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Welcome, everyone, to this webinar. | shall start with a warning that this subject is
normally taught over the space of weeks to months to years depending on one’s
background level of expertise; it is complex and highly technical material. Hence, I'll be
presenting a short overview, emphasizing what | consider to be some of the most

important aspects within a regulatory framework and some glimpses into the state-of-the-
art.



Introduction to models

+

"In chess, we have both complete knowledge of the
governing rules and perfect information - there are a
finite number of chess pieces, and they're right there

in plain sight. But the game is still very difficult for

Both computer programs and human chess masters
therefore rely on making simplifications to forecast
the outcome of the game. We can think of these
simplifications as 'models,’ ..." (Silver, 2012)

| thought this was a rather good analogy that puts the issue of modeling and its reliability
into perspective. Here you have an example of the difficulty of modeling some aspect of
the environment. It's worse than chess. Anyone who thinks that a model can provide
accurate and reliable knowledge, whether it be characterization or prediction, has not
heard of Murphy’s Laws. Note that | partly disagree with nate Silver’s statement: computer
programs don’t rely on simplifications. It is the model they embody that relies on
simplifications.



On models:
A. Scientific models ARE

e Simplifications
Idealizations
Approximations

Representations of our thinking
about physical reality

Inexact and non-unique
Useful

There persists some confusion about what a model is or isn’t and it is important to
recognize these characteristics. A model is always a simplification. We never know enough
for it to be anything else. We simplify by idealizing, hence models are also idealizations and
approximations. The important question is: are the approximate results calculated by the
model useful? We often say that models represent reality but they don’t; they represent
our thinking about reality. So the question becomes: How good is our thinking? The answer
to that depends on education, training, experience, and creativity. Models come from
concepts; if we don’t have the concepts right then the models will be flawed. Another
consequence of simplification is that models are inexact and non-unique. Nevertheless,
models can be very useful — mostly for enhancing our understanding, not necessarily for
regulatory purposes. If the regulatory purpose includes improved understanding of the
geochemical processes at a mine site, then models can be useful; if regulatory purpose is
ONLY focused on compliance requirements or permitting, then models are probably not
useful.



On models:
B. Scientific models are NOT

* Codes
* Representations of reality

Only mathematical equations
Statistics

Unique

Exact, complete, accurate, true
Totally or wrong or totally right
Useless

People often refer to the MINTEQ model, or the PHREEQC model, but that is incorrect. These are not
models! They are computer programs or codes. If someone says they used the PHREEQC model to compute
something, ask them what the model is and remind them that PHREEQC is a code that has gone through
numerous versions and incorporates several models (such as the ion-association model and the Pitzer ion-
interaction model) and has several databases. They need to spell out which models and databases they are
using, not only which codes. Models don’t change nearly as much as codes do.

Models are not “representations of reality” because (1) we don’t know what reality is to begin with (if we
did we wouldn’t need a model) and (2) we cannot represent reality, we can only represent our thinking
about reality. We don’t know what it means to represent reality. We don’t know what it means to represent
something we can’t define and by using language we limit our ability to express that representation.
[Gregory quote, p. 1912 of Nordstrom, 2012]. “The minute we begin to talk about this world, however, it
somehow becomes transformed into another world, an interpreted world, a world delimited by language.”
Some people are so immersed in mathematics that they think models are only mathematical equations.
Most field-based scientists understand that there is far more to modeling than the application of
mathematics. Likewise with statistics. Applying statistics to a set of data does not a scientific model make. It
requires interpretation.

Models are not unique, exact, complete, accurate, or true. Models are also not totally wrong nor useless
nor totally incorrect. You have to be careful of this tendency to put things into B&W boxes. The world is
grey. Some people are fond of the quote “All models are wrong, some are just more useful than others.” |
don’t agree because this statement is another B&W type statement. We shouldn’t say that all models are
wrong or any model is right because it is too simple a statement. We should simply say that all models are
approximations and some are better approximations than others depending on the objectives, the system
being studied, and the limitations of the model for the specified conditions.



