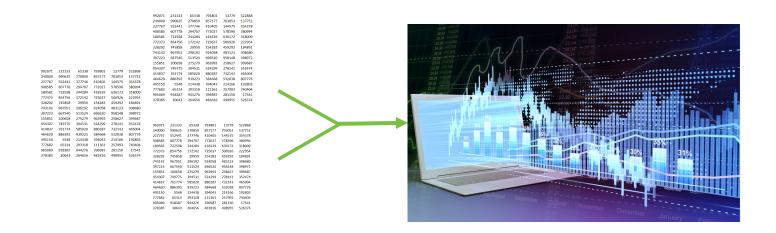


Leveraging Data Analytics to Turn Abandoned Mine Data into Insight

Doug Cushing Katie Deheer October 23, 2019

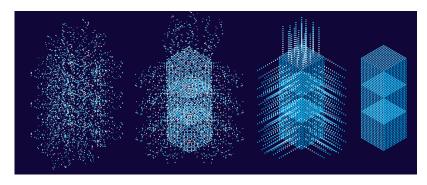

Introduction

- Doug Cushing, PE, PMP Vice President of Digital Capital
 - Master's degrees in Environmental Engineering and Information Systems
 - 25+ years of experience with environmental and water engineering firms
 - Significant experience with EPA Superfund program and data analytics

- Katie Deheer, MBA Manager of Advanced Analytics
 - Master's degree in Business Analytics
 - 10+ years of experience in business technology and analytics across multiple industries

Setting the Stage

- Analytics and Big Data are everywhere
- Immense impact across industries
- Data rich \neq information rich (by default)


Applying Analytics to Environmental Data

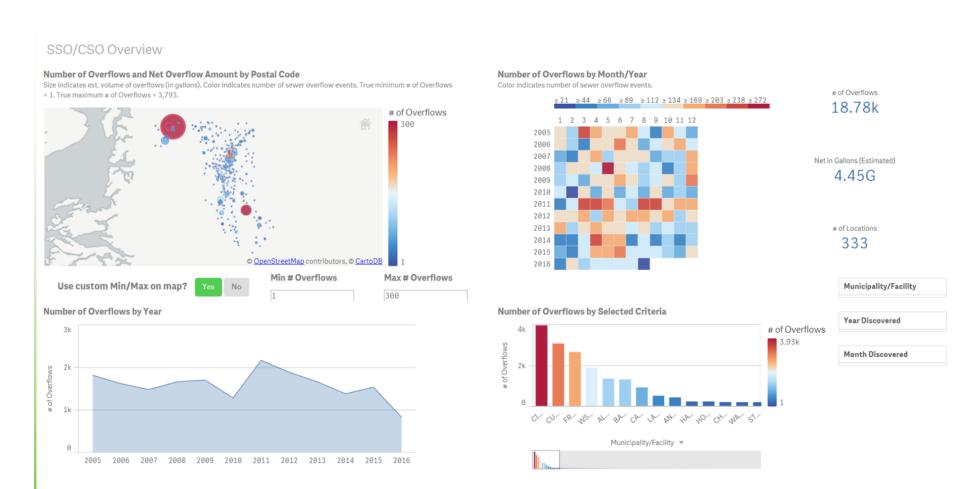
Not in focus:

- Multi-layer geospatial analysis
- Alternative analysis of classic, high quality laboratory data
- Classical statistics using Excel or statistical packages

In focus:

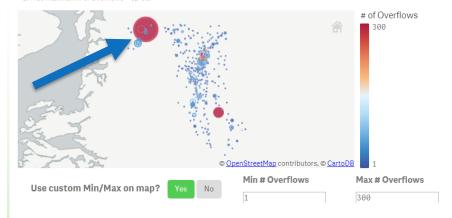
- Teasing trends out of large, complex and often dirty or incomplete multidimensional data sets
- Directional correctness, not transactional accuracy

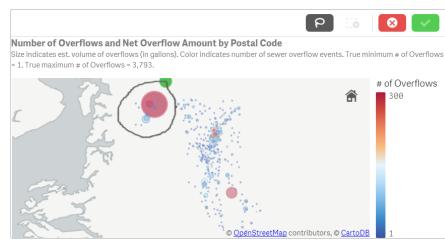
Our Search for Data in Abandoned Mine Space


- Bonita Peak Superfund Site
- Colorado School of Mines
- National Park Service
- Publicly Available Abandoned Mine Land Databases
 - OSMRE
 - USGS
 - US Forest Service
 - State of Colorado
- None of the above resulted in content for a powerful data analytics demonstration.
 - Not as large or robust
 - Better served by classic GIS or statistical techniques than data analytics

