EPA Webinar Series on Hardrock Mining Geochemistry and Hydrology: predicting water chemistry, identifying release pathways, and evaluating reclamation strategies.

Workshop 2 – Mining-Influenced Water – Pathways for Offsite Releases – Mike Wireman –US EPA Region 8

FOCUS OF THIS TALK

1. Fate and transport of contaminants from mine related facilities

- Conceptual hydrogeologic model
- Geologic controls
- Geochemical controls

3. Environmental characterization of contaminant transport pathways

- Geology / Ore body
- Water levels / flow
- Mass loading
- Isotopic data
- Hydrologic tracing
- Hydrometrics
- Geochemical modeling
- EMMA
- Borehole tools

CERCLA sites vs. NEPA sites

- EPA / USGS / State mining agencies have developed characterization tools and evolved conceptual understandings re: the hydrology of mine impacted watersheds thru remedial investigations at CERCLA NPL sites
- Data and understandings from these efforts are useful for developing initial conceptual models at NEPA sites and guiding facility locations and hydrologic monitoring programs at hardrock mines

Environmental issues -Metals transport

Metals / acid transported from major minerelated sources via:

- Runoff (snow & rain)
- GW Flow / Interflow
- Streamflow
- Air

Role of GW in metal deposition

Fundamental fluid genetically relating al metals deposits

- Ore mineralogy & distribution controlled significantly by subsurface hydrologic environment
 - Takes part in redox reactions
 - **Transport**
- Hydrothermal alteration and mineral emplacement

- Natural concentrations in gw typically very low (< 1 mg/l) - except in vicinity of ore bodies- due to:
 - Low solubility
 - Adsorption
 - Cation exchange
 - Complexation as hydrolyzed species

Geologic Controls on F& T Geology of Ore Deposits

- Genesis of metals deposits
 - Commonly found in igneous / metamorphic rocks (can be redistributed in sed. rocks)
 - Occurs as vein, replacement and disseminated deposits – important to know which
 - Most precious /heavy metal mines occurs in fractured rock environments

Geologic controls on transport

Groundwater storage and flow occurs preferentially in discontinuities in fractured rocks

- Bedding planes
- Faults and shear zones
- Fractures (joints)
- Foliation –including cleavage
- Zones of chemically altered rock
- Carbonate formations "inter-bedded" with igneous / metamorphic rocks

OSITION N FLOW	LITHOLOGY	HYDROGEOLOGY	HYDRAULIC CONDUCTIVITY	
Center	See below		See below	
Base	See below	2.5.7.0.389.9.2	See below	
nterbed	Clay, silt		Very low; confining	
Тор	Basalt, vesicular, brecciated	00 00 00 00 00 00 00 00 00 00 00 00 00	High; may be extremely high	
Center	Basalt, less vesicular than above, vesicularity decreases with depth; vertically jointed	General direction of water movement Line of equal hydraulic potential	Horizontal: low to moderate, depending on vesicularity and degree of fracture Vertical: depends on degree of fracture; commonly several orders of magnitude lower than horizontal conductivity	
Base	Basalt, vesicular; platy		Base and interbed moderate	
nterbed		150 1200 27- 20	to high; combined with top	
Тор	See above		zone, may be extremely high (interflow zone)	
Center	See above		See above	
	Figure 4. Intraflow structural contr Group.	rols on water movement in a discharge area of th	ne Snake River	

Geochemical processes that affect concentration, species and distribution of metals in environment

- Redox reactions
 - Metals tend to be oxidized –not reduced
 - Water is catalyst Microorganisms are also an important catalyst
- Carbonate mineral dissolution
- Hydrolysis
- Cation exchange
- Adsorption

