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Functions of Covers

• Physical containment of waste

• Control percolation into waste

• Control gas movement 
Ingress (O2)
Egress (Rn, CH4, CO2)

C t l t i t i• Control vector intrusion

• Persist for design life of containment facility• Persist for design life of containment facility
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Categories of Engineered Covers
Conventional covers – cover designs where a barrier layer 
(clay, geomembrane, etc.) having low saturated hydraulic 
conductivity is the primary impediment to leakage and gasconductivity is the primary impediment to leakage and gas 
flow.

clay covers composite covers GCL coversclay covers, composite covers, GCL covers 

Water balance covers – cover designs where leakage is 
controlled by balancing the water storage capacity of 
unsaturated finer-textured soils and the ability of plants and 
the atmosphere to extract water stored in the soil. Alsothe atmosphere to extract water stored in the soil. Also 
known as water balance covers, evapotranspiration (ET) 
covers, store-and-release covers.

monolithic covers, capillary barrier covers
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Conventional Resistive Covers
with a Composite Barrierwith a Composite Barrier
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Water Balance Covers
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Cover Percolation Gas CostCover
Type

Percolation 
Rate

Gas
Flux

Cost
($/ac)

Simple Soil Highest Highest 25 000Simple Soil Highest Highest 25,000

Clay Modest Modest 75,000

GCL Modest Modest 75 000GCL Modest Modest 75,000

Composite Very low Very Low 125,000
Very lowET Monolithic Very low -

low Modest 50,000

Capillary Very lowCapillary 
Barrier

Very low -
low Modest 50,000
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Design Philosophy

Conventional Designs
- regulatory engineering, not site specific
- methods & materials requirements
- no quantitative performance criterion

Alternative (Performance-based) Design
- determine performance criterion (e.g., percolation ≤ 

prescriptive cover)
select layering to meet a quantitative performance criterion- select layering to meet a quantitative performance criterion

- analyze to ensure alternative cover meets performance 
criterioncriterion



Issues with Prescriptive Regulation

1. With conventional designs typically no performance criteria

2. Alternative designs typically required to show equivalent2. Alternative designs typically required to show equivalent 
performance (see 1)

3 Equivalency demonstration is difficult3. Equivalency demonstration is difficult 

4. Primary goal (protect HH&E) often neglected

5. Cost (to society) can be higher than necessary

6. An example of the rule of unintended, undesirable 
consequences

7. Common with indirect regulation  



An Alternative Regulatory Philosophy

- Focus on primary goal (ex. protection of ground water)
- Prescriptive design process

- Type of waste?
- Waste packaging?
- Climate?C a e
- Depth to groundwater?
- Attenuation capacity of unsaturated zone?

Distance to nearest receptor (ex pumping well)?- Distance to nearest receptor (ex. pumping well)?
- Any sensitive environments or species?
- Each site will have a different list

- Require design engineer to demonstrate compliance with 
primary goal
R i i t it i- Require appropriate monitoring



USEPA’s Alternative 
C

•• TwentyTwenty--four test covers at four test covers at 
Cover Assessment 
Program (ACAP)

eleven sites in seven eleven sites in seven 
states.states.

•• Ten conventional covers Ten conventional covers 
(seven composite and (seven composite and 
three clay)three clay)

•• Fourteen alternative Fourteen alternative 
covers (eight monolithic covers (eight monolithic ( g( g
barriers and six capillary barriers and six capillary 
barriers)barriers)

•• Eight sites with sideEight sites with side--byby--
side comparison of side comparison of 
conventional and conventional and 
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ACAP Drainage Lysimeters



Full-scale construction methods



Hundreds of samples and instruments



Lysimeters are the only method for direct 
t f d imeasurement of drainage



Conventional Covers Evaluated by ACAP

16



Compacted Clay Covers

Objectives:

(1) Construct a soil barrier 
(compacted clay) with low 
saturated hydraulicsaturated hydraulic 
conductivity.

(2) Protect the clay barrier from 
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( ) y
damage that may increase 
hydraulic conductivity



Types of Damage

- Frost

D i ti- Desiccation

- Differential settlement (normally aDifferential settlement (normally a 
problem with municipal solid waste, but 
not mining wastes coal ash etc )not mining wastes, coal ash, etc.)