Demonstration of What is Possible

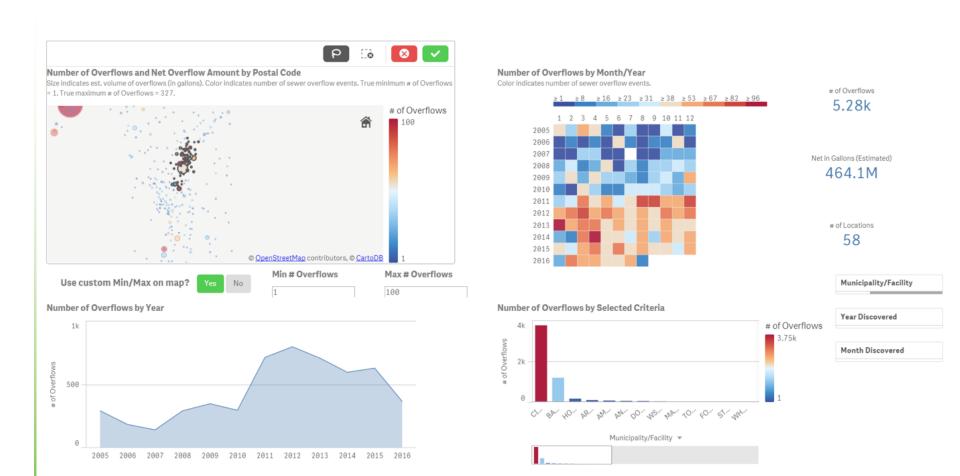
- Data Set: Sanitary and Combined Sewer Overflows
- Self reported 1 state, 10 years, 20K events, NPDES data
- First analysis on dirty data to understand major causes
- Minor data cleanup
- Conclusions were so strong, we needed to anonymize the data!





Number of Overflows and Net Overflow Amount by Postal Code

Size indicates est. volume of overflows (in gallons). Color indicates number of sewer overflow events. True minimum # of Overflows = 1. True maximum # of Overflows = 3,793.


2005 2006 2007 2008 2009 2010 2011 2012

SSO/CSO Overview Number of Overflows and Net Overflow Amount by Postal Code Number of Overflows by Month/Year Size indicates est. volume of overflows (in gallons). Color indicates number of sewer overflow events. True minimum # of Overflows Color indicates number of sewer overflow events. # of Overflows = 1. True maximum # of Overflows = 846. ≥1 ≥8 ≥15 ≥21 ≥28 ≥35 ≥51 ≥67 ≥83 ≥99 1.51k # of Overflows 1 2 3 4 5 6 7 8 9 10 11 12 2014 2015 Net in Gallons (Estimated) 409.5M # of Locations @ OpenStreetMap contributors, @ CartoDB Max # Overflows Min # Overflows Municipality/Facility Number of Overflows by Year Number of Overflows by Selected Criteria Year Discovered # of Overflows 1k 2013 2016 1.51k Month Discovered 1k 500

Cause ▼

2013 2014 2015 2016

Number of Overflows and Net Overflow Amount by Postal Code Size indicates est, volume of overflows (in gallons). Color indicates number of sewer overflow events. True minimum # of Overflows = 1. True maximum # of Overflows = 3,793. # of Overflows 100 Number of Overflows and Net Overflow Amount by Postal Code Size indicates est. volume of overflows (in gallons). Color indicates number of sewer overflow events. True minimum # of Overflows = 1. True maximum # of Overflows = 3.793. # of Overflows @ OpenStreetMap contributors, @ CartoDB Min # Overflows Max # Overflows Use custom Min/Max on map? 100 © OpenStreetMap contributors, © CartoDB Min # Overflows Max # Overflows Use custom Min/Max on map? No 100

SSO/CSO Overview

End of Demonstration

Call to Action

Help agencies with their interest in utilizing data analytics at abandoned mine sites by identifying potential data sources that could be leveraged to turn information into insight.

Questions?

Thank you!

Contacts:

- Doug Cushing, CDM Smith, cushingdl@cdmsmith.com
- > Katie Deheer, CDM Smith, deheerk@cdmsmith.com
- > Anna-Marie Cook, EPA, cook.anna-marie@epa.gov
- > Stephen Dyment, EPA, dyment.stephen@epa.gov

Citation of Demonstration Data: Talley, S., Salter, J., & Lee, W. (2016, December 30). [Sewer Overflow Data]. Published raw data.

> To support anonymity around the contents of this database and the findings within, the reporting organization of this data set is not specifically named in this citation.