

- Lime is needed to raise spoil pH
- 2.5% (w/w) conifer wood biochar
- 0.25% Class A biosolids for active carbon and nutrients
- Inoculation with LEM or native soil to restore favorable microbial community
- Some form of tillage needed to loosen spoils
- Organic mulch
- Conifer trees from local seed sources to be planted in amended spoils
- Mixed herbaceous species to be planted between rows of trees
- Initiate sampling and monitoring program
- Make adjustments as needed

Preparing the Formosa Site for Planting Trees

Panorama of Formosa Mine Field Site

- 119 locations (0.4 meter diameter x 0.6 meters deep) amended with biochar (2.5%), lime (1%) & biosolids (0.25%)
- Locations have 3 meter x 3 meter spacing
- Trees from local seed sources will be planted in November
- Rhizosphere soil to be inoculated with native soil or LEM
- In early spring area between rows will be prepped and planted with native herbaceous plants

Past Reclamation Activities in Jasper, County, Missouri

Mine spoil was removed from soil surface.

Currently, B/C horizon soil is at the surface.

Poor vegetation re-growth in areas

Soil property	Range in values
CEC (meq/100 g)	6.6 - 53.6
рН	4.5 – 5.70
P (ppm)	1 18
K (ppm)	60 168
Cu (ppm)	0.8 – 27.3
Zn	12.9 <mark>2688</mark>

Metal toxicity

Jasper County Target Soil

<u>A horizon</u>

- 8.4 % OM
- 16.1 CEC
- pH = 6.3
- Ext. P (Bray 1) = 9
- K = 112 pm
- Zn = 48 ppm
- No coarse frags
- Sandy loam

Bt (?) horizon

- 4.6 % OM
- 16.1 CEC
- pH = 5.7
- Ext. P (Bray 1) = 7
- K = 63 pm
- Zn = 28 ppm
- No coarse frags
- Loam

Jasper County, MO Project Biochar Feedstocks

78

Tri-State Mining District site near Webb City, MO

Oronogo-Duenweg Mining Belt Jasper County, Missouri

Soil issues in Jasper County

- Pb contaminated chat and top soil removed from thousands of acres, but removals continue
- Thousands of acres of soils to be revegetated
- Sub-soil now at surface
- High levels of Zn and Cd present
- Abundance of coarse fragments
- High bulk density
- Low water infiltration rates
- Low organic matter
- Low nutrient status

Status of Jasper County soil project

- We have identified a biochar that is appropriate for complexing soil Zn
 - 700°C beef cattle manure biochar
- Lime and nutrients will be needed
- Germination tests completed on native grasses and other species
- Considering non-mechanical means to loosen soil for subsequent amendment and revegetating
- Greenhouse studies underway to refine amendment cocktail and strategy
- Field trials to begin in 2018

Lead Contamination in the Upper Columbia River Tribal Allotments

 The Colville Nation wants potential exposure to Lead reduced in these areas without using dig and haul

- Forested, coarse-textured soils
- Relatively low levels of total Lead, but sufficient to cause concern

Lead Contamination in the Lower Basin of the Coeur d'Alene River: Lane Marsh

- Lane Marsh is somewhat protected, but is a contaminated, wetland area that hosts Tundra Swans on their annual migration
- Hydrology limits the addition of contaminated sediments during flood events
- Lead exposure to Swans and other waterfowl is significant
- Documented Swan mortality due to Lead

UCR and CdA Projects: Applications for *In Situ* Remediation Using Biochar and other Soil Amendments

- These new projects provide a testbed for evaluating biochar and other soil amendments for use in contrasting upland forest and wetland environments
- The underlying goal is to minimize site disturbance
 - Protect sensitive habitats
 - Less destructive and more cost effective than excavation
- Opportunity/need to evaluate the effects of various amendments on bioavailability of Lead
 - Upland soil setting
 - Wetland setting
- Results applicable for large remote sites impacted by mining or for urban Brownfield sites
- Opportunity to test alternative amendments with lower impacts to water quality
- Opportunity to build community and collaborate with Tribes and State partners to remediate and restore contaminated sites more quickly.

Biochar and Metal Contaminated Soils: Summary

- Identify site soil limitations via site characterization
- Prioritize Limitations
 - Greatest limiting factor to least limiting
- Can biochar alone eliminate or reduce limitation(s)?
 - If yes, is a "designed or engineered" needed?
 - If no, are other soil amendments also needed?
- Test the efficacy of biochar to reduce or eliminate limitations
 - Use site soil extracts to challenge library of biochars
 - Identify the best biochar for reducing soil limitations
- Test the effects of biochar on plant material
 - Germination tests
 - Greenhouse pot studies
- Demonstrate in situ amendment efficacy with field plot-scale studies
- Proceed to full site remediation with biochar and other soil amendments
- Monitor site conditions
 - Make adjustments if necessary
 - Declare success when a sustainable cover of native plant material is established

Outlook for the Future

- The use of Biochar in remediation has a bright future
- Biochar can be effective at reducing exposure to inorganic and organic contaminants
- Designer Biochar provides a set of new, tunable materials that can be utilized in a variety of remedial situations
- Many opportunities for "Designer Biochars" that are specifically engineered to address degraded soil limitations
 - Research is needed to "scale-up" Designer Biochar production
 - Need precisely manufactured Biochars that can be reproducibly manufactured in large volumes

 Continuing research on metal and contaminant sorption on Biochar is needed

• We need to more fully understand the strength and permanence of contaminant sorption

Biochar in remediation is meeting real environmental needs!

Contact Information

Mark G. Johnson, Ph.D. U.S. EPA, ORD, NHEERL, WED 200 S.W. 35th Street Corvallis, OR 97333 Phone: (541) 754-4696 Email: johnson.markg@epa.gov

MGJ with Coconut Biochar Ice-cream