- Erosion
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Sensitivity to Frost y
Damage

Freezing of compacted clay barriersFreezing of compacted clay barriers 
causes:

f ti f i l ki- formation of ice lenses: cracking

- formation of desiccation cracks as 
water moves to freezing front

- cracking that causes increases incracking that causes increases in 
hydraulic conductivity 

Protect clay barrier with insulation (synthetic or burial).
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Sensitivity of Compacted Clay to 
Desiccation DamageDesiccation Damage

Drying of compacted clay barriers 
causes desiccation cracks to formcauses desiccation cracks to form, 
increasing the hydraulic 
conductivity.

Large-scale cracks may form, as 
in this clay barrier in southern 
Georgia four years after 
construction.

Dye tracer test in soil barrier cover 
showing preferential flow path
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Conventional Clay Cover Performance
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Field Hydraulic Conductivity Measurements on
Clay Barrier 4 Years After Construction

Hydraulic

Clay Barrier 4 Years After Construction

Test
Hydraulic 

Conductivity 
(cm/s)

Kfinal/Kas-built

As-Built 4.0x10-8 1.0

SDRI 2.0x10-4 5000

TSB - 1 5.2x10-5 1300

TSB 2 3 2x10-5 800TSB - 2 3.2x10-5 800

TSB - 3 3.1x10-3 77,500
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Typical Composite Cover

Surface
Layer

150-1000 mm thick
(6 – 40 inches)

Drainage Layer

Compacted 450 900 mm thick

Drainage Layer
Geomembrane

• Geomembrane added directlyCompacted
Clay

450-900 mm thick
(18 – 36 inches)

• Geomembrane added directly 
on top of clay barrier or GCL

• Drainage layer frequently

Waste

• Drainage layer frequently 
added on top of geomembrane 
to enhance stability by limiting 
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1.5 mm
LLDPE

Textured 
GeomembraneGeomembrane
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Geocomposite
DrainDrain
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For covers, chemical compatibility normally is not a 
concern when selecting geomembrane polymer.  Key 
issues are:

- constructibility
- durability

cost- cost
- availability with texturing

All of the cited geomembranes can be welded in the field 
using wedge or extrusion techniques to obtain welds 
with higher strength than parent material.with higher strength than parent material.

LLDPE and HDPE geomembranes are most commonly 
used for coversused  for covers
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Drainage Layers
Functions:
-Reduce Head on Barrier Layer 

-Reduce Pore Pressure Build UpReduce Pore Pressure Build Up 

Materials: 
- Coarse-Grained Soil (clean sand, crushed rock)

- Geocomposite Drain 

Design Approach: 
S l t d i th t id t bl h d-Select drain that provides acceptable head 

-Adequate hydraulic conductivity 

-HELP, conservative (over-predicts lateral drainage) 

-Giroud & Houlihan's Method 
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Conventional Composite Cover 
PerformancePerformance  
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Damage to Geomembrane Affects 
Performance

900 150

•• No No cushion between the cushion between the 
geomembrane and the geomembrane and the 
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Summary: Conventional Designs

• Composite designs
– Restrict percolation to low (<~5 mm/yr) levels at all locationsRestrict percolation to low ( 5 mm/yr) levels at all locations
– Percolation typically coincides with flow on membrane
– Require careful construction practice and QA

• Clay barrier designs
– Performance quickly (<2 yrs) degrades 
– Percolation probably due to preferential flow through macro-

features related to desiccation, freeze/thaw, roots
D lik l t i t– Damage likely to persist

– Probably not suitable for near-surface applications that require 
low-permeability barrierp y



UW Desiccation Study: 
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*Lin, L. and Benson, C. (2000), Effect of Wet-Dry Cycling on Swelling and Hydraulic Conductivity of Geosynthetic Clay Liners, J. of Geotech. and Geoenvironmental Eng., 126(1), 40-49.
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UW Desiccation Study: Effect on Swelling of 
GCLs*

Divalent for 
monovalentmonovalent 
exchange 
results in loss 
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UW Study: GCLs Exhumed from In-Service Caps
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Differential Settlement
• Distortion