C. Scientific models are useful
because:

e They can lead to new insights and
increase our understanding

e They help conceptualize and

integrate large amounts of data and
information

e They can be tested by comparing
their consequences or their
predictions with independent
observations

It is important to recognize that we compare the consequences of our models with
independent observations, not the model itself. Einstein and Infeld (1938, The Evolution of
Physics) made it clear that we cannot compare our theories with the real world; we can
only compare the predictions from our theories with our theory-laden observations of the

world.



D. Scientific models are not necessarily
useful in a regulatory environment because:

+. They can be misleading

e It is possible to demonstrate any
preconceived idea with a particular
choice of data, codes, and assumptions

e If the results from model concepts
and/or calculations cannot be
confirmed or tested with observational
data, there is no way to determine the
reliability of these results

So if someone says that they have predicted the water chemistry of a pit lake 50 years into
the future — the important question to ask is where is the data to show that such a
prediction has been tested and shown to have agreed with observation?! How well do
these types of models really predict? They would have a hard time answering that question
because of the lack of data. If we don’t have a confirmation from a test of the model, then
we have no basis to have any confidence in the model. Without confirmation, it’s
guesswork, not science.




E. Scientific models are not necessarily

useful in a regulatory environment because
of:

T

* The more sophisticated a model and the more
complex the code, the more difficult it is to test
the code and determine if it is working properly,
or even to understand how it works [Oreskes, 2000]

“Needlessly complicated models may fit the noise
in a problem rather than the signal, doing a poor
job of replicating its underlying structure and
causing predictions to be worse." [Silver, 2012]




On predictions

_’_- 2 meanings
* Logical (or phenomenological) prediction
» Temporal (or chronological) prediction

* Logical prediction: aprediction based on
scientific principles along with necessary
assumptions to form a logical construct with
testable consequences (what science does)

Temporal prediction: aprediction that
foretells the future (betting on horses, predicting
the world apocalypse, foretelling the day and hour
you will die, etc.; not what science does)




Logical prediction:
2 types

e Time-independent

e If T mix pH 2 AMD with an equal amount of pH
12.5 slaked lime solution [Ca(OH),], T predict a
massive precipitate of hydrous ferric oxides and
other metals

e Time-dependent

* If I mix 100 millimoles of pyrite in a sulfuric acid
solution of pH 2 and 108 cells/mL of iron-oxidizing
microbes, the pyrite will be half gone in a little
more than 2 days

Another source of confusion, even for modelers, is the difference between time-
dependent prediction and time-independent prediction. [read slide here]. Groundwater
modelers and reactive-transport modelers are always working with time as an explicit
variable, geochemists often work with time as an implicit or non-existent variable.
Geochemists who produce kinetic data on the dissolution or precipitation rates of minerals
are working explicitly in time but it is “lab” time which does not necessarily have anything
to do with “field” time. In making future predictions, such as predicting groundwater
conditions given certain properties and boundary conditions, we are actually trying to
make our logical predictions conform to temporal predictions. In so doing, we have to
acknowledge that there are some serious limitations in this endeavor because there are
some factors that are beyond our ability to predict. This issue was brought out nicely by
research in the field of chaos theory and non-linear dynamics (remember the “butterfly
effect”).



More definitions

+

» Chemical model - a theoretical construct
that permits the calculation of thermodynamic,
kinetic, or guantum mechanical properties of a

system

» Geochemical model - a chemical model/
applied to a geologic system
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Pyrite oxidation: the chemical model

FeS, + 3.50, + H,0 = Fe?* + 250,% + 2H"
_’_Pyrife + air + water = acid ferrous sulfate soln

Ferrous iron oxidation

FeS,+ 3.750, + #H,0 = Fe% + 2507 + H

Pyrite + air + water = acid ferric sulfate soln

Fe’* + 2H,O = Fe(OH),* + Z2H*

Hydrolysis of acid ferric sulfate soln

FeS, + 3.750, + 2.56H,0 = Fe(OH),* + 250,% + 3H*
Pyrite + air + water =» hydrolyzed ferric sulfate soln

