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Take-Away Points

* The Problem: Soil data can mislead decisions about risk & cleanup!

* Why? Common practice generates a concentration result from
a few grams of soil and then assumes that tons of soil in the
field have that same concentration.

* This presentation will show:

— “Representativeness” for soil samples is only meaningful in terms
of a sample, or a set of samples, that provide an average over
some defined soil mass.

— “Sample representativeness” does not exist until the RPM
defines for a specific sampling event what field soil volume and
particle size a soil sample is supposed to represent.

A defined field soil volume/mass is called a Decision Unit
(DU); DUs must be described in the QAPP/FSP.

Using incremental and/or composite sampling vastly improves the representativeness
of soil or sediment data. Why can | make that claim?



Soil Sampling Is NOT Simple

» Effect of short-scale, between-sample heterogeneity
— A grab field sample does not represent the field concentration
— Misleading data possible if decision based on 1 grab sample

— Remedy: In the field, use large discrete data sets or many-
increment composites, use QC checks on sampling design

» Effect of micro-scale, within-sample heterogeneity
— A grab analytical subsample does not represent the sample

— Misleading data possible if decision is based on 1 grab
subsample

— Remedy: In the laboratory, isolate target soil particle size,

avoid sample segregation errors, match subsample mass to
sample particle size, form subsample from many increments

Using incremental and/or composite sampling vastly improves the representativeness
of soil or sediment data. Why can | make that claim?



Tools for Reliable Soil Data Are Available

* Incremental-composite sampling (ICS) addresses:
— Short-scale heterogeneity by collecting many field increments

— Micro-scale heterogeneity by specialized sample processing
and subsampling procedures

» X-ray fluorescence (XRF) instruments
— ICS + real-time XRF data = powerful, efficient sampling designs

— XRF can guide real-time, in-field choice of increment number,
set DU boundaries & evaluate sample processing

— Proper XRF application requires sufficient QC and
documentation

* XRF & ICP comparisons usually done incorrectly

Using incremental and/or composite sampling vastly improves the representativeness
of soil or sediment data. Why can | make that claim?



Short-Scale Heterogeneity

« Differences in concentration at the |
scale of collocated field QC samples O O

(inches to a few feet) 49 49 113
* Collocated samples are considered O

equivalent, but very different results 496

are common g o
* If decision is based on a single grab 30 116

sample, chance (“the luck of the

grab”) may determine outcome Set of collocated samples

for uranium (mg/kg)
* Decisions based on single samples:

— “Hot spot” presence/absence
— Drawing concentration contour lines

The same principles apply to short-scale sampling error. Recall that this refers to extrapolating single
data point to a large field area without taking heterogeneity into account. Taking the whole targeted
soil volume as a single sample for analysis would provide THE concentration for that volume without
any sampling error. Of course, that’s not possible. That’s why we take samples. The trick is to have
enough samples to capture field heterogeneity without breaking the bank. This can be done by taking
increments of soil from many locations and pooling them together for a single analysis. This both
increases sampling density of the area AND increases the sample support of the field sample—both of
which help control sampling error. When increments are pooled for this purpose, it’s called
incremental sampling.



Very Short Short-Scale Heterogeneity

Figure: 21 separate ~/-1-gram samples (~16 g total) within a
4-inch diameter circle with %-in depth (analyzed by ICP)

Assumed mean for the 160 g in the 6.5-cu.in. volume = 1994 ppm
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Could be an issue for XRF!

Joanna Becker, Perdue Univ. PhD thesis, 2005, Centimeter scale analysis of soil
heterogeneities within a long-term, heavy metal contaminated site.

Becker, Joanna M., T. Parkin, C.H. Nakatsu, J.D. Wilbur and A. Konopka (2006)
Bacterial Activity, Community Structure, and Centimeter-Scale Spatial Heterogeneity
in Contaminated Soil. Microbial Ecology Vol. 51, 220-231.

Mass of soil in 4-inch circle (to ¥%-inch depth) = 160 g (assuming soil density of 1.5 g/
cubic cm)



A Grab Sample is “Representative” of ...?

...Its own mass.
— Do you make decisions at the scale of 100 grams?

Is there evidence that a jar represents a larger field volume?

“Sampling uncertainty”: Unmanaged heterogeneity raises
the question of whether the sample’s concentration is the
same as (i.e., represents) the concentration of a larger mass.