– ~300 mm V
– ~450 mm H

• No damage to GM
• Large increase in K to soil barrier
• GCL

– Extensive cation exchange
– Retained very low hydraulic 

conductivity
– Humid climate and overlying 

GM – hydrated quickly, did 
not experience desiccation

C lik l i d f i
• This case study has relatively 

• Cover likely retained function 
due to intact GM and GCL

small distortion
• Differential settlement an 

issue with waste containers
• Need more research



PrecipitationPrecipitation Surface Surface 
R ffR ff

Lateral Lateral 
FlFl ETET PercolationPercolation

ACAP Data for Conventional Covers

Cover TypeCover Type SiteSite
pp

Average Average 
(mm/yr)(mm/yr)

RunoffRunoff
AverageAverage

(mm)(mm)

FlowFlow
AverageAverage

(mm)(mm)

AverageAverage
(mm)(mm)

AverageAverage
(mm/yr)(mm/yr)

AltamontAltamont 379379 59.059.0 4.04.0 1.5 1.5 0.1* 0.1* 

CompositeComposite

Apple ValleyApple Valley 169169 6.86.8 0.00.0 0.00.0 TraceTrace

BoardmanBoardman 177177 0.00.0 0.20.2 0.00.0 0.0*0.0*

MarinaMarina 433433 98.798.7 47.447.4 23.123.1 28.328.3

PolsonPolson 350.0350.0 17.717.7 40.540.5 0.40.4 TraceTrace

Cedar RapidsCedar Rapids 981981 54.154.1 96.296.2 12.212.2 2.8*2.8*

OmahaOmaha 731731 86 886 8 43 343 3 6 06 0 0 7*0 7*OmahaOmaha 731731 86.886.8 43.343.3 6.06.0 0.70.7

SoilSoil
BarrierBarrier

Apple ValleyApple Valley 169169 3.43.4 0.00.0 0.00.0
7.47.4

(4.1%) (4.1%) 

AlbanyAlbany 12631263 359.4359.4 NANA 195.2195.2
195.2195.2

(17 1%)(17 1%)BarrierBarrier (17.1%) (17.1%) 

Cedar RapidsCedar Rapids 981981 79.679.6 29.529.5 51.651.6
51.651.6

(6.0%) (6.0%) 

*Composite percolation data are scaled from field measurements to account for x10 increase in

= semi= semi--arid/subarid/sub--humid/arid.humid/arid. = humid.= humid. 35

Composite percolation data are scaled from field measurements to account for x10 increase in 
geomembrane flaws. Marina data not scaled due to geomembrane damage during construction



Summary: 
Field Performance of Conventional CoversField Performance of Conventional Covers

- Percolation rates for composites are very low:Percolation rates for composites are very low: 
< 1 mm/yr in semi-arid and arid climates
< 5 mm/yr in humid climatesy

- Percolation rates for soil covers much higher than expected: 
- 195 mm/yr at Albany GA195 mm/yr at Albany, GA
- appears dominated by preferential flow

Surface runoff is a small fraction of the water balance (<10%)- Surface runoff is a small fraction of the water balance (<10%) 

- Lateral drainage is a small fraction of the water balance (< 5%)
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Water Balance Covers Evaluated by ACAP
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ACAP Site Characteristics

Site Location Elev. 
(m)

Annual 
Precip.
(mm)

Annual 
Snowfall 

(mm)

Annual
P/PET Climate Monthly Avg. 

Air Temp.

A l V ll CA 898 119 38 0 06 id 1 37Apple Valley, CA 898 119 38 0.06 arid -1, 37

Boardman, OR 95 225 185 0.23 semi-arid -2, 32

Helena MT 15 312 1288 0 44 semi-arid -11 28Helena, MT 15 312 1288 0.44 semi arid 11, 28

Altamont, CA 227 358 2 0.31 semi-arid 2, 32

Monticello, UT 1204 385 1498 0.34 semi-arid -9, 29

S t CA 320 434 0 0 33 i id 3 34Sacramento, CA 320 434 0 0.33 semi-arid 3, 34

Underwood, ND 622 442 813 0.47 semi-arid -19, 28

Marina, CA 31 466 0 0.46 semi-arid 6, 22

Polson, MT 892 380 648 0.58 sub-humid -7 ,28

Omaha, NB 378 760 711 0.64 sub-humid -6, 25

Cedar Rapids IA 290 915 724 1 03 humid 8 23Cedar Rapids, IA 290 915 724 1.03 humid -8, 23