FeS, + 3.750, + 3.5H,0 = Fe(OH)y + 250, + 4H*
Pyrite + air + water =» iron ppt + sulfuric acid

Pyrite oxidation is actually a rather complex process. It involves the transfer of 14
electrons from the S, entity in pyrite to sulfate. This does not happen in one step. | have
not shown all the steps because it is beyond the scope of today’s presentation and today’s
presentation is complicated enough. Also, pyrite is directly oxidized by Fe3* (ferric iron) not
oxygen. The overall process comes out to the same results whichever oxidant is used. |
have also not mentioned the very important catalysts in the system, iron- and sulfur-
oxidizing microbes. That would be another subject for discussion in another workshop.
Basically, without the chemoautotrophic bacteria and archaea, the reactions that produce
AMD would be much slower.



Example 1. Can we predict water chemistry
from pyrite oxidation?

_’_° Yes, BUT ONLY IF
» We know how much pyrite has oxidized
» We assume an unlimited supply of O,
» We assume equilibrium solution speciation

» We only consider initial/final states, not
intermediate states that require knowledge
of reaction rates

* We assume no other minerals are reacting
* Are these assumptions technically correct?
* No - but a few waters do approximate these conditions

* We need actual water chemistry data with mass
balances to know the amount of pyrite oxidized
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Example 1.1 Mass Balance Modeling
Pyrite oxidation with gypsum dissolution

e If a water analysis contains 480
mg/L SO, (5 mmol) and mass
balances show that 75% came from

pyrite oxidation and 25% from
gypsum dissolution, then

e 1.875 mmol of FeS, dissolved and
e 1.25 mmol of CaSO,2H,0 dissolved

Here is what we mean by mass balances.

13



Example 1.2 Mass balance on a natural acidic
drainage water [rock is andesite and rhyolite
mineralized with pyrite, gypsum, sulfides, etc.|

2.98
8.72 mM
4.64 mM
0.35 mM
0.019 mM
21.1 mM
0.40 mM
1.23 mM
3.39 mM
1.16 mM
7.63 mM
0.029 mM

Initial state = pure H,O/ final state = water composition

8.66 mmol/kg

3.78 mmol/kg
Dolomite 4.64 mmol/kg
Kaolinite............... 1.40 mmol/kg
Oligoclase 0.44 mmol/kg
Fluorite 0.20 mmol/kg
Sphalerite 0.11 mmol/kg
lllite/Sericite 0.032 mmol/kg
Chalcopyrite 0.029 mmol/kg
Goethite -7.40 mmol/kg
Silica -2.89 mmol/kg
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Pyrite oxidation: the chemical model

_’_FeS2 +3.50, + H,O = Fe?* + 250,% + 2H*
Pyrite + air + water =¥ acid ferrous sulfate soln

FeS, + 3.750, + 2.5H,0 = Fe(OH)," + 250,2 + 3H
Pyrite + air + water = hydrolyzed ferric sulfate soln

FeS, + 3.750, + 3.5H,0 = Fe(OH);|,+ 250,% + 4H"
Pyrite + air + water =¥ sulfuric acid + iron ppt
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Example 1.3 Pyrite oxidation: the graphical model (new insights)
Simulation of pyrite+ O, + H,0O we—) Fe(II/11I) + H,SO,

using the PHREEQC code

No Fe(Il) oxidized

pH 3.26

/ Fe(ll) oxidized
Fe(1l) oxidized,
Ferrihydrite precipitated

pH 2.39

Fe(11) oxidized,
K-jarosite precipitated

Fe(Il) oxidized,
Goethite precipitated

T | AR T | T | AR T | R R ET | AT EET |

107 10" 1 10 10 10°

Pyrite oxidized (mmol/kg; ,20)
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Example 1.4. Model testing with field data: confirmation