Think about the typical dimensions for the
soil you make decisions about...
...the concentration for that mass is what
you need to know.




A Thought Experiment

A unit of soil for which a decision needs
to be made (a decision unit, DU)

GIANT digestion'[
vessel ‘

Provides 1 analytical result
that represents the true : T
conc of the 1 ton of soil ‘ GIANT flask of

(There is no sampling uncertainty) . digestion acid
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If the entire DU could be analyzed in a single giant analysis, there would be no
uncertainty about the true Pb concentration. Note that this process would produce a
result that represents a giant composite of all soil particles in the DU.



Alternative:
Divvy the Whole Mass into Analytical Samples

Analyze entire 1-ton mass as 1-gram
analytical samples (-)

n= 1.4 x 10° samples & analyses = the
statistical “population”

Take the 1.4 million data results & calculate their
average = true conc for the 1-ton soil mass.

(Since the entire population of 1-gram samples is
analyzed, there is no sampling uncertainty)

Assume no analytical error.



Real World: Only a Fraction of the Population
Can be Analyzed, so Sampling is Required

“Representative”: the sample result,

£ or the average of multiple samples, is
* * * | close enough to the true concentration ®
DD S so that decisions are correct
* k K %k B
®
* % Kk * k% %
* K Kk k k% k% %k % ]

* Kk k k k ¥ ®
% =increment (n =33) for 1
incremental sample (1 analysis)
(Is sampling uncertainty present?)

@ = discrete sample (4
samples for 4 analyses) Is
there sampling uncertainty?

® = discrete sample (1
sample for 1 analysis) Is
there sampling uncertainty?
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For this thought experiment, again assume that there is no analytical error.

Since a single DU cannot be analyzed in a single analysis, we must take samples,
analyze them, and then draw conclusions about the DU concentration from the
concentration of the samples.

In scenario A, we take more samples (n = 33), but it is expensive to analyze them all.
So we perform a physical averaging by combining all the samples (now called
increments) together to form a single composite called an incremental sample, which
is analyzed. This is equivalent to taking 33 samples and analyzing all individually, then
mathematically averaging all 33 results. Because this is not an analysis of the entire
volume, there is uncertainty about how close the sample average is to the true
concentration. With only 1 analysis, it is not possible to determine how much
uncertainty is present in the result. However, if we take multiple independent
incremental samples, we can determine uncertainty.

In scenario B, we take 4 discrete (grab) samples. Because we want to use those
samples to determine the actual concentration for the entire DU, we take the average
of the 4 data points. Since we are using 4 small samples taken from a heterogeneous
medium (soil), there is uncertainty in whether the average of the 4 data points
accurately represents the concentration for the DU. We can calculate an estimate of
the uncertainty from the variability between the 4 results.

In scenario C, we take 1 discrete sample. There is sampling uncertainty present, but
we have no way to estimate how large that uncertainty is.

Which design looks like it would be more representative of the true concentration of
the DU?
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Incremental Sampling Methodology

Single incremental
sample (IS) covers a
decision unit (DU)

ISM definitive
guidance is the ITRC
ISM Tech Reg web
document

www.itrcweb.org/ISM-

—_—

(Field ISM)
Jo T
| Starting pt chosen at random along edge of DU |

-~

o]

This example: 30 increments (having a plug
shape) are combined into a single incremental

sample (IS) that represents the DU
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Replicate ICSs per DU

Need at least 3
independent replicate ICSs
if want to calculate UCL or
measure data uncertainty

Each replicate ICS result
represents an estimate
of the DU mean.

Example: 3 replicate ICSs
of 30 increments each =
90 increments total in DU

12
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Sample Processing & Correct Subsampling
Critical for Reliable Data

- - T

. o >l N &

* Micro-scale, within-sample heterogene, 1
caused by differences  in particle size} it

& composition ;

* Tiny particles are often composed of
minerals that readily adsorb
contaminants

i kel
Fig. 2.19 Tranemission electron
micrograph showing clusters of
many small acicular goethite crystals
(caurtesy of A. Suddhiprakarn and
R. J. Gilkes).

— Iron oxides
— Clay minerals

— “Contamination is
in the fines”
See “Reference version” for

this PPT presentation for
more details.