Albany, GA 60 1263 3 1.10 humid 8, 33



Marina, CA

-- Costal semiCostal semi--arid arid 
climateclimate

-- Precipitation = 466 Precipitation = 466 
mm/yrmm/yr

-- P/PET = 0.46P/PET = 0.46

Capillary barrierCapillary barrier-- Capillary barrier Capillary barrier 
(theory), but (theory), but 
effectively a effectively a 
monolithic barriermonolithic barriermonolithic barriermonolithic barrier
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Polson, MT

CCool and 
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Capillary Barrier

Precipitation       
~ 380 mm/yr) 380 mm/yr)

P/PET = 0.58
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ACAP Data for Water Balance Covers
Maximum Average

Site
Maximum Average

Precip.
(mm)

Perc.
(mm) Year Precip.

(mm)
Perc. 
(mm)

Albany, GA 1380.2 218.3 4 1202.3 109.2y
Altamont, CA 498.6 139.3 4 379.7 44.8

Apple Valley, CA 272.0 1.8 3 167.4 0.5

Boardman OR (Thin) 0 0 0 0Boardman, OR (Thin)
210.8

0.0
3 181.4

0.0
Boardman, OR (Thick) 0.0 0.0 

Cedar Rapids, IA 898.4 366.1 4 930.0 207.3

Helena MT 351 5 0 1 5 272 4 0 0Helena, MT 351.5 0.1 5 272.4 0.0 
Marina, CA 406.9 82.4 4 462.8 63.3 

Monticello, UT 662.9 3.4 5 387.0 0.7
O h NE (Thi ) 101 0 56 1Omaha, NE (Thin)

612.4
101.0

1 732.5
56.1

Omaha, NE (Thick) 57.9 27.0
Polson, MT 308.1 0.4 349.1 0.2

S CA (Thi ) 361 2 108 4 54 8Sacramento, CA (Thin) 361.2 108.4 -
422.0

54.8 
Sacramento, CA (Thick) 455.7 8.5 3 2.7 

Underwood, ND 585.2 9.4 1 384.1 7.1
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A Two-Step Method for 
Design of Water Balance CoversDesign of Water Balance Covers

1. Preliminary design: estimate 
required thickness by matching 
required and available storagerequired and available storage 
using ACAP approach based on a 
robust, nation-wide field data set

2. Refine the design with numerical 
simulations to evaluate:
• Important design parameters
• “what if?” assessments



Regulatory RequirementsRegulatory Requirements

A Regulatory Framework
Site and Engineer Site and Engineer Regulatory RequirementsRegulatory Requirements

•• The goal: Protect human health and The goal: Protect human health and 
environment!environment!

ResponsibilitiesResponsibilities

•• Conduct prescribed site and waste Conduct prescribed site and waste 

•• Factors to consider Factors to consider 
•• Waste characteristicsWaste characteristics
•• Hazardous life of wasteHazardous life of waste

W t k iW t k i

analysisanalysis
•• Define required closure performanceDefine required closure performance

•• PercolationPercolation
•• Waste packagingWaste packaging
•• Depth to ground waterDepth to ground water
•• Attenuation capacity of geo Attenuation capacity of geo 

stratastrata

•• Gas releaseGas release
•• ErosionErosion
•• Containment lifeContainment life

S l t i t l tS l t i t l t•• Distance to nearest receptor or Distance to nearest receptor or 
sensitive environmentsensitive environment

•• ClimateClimate
•• Stakeholder views publicStakeholder views public

•• Select appropriate closure concept Select appropriate closure concept 
(composite, water balance, ?)(composite, water balance, ?)

•• Result is siteResult is site--specific, performancespecific, performance--
b d d ib d d i•• Stakeholder views, public Stakeholder views, public 

acceptanceacceptance
•• Containment PhilosophyContainment Philosophy

•• Minimize releaseMinimize release

based designbased design
•• Monitor and maintainMonitor and maintain
•• Engineer and regulator must develop Engineer and regulator must develop 

longlong term relationship based on pastterm relationship based on past•• Controlled releaseControlled release
•• Modify list to be siteModify list to be site--specificspecific

longlong--term relationship based on past term relationship based on past 
performance, trust, and a shared performance, trust, and a shared 
dedication to the ‘real’ goals. dedication to the ‘real’ goals. 
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