No Fe(Il) oxidized L.
O initial pH

= . @ final pH

— - ry

i Fe(ll) oxidized, I\

: Ferrihydrite precipitated \3

-Illl | 1 IIIIIII | | ||||||| 1 | ||||||| | | |1||II| | 1 |I|I|||
1072 10°! 1 10 10 10°

Pyrite oxidized (mmolikg”zo)
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Example 1.5. Modeling of pyrite + calcite dissolution

from Nordstrom and
Campbell (2013)
Modeling low-
temperature
geochemical processes,
vol. 5, ch. 2, Treatise on
Geochemistry (in press)

2:1 caleite:pyrite

2:1 ealeite:pyrite; gypsam and siderite allowed to precipitate

.
1:1 ealcite:pyrite
0.5:1 caleite:pyrite

Pyrite only, no caleite

100 1000

121 calcite:pyrite
i
0.5:1 caleite:pyrite
Pyrite only, no caleite

1 1 1 L ]

0.1 1 10 100 1000
Pyrite oxidized (mmol/kg;,; ,)
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These are examples of geochemical modeling
included speciation, redox, and mass transfer
but no mass transport:

2. Types of geochemical modeling -
Equilibrium: space and time independent parameters
Steady-State: space-dependent but time-independent
Transient-State: space- and time-dependent

Speciation: distribution of the total amount of a
component into different species forms

Mass transtfer: transfer of a component from one
phase to another (mineral dissolution or precipitation,
gas evolution or uptake, flora or fauna uptake, etc.)
Reactive transport: mass transter with mass transport
Kinetic modeling requires knowledge of reaction rates

If kinetic modeling is included, everything gets very complicated and it becomes much
easier to tweek code calculations so that the results come out anyway you want. Then the
assumptions become very important and must be spelled out.



Example 2.1 Types of geochemical
modeling:

+

« AMD-A, Cu = 0.09 mg/L AMD-D, Cu = 290 mg/L

COPPER
— ’ “”H' ]\ CuSO, (56.6%)
- AMD-D : I
CuSO, (14.5%)
AMD-A (—:—EWHB ) pH =048 { s —
D= o0 E $S04=14M S—————7F o*wm
Y804 =.0021M —— Cu?* (85.5%) g’

AMD-A: Cu/SO, = 0.45

AMD-D: CU/SO4 = 0.002 much higher amount of Cu-SO, complexing




Two more important types of modeling

- Forward geochemical modeling: given initial
conditions such as a specific rock type with a known
mineralogy and an initial water composition, a model
is used to calculate evolutionary changes in water
chemistry and minerals dissolved and precipitated

Inverse geochemical modeling (mass

balances): uses the available data on water
chemistry, mineralogy, hydrologic conditions, and
isotopes to constrain the possible geochemical
reactions

It is important to distinguish between these 2 types of modeling. Forward modeling might
be used when there is little or no site data or lab data. Inverse modeling makes maximum
use of field data. Forward modeling puts a huge burden on the modeler to know a great
deal about geochemical, hydrological, and microbiological processes and site conditions. It
is much harder to have confidence that forward modeling is useful by itself — far too much
uncertainty. The optimal approach is to collect as much field data as possible and then fill
in aspects of the geochemistry with forward modeling where there is insufficient data (see
Glynn and Brown, 2012). IMHO, for regulatory purposes, if insufficient site data exists to
do inverse modeling then any modeling is likely to be highly unreliable.
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There are also different methods for
calculating activity coefficients

+

The important point here is that if the ionic strength
of the waters to be modeled is greater than 1 molal
then the Pitzer ion-interaction model must be used.

The Pitzer model does not have all the parameters
needed for all metals yet but its database is
improving.
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Input data:

1.Field data — must follow proper QA/QC procedures;

eware that pH, redox, and sample collection is often done by
the lowest salaried person and the data can be grossly in error
(were 2 standard buffers that bracketed the sample pH used for
calibration? Was the pH calibration checked at regular intervals?
Who checked the analytical results and what experience have
they had in analytical chemistry?)