A is) ALY
glectren microscepe photograph of .

smectite clay - magnification 23,500 13
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Particle Size vs. Routine Lab Subsampling

Freshly collected soil sample —
Particles of many sizes &
composition

Photo credits: Deana Crumbling

Same sample jar after jostling
to mimic transport to lab:
particles segregate. _5

What if just scoop subsample
off the top?
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Here’s what we mean by “particle segregation.”

* These photos contrast non-segregated soil with segregated soil

e With shaking or jiggling, larger particles migrate to the top while smaller particles
settle downward

e Stirring to “mix” is ineffectual to redistribute particles; often makes segregation
worse

¢ If subsampling involves scooping off the top, could predominately get larger
particles; but this depends on another factor (see next slide)

14



Micro-Scale Heterogeneity & Sample Handling

Labs assume the sample they get is ready for analysis “as is”
May stir to “mix”— makes particle segregation worse
Lab duplicates often don’t match
— Reveals need for better sample processing & subsampling
Good sample processing may include drying, disaggregation,
sieving, and perhaps grinding
— Match subsample mass to soil particle size

(see equation in EPA530-D-02-002, Aug 2002, App. D)
Subsampling performed using incremental technique or
mechanical splitting
QC includes replicates to calculate subsampling precision
See “Reference version” for this PPT presentation for details

15
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ICS Sample Splitting & Subsampling Options
' Manual Techniques

Collect through full thickness
with properly shaped scoop

“1-Dimensional Slabcake”

“2-Dimensional Slabcake”

See “Reference version” for this
PPT presentation for more details.
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Speaker bullets

*2 D slabcake

eLower cost than sectorial splitter

*Pretty good representativeness

*Wet or dry sample

eSystematic Random design

eAll increments combined = analytical subsample

Narrative

The 2 dimensional Japanese slabcake frequently provides acceptable subsample
representativeness at a lower cost than the sectorial splitter. This process is a
miniaturized version of what takes place in the systematic random field sample
collection process. The wet or dry processed sample is spread evenly in rectangular
slabcake and divided into grids as determined in project planning. The default is 30.
The analyst removes a small increment from a random location in the first grid.
Subsequent increments are collected from the same location in the other grids. All
increments are combined to form the subsample for digestion or extraction so the
size of the increment must be appropriate for the number of increments and the
target subsample size.

2D slabcake subsampling can minimize bias and improve precision.

Supplemental information
See Section 6.2.2.7
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Advantages and Limitations of Incremental Sampling

Improved spatial coverage
(increments x replicates)

Sample includes high and low concentrations in same
proportions as present within decision unit (DU)

Higher field sample mass

Sample is more representative of field conditions;
statistical distribution of replicate results is normalized

Optimized processing

Reduces subsampling errors so analytical sample is
more representative of field sample

Fewer non-detects

Simplifies statistical analysis

More consistent data

More confident decisions; more regulator & RP
agreement on data interpretation

Small number of replicates

Limits UCL calculation methods (t-UCL & Chebyshev-UCL)

No spatial resolution within
Decision Unit

Limits remediation options within a DU unless a more
complex ICS design is used or have 2" remobilization

17

ISM has both advantages and disadvantages from a sampling design

perspective.

Can’t directly compare discrete and ISM samples because each measure

different properties of the population.

Under disadvantages, discrete sampling allows for calculations of ratios of two

variables — allows for correlations among constituents, or estimates of

bioaccumulation factors (update from abiotic media to organisms) that you

cannot get from ISM.

When assessing acute toxicity issues, the decision unit would have to be very

small for incremental sampling. ISM may not be practical.

17



XRF: Great Partner with Incremental Sampling
for Metals Analysis in Soil

18



Managing XRF’s Micro-Scale Heterogeneity

Use replicate readings to understand degree of short-scale (for in
situ readings) and micro-scale heterogeneities

Replicate readings can substitute for, or Af I
complement, sample processing ' : A

— Use reps’ arithmetic average as the “result”

How many XRF replicate shots? Depends on
data variability & closeness to decision
threshold; decide in real-time.

How many seconds of read time? Depends on desired quant limit

Program the calculations into spreadsheet for fast decision-making

Replicate readings do not add any consumables cost (only labor)

19
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After the initial 4 readings per bag, can take additional readings until
decision (Is the mean conc < 350 ppm?) is without statistical
uncertainty, i.e., the 95% upper confidence limit (UCL) is < 350 ppm.