Acid generation						
Stoichiometry of Pyrite Oxidation PYRITE OXIDATION: $FeS_2 + \frac{7}{2}O_2 + H_2O \rightarrow Fe^2 + 2SO_4^2 + 2H^+$ FeS ₂ - Pyrite	Stoichiometry of Pyrite Oxidation $\frac{Fe^{2+} \text{ OXIDATION}}{Fe^{2+} + \frac{1}{2}O_2 + H^+ \rightarrow Fe^{3^+} + \frac{1}{2}H_2O}$ Fe 2+ - ferrous iron					
Stoichiometry of Pyrite Oxidation FERRIC HYDROXIDE PRECIPITATION: Fe ³⁺ + 3H ₂ O = Fe (OH) ₃ + 3H ⁺	Other precipitation reactions that form acidity Gibbsite Al3+ + 3H2O Manganese Oxide 2 Mn2+ + O2 + 2H2O 2MnO2 +					
Fe 3+ - ferric iron Low pH = greater metals solubility	4H+ Oxidation also catalyzed by microorganisms					

Environmental characterization – Key tools

- Flow / water level measurements
- Water chemistry / flow weighted mass loading
- Stable water and radioactive isotopes
- Steam Tracing
- GW tracing

Setting a flume underground

IMPORTANT TO SAMPLE OVER FUL

Environmental Isotopes

 Isotope = atoms of the same element with a different number of neutrons (different mass)

Name	electrons	Protons	Neutrons	Abundance
¹⁶ O	8	8	8	99.76%
¹⁸ O	8	8	10	0.20%

STABLE ISOTOPES

- Do not decay spontaneously (stable over time)
- Examples: ¹⁸O, ²H, ¹³C
- Used as Tracers

RADIOACTIVE ISOTOPES

- Emit alpha and beta particles and decay over time
- Examples: ³H (Tritium), ¹⁴C
- Used for Dating

ISOTOPES COMMONLY USED IN HYDROGEOLOGY						
<u>lsotope</u>	<u>Symbol</u>	Molecule	<u>Type</u>	<u>Half-life</u>		
Deuterium (Source of water)	D	H ₂ 0	Stable			
Oxygen- 18 (Source of water)	¹⁸ O	H ₂ 0	Stable			
Tritium (Age - time since recharge)	зΗ	H ₂ 0	Radiogenic	12.7 years		
Sulfur- 35 ⁽¹⁾	³⁵ S	SO42-	Radiogenic	87 days		
Carbon – 14 (Age)	¹⁴ C	CO2	Radiogenic	5730 yrs		
(1) – Still in proc	of of concept				2.	

Isotope Data -water samples -

Howard Fk. Of San Miguel River – San Juan Mountains – SW Colorado

LMDT PORTAL -DISCHARGE - Leadville, CO

STREAM TRACING

- Inject conservative tracer
 (lithium) @ constant
 concentration / rate for
 extended injection time
- Bring stream concentration to "plateau"
- Sample for tracer & metals at frequent / specified intervals – sw / gw

- Accurate stream flow based on dilution
- Can be used to locate gw inflows
- Combine with sediment data to characterize / quantify contaminant loads in streams

Stream trace - Redwell Basina small alpine catchment in Colorado (USGS)

The "Red Well" is a natural spring-- low pH (<4), high Fe -natural acid drainage - more than 2500 years old

Redwell Creek - In-stream tracer test

- Add LiCl continuously to upper reach of stream (both Li⁺ and Cl⁻ are conservative).
- Monitor conductivity at several downstream sites to track arrival of tracer.
- After about 24 hours, sample stream from bottom to top.
- In Redwell Creek (2 kilometers), USGS collected 68 samples in about 4 hours.

GROUNDWATER TRACING

- I. USED IN A VARIETY OF HYDROGEOLOGIC SETTINGS – COMBINE W / SW TRACING
- II. LOTS OF USE IN KARST MORE RECENTLY IN FRACTURED ROCKS
- III. USEFUL FOR CHARACTERIZING GW FLOW PATHS IN FRACTURED ROCK SETTINGS
- IV. APPLICATION TO TUNNEL TRACING?

- TRACING IS EMPIRICAL
 FEWER ASSUMPTIONS
- - ✓ GW DISCHARGE TO STREAMS
 - ✓ FLOW DIRECTION AND FLOW SYSTEM BOUNDARIES
- CAN PROVIDE QUANTITATIVE DATA
 COMBINE W/ DISCHARGE
 DATA
 - ✓ CONTAMINANT FATE