2.Ana1ytical data — was the charge balance done? Is it
within 10%? Were redox species measured? [H,S, O,, CH,,
Fe(2/3), As(3/5), Se(4/6), etc.]

3.Redox potential — generally not a helpful parameter; not
worth measuring most of the time

Remember it is absolutely imperative to measure any important redox species for the
purposes of chemical modeling. It is not possible to take a redox potential measurement
with an electrode and determine the concentration of As(3/5) or U(4/6) — maybe Fe(2/3)
under optimal conditions, but not recommended (especially because it is so easy to
measure directly).

23



Why is direct measurement of aqueous

redox species essential to geochemical modeling?

Element Reduced form Oxidized form

Fe Fe(ll), soluble Fe(lll), insoluble

As As(I11), soluble + more toxic As(V), insoluble

Se Se(1V), insoluble Se(VI), soluble + more toxic

Cr Cr(l11), insoluble Cr(V1), soluble + much more toxic

If Fe is a dominant cation in the sample, then the redox
species must be analytically determined for charge balance as

well as any speciation modeling.

[These solubility generalizations do not hold for all situations]
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Saturation indices can be helpful guides as to whether a mineral
could precipitate or not. Data from 1380 samples of AMD
throughout the western US. Results show unreasonable
supersaturation (up to 3.5 orders of magnitude). (Nordstrom, 2011)

represents freshly
precipitating
Fe(OH),

SI = saturation index ﬁ
AP =
SI= log(E) f__%
up = - ’ . ! ' S
Ksp =':ofgbj;i;b’mc: & r Goethite log K, =-1 |
constomt -8 ‘ : -
SI=0, equil. soly. 10r y
SI> 0, supersaturation -12 . 1 . 1 . 1 " 1 A
S1 < 0, undersaturation 0 2 > ! € 8 10
p
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Ferrihydrite S.I.

Eh calculated

1.0

08

0.6

04

02

0.0 -

-0.2 KL

Comparison of Eh calculated from
speciation code and Fe(II/I11)
« determinations with redox potential Eh

Revised
comparison
after

. L L
-0.2 0.0 0.2

. . .
0.4 0.6 0.8
Eh measured

| Y
Eh calculated

accounting for

L L L L
0.2 0.4 0.6 0.8

Eh measured

Revised SIs of

Fe(OH),

6 T T T
a4l
2L
0 8
-2
At
-6 4
Goethite
8f
-10 k-
-12 1 1 1
2 4 6
pH
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Chemical database —
_’_a) thermodynamic data and b) kinetic data

several to choose from; also should follow QA/QC procedures;
has the database and the code been checked out against well-
established independent data?? Can the modeler demonstrate that
his calculations compare well with test cases or examples that
have been done by other codes? Tests should include speciation,
redox potential, saturation indices, mineral dissolution and
precipitation rates if kinetics are involved, and reactive transport if
relevant. What database was used and how does the modeler
know that it is reliable?

Note: no thermodynamic or kinetic database is necessary for mass balances
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Example 2.2 Types of geochemical
modeling:

+

Pyrite dissolution with melanterite precipitation
(melanterite = FeSO,+7H,0) using PHREEQPITZ code

vl

Melanterite
saturation

N N

RN N

llll’llllllllllll

2 3 4

MOLES OF PYRITE OXIDIZED/kg H,O

This computation tells us that melanterite should be forming from waters that have
negative pH values. We have a confirmation of this from field data collected at Iron
Mountain Mines Superfund site.
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Melanterite forming on pytitic waste piles, San Telmo, Spain
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A stalactite of melanterite was found underground at Iron Mountain Mines with water
dripping from its tip with pH of -0.7 (the beaker is 2 liters for scale). Also this water had a
temperature of 35°C underground and when it was brought outside to cooler
temperatures of about 22°C, about a third of the water crystallized to melanterite,
suggesting it was near equilibrium conditions.

30



Another example of mass transfer: Al precipitation, very common
in mine drainage — from modeling we have been able to
understand and generalize the geochemical behavior of Al in
aqueous systems: precipitation occurs at pH > 5.0 (pK,=5.0)
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2.5 Example of :

Contrary Ck,
Virginia [MS thesis, T.V.
DagenhFr_T, 1980]

Transient signal from
flushout of soluble salts
on tailings piles from a
rainstorm

Can we predict this
event? Qualitatively - in
the sense that we know
it happens, but not
quantitatively

33



What about modeling rates??

Numerous reasons have been given:

Lab samples were ground and much more reactive

*Field samples have developed clay or silica coatings

*Reactive surface areas in contact with water are not known for
field studies (surface areas and exact flow paths are unknown)
*Temperature and gas gradients occur in the field

*Organic matter and microbial activity affect weathering in the
field in ways that are difficult to determine quantitatively
*Wet/dry cycles and seasonal changes occur in the field

*Residence time in weathering zone is much longer in the field and is
not often measured

*It is not widely recognized that a lab-based study is a "generation”
or “production” or “"reaction” rate, whereas a field measurement is
usually a “flux” or “transport” rate
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Consequently

Lab rates cannot yet be used
—quantitatively for most field
applications (best for well-
constrained situations such as flow
with reaction through a pipe, or

homogeneous solution kinetics)

And it depends on water flow rates
(water balance, variable seasonal flow
rates, groundwater-surface flow)

We are currently engaged with the Iron Mountain Mines Superfund site, determining the
rates of iron oxidation and precipitation in a diversion pipeline and the geochemical and
microbiological factors. Stay tuned.
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4 redox processes that can oxidize or reduce dissolved Fe in AMD

A
4 ¥
v
R

Fe3* + H,0 + hv — Fe?* + H* + OH photoreduction
(abiotic)

Fe oxidation
At. ferrooxidans
L. Ferrooxidans
Acidiphilium spp.

water column

pyrite oxidation
(abiotic)

org. C oxidation
Acidiphilium spp.|

sediment
i
(
_:\)

Fe® + %4CH,O + 4H,0 — Fe?+ + %CO,+ H*

Here are the 4 processes that can oxidize or reduce dissolved Fe in AMD. One can measure
the net result (as Gammons et al did for the Rio Tinto, Rio Agrio, and Rio Odiel) and
recognizing that microbial oxidation and photoreduction for surface waters are
predominant in controlling Fe(ll/Ill) concentrations and measuring concentrations over
time during night and day, these investigators were able to determine each rate. This study
is an excellent review and application of the state-of-the-art with respect to Fe(ll) oxidation
and Fe(lll) reduction in AMD.
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2.7 Examples of microbial oxidation and photoreduction in the Rio
Tinto, Rio Agrio, and Rio Odiel, Spain

a. Rio Tinto Fe(total) d. upper Rio Odiel
— ! . | | | .
Fe(ll) =
80 4 T 20 3
&
60 4 E 15 @
=
2
40 4 T 10 a
20 | mecee L == 5
Fe(lll) (mM)
0 ' T t T [
n T 32 o 36
b. Rio Agrio o e. upper Rio Odiel | &
60 - | | : = {30 2 las
F 3
50 28 T |34
(=]
40 26 g a3 =
o =
a0 24 3 3.2
©
20 - | - B — ! 22 & |ai
Fe(lll) | - ¥ 5
1041 @ 200000009 1 '."' t '“ 20 § 3.0
QP00 1200 1800 2400 G600 1200 | (600 1500 1500 2400 0600 | 1300 a2 Las

The fact that the Fe(ll) concentrations never go to zero (except in the upper Rio Odiel)
suggests there may be some Fe reduction in the sediments and diffusion of Fe(ll) into the
water column. Although lab and field rates are somewhat similar, there are some
differences and if you want to know field rates, you have to measure them. One obvious
source of uncertainty in any prediction is how much cloud cover will there be?
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Can geochemical models be used to
deterministically predict future scenarios at
_'_potential mine sites? Some summary comments. ...

- 50-100% of mine sites exceeded their predicted
water quality conditions (see Kuipers et al., 2006)

"The computational capabilities of today's codes
and advanced computers exceeds the ability of
hydrogeologists and geochemists o represent the
physical and chemical properties of the site or to
test the outcome of the model.” Maest et al. (2009)
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Can reactive transport models be used to
deterministically predict future scenarios at
potential mine sites? Some summary comments. ...

"Tempting as it will be o government bureaucrats
to continue the use of models, the predictive
models for the long-term quality of water in
abandoned open-pit mines should themselves be
abandoned.” Pilkey and Pilkey-Jarvis (2007)

"Just as in other modeling arenas we have
discussed, accurate prediction of future water
quality is a fantasy supported by a hyperreligious

faith in the predictive power of nhumbers." Pilkey and
Pilkey-Jarvis (2007)
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Can reactive transport models be used to
predict deterministically future scenarios at
potential mine sites?

"Reactive transport models cannot solve the problem of
the apparent discrepancy between laboratory and field
rates by themselves...." Steefel et al. (2005)

"... the reactive transport modeling can be used to
narrow down the possible explanations for the overall
rates observed in the field.” Steefel et al. (2005)

"Another possible approach is to choose field sites
where the transport rates can be modeled accurately
and deterministically because gross physical
heterogeneities are absent.” Steefel et al. (2005)
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Validation & Verification

“Does good agreement between a model result or prediction and
observational measurements mean the model is correct?

No, for 3 possible reasons, (1) if model parameters are not independent from
the measurements they are being compared to, they should agree regardless
of the correctness of the model, (2) if the measurements are in error then
both the measurements and the model could be in error, and (3) the model
results might agree with reliable measurements for the wrong reasons.

Does poor agreement between a model result and observations mean the
model is incorrect?

No, for similar possible reasons, (1) if the measurements are unreliable, the
model may still be correct, (2) model calculations could be in error whereas
the conceptual model could be correct, and (3) the criteria for what
constitutes good and poor agreement may be incompatible with the
limitations and uncertainties of the model.” [Nordstrom, 2012] The criteria for
agreement could be made too broad or too confined. Hence, a model could
be validated or invalidated according to preconceived agendas.
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Recommendations

* Don't use the word validation with
respect to a scientific model; it
doesn't Gpply [see Nordstrom, 2012]

e If someone says a model has been
validated, ask him/her to invalidate
it (it can always be done); then have
them draw their own conclusions

* Remember: models are not unique or
exact!
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Recommendations

T'T‘r is the quality of the conceptual model that
determines the usefulness and relevance of any
modeling; the conceptual model needs peer review

There will always be unknown factors that affect our
confidence in modeling

Computer codes in the regulatory realm must be
transparent!

Is it necessary to predict far into the future? Or is it
better to use best available technology and protect the

public and the environment through other means
(liability)
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Additional considerations

* Has the problem been well-defined?

* And the model suitable for the
purpose?

» Has Chamberlin's (1897) method of
multiple working hypothesis been
applied?™

* Has the modeler explained the
results in a manner that anyone can
fully understand?

**An appropriate corollary of Chamberlin’s method is that if someone has presented what
you feel is a best-case scenario prediction, have them do a worst-case scenario. If someone
has “validated” their model, have them also invalidate it!

44



Conclusions?

With models we can constrain the
possible explanations for our
observations.

45



+

"More broadly, it means recognizing that the amount
of confidence someone expresses in a prediction is not
a good indication of its accuracy - to the contrary,

these qualities are often inversely correlated.”
(Silver, 2012)

"It isn't what we don't know that causes the trouble,
it's what we think we know that just ain't so."” will Rogers

46