Information: $U #4 $U-garden (1 loc) Information: U #4 $U-garden (1 loc)
5 Location 10 & __ FResdng  FunTime
Logation |0l Time | Feplicate Readings " w cec) N
Replicate Readings -
Location ID = #
Location ID = # Replicatereadingl  10:22 263 20 250 3%
Feplicate reading 1 0:23 263 20 260 38 2 1023 264 20 2380 38
2 10:23 264 0 280 ez 3 1024 265 20 374 40
3 10:24 265 20 74 40 4 10:24 266 20 320 kz)
4 10:24 268 20 az0 a3 5 [optional) 10:25 267 20 255 )
5 [optional) & (optional) 1026 263 20 256 e |
sopional  Statistical decision uncertainty T{optional i e R
7 [optional] & optional) 10:27 270 20 275 38
siepionay  Present, need more data to resolve 3 optional]
a 10 {optional)
[optional) " 2050
10 {(optional) s!;n 10, 2'5
Mean! e 8
£0 5384 2-sided Bag96%tLCL= 261
n=\ ot 2-sided Bag96%t-UCL= 328
2-sided BagdfctlCl: \ 221 Lsided Bag a5, _
2-sided Bag95x tUCL: 391 Bag 957 Chebyshew LCL= 233
t-sided Bag36% t-UCL = Bag95% Chebyshew UCL = 357
Eag 9520 Chebysheu LCL = 133
Bag 952 Chebyshey UCL = 423 sampling errar = 120 instrument emor = BE as ©RSD
20
zampling error= 183 instrument error = 64 as RSO

For more information, or to obtain a copy of the spreadsheet, contact Deana
Crumbling, USEPA, crumbling.deana@epa.gov

See “Reference version” for this PPT
presentation for details.



Warnings about XRF-ICP Data Comparability

“Comparability” refers to comparing XRF results to lab data
SAME samples must be analyzed by XRF and lab

Regression analysis commonly used to measure comparability;
generatesaline:y=mx+b
R2 is the commonly used “goodness” metric...

BUT IT SHOULD NOT BE!!

— R? greatly influenced by sampling error: XRF data cannot
match ICP data any better than ICP data can match itself!

— m (slope) & b (intercept) are more important than R%

* Intercept measures “bias”, the difference between total metal
(via XRF) & dissolvable/”available” metal (via 3050B digestion &
ICP)

* Slope should be close to 1.0
* Regression line should be close to “line of perfect agreement”

21
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Common ICP vs XRF Regression Techniques
lgnore the Effects of Sampling Variability

Orig ICP Data Set vs Orig XRF Data Set

2500
2000
§ y =0.9314x + 33.681
B R?=0.83546
S 150
o
o
E <
1000
- 0™
i o2 °
5 o
500 &
%
0 . .
’,,/”’B 200 400 600 800 1000 1200 1400 1600 1800

Orig ICP Pb Data Set

2000

Falsely assumes
the ICP data are
without error;
any differences
“blamed” on XRF

Orig ICP  Orig XRF

332 244
121 135
212 188
1730 1990
1480 992
990 1110
248 190
361 710
987 762
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700

XRF Total Uranium vs. Lab Total Uranium

*
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X
>y

&

N
o
=]

XRF Total U (ppm)
I
o

200

&3
& ¢
«Q <

b

100
/K)O 200 300 400 500 600 700

Alpha Spectroscopy Total U (ppm)

When Sampling Variability is Controlled,
XRF-Lab Comparability Can be Excellent

Other factors that can

degrade comparability:

* Differences in
moisture content

* Plastic bags holding
XRF samples not free
of interferences (this
is easily checked
before the start of
the project).

* Interfering minerals
and elements

23
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Comparability Done the Right Way

Each comparability sample is analyzed twice by both methods

1 XRF bag or cup Send bag/ 2 separate ICP
2 XRF readings — cup to the —  analyses

(orig & dup) Lab (orig & dup)
Analyte is Pb (ppm)

sample ID |orig XRF dup XRF [lorig ICP  dup ICP

NWS5-B-0-2/D 244 371 332 412

SWNMWA5-D-0-2.D 2150 1600 |CP results in the 3000 range--delete from plot

NW3-D-0-2/D 135 152 121 133|(because the single high value biases the regression)

WS4-B-0-2/D 188 156 212 240

NW17-B-0-2/D 1990 2500 1730 2580

W5-A-0-2/D 992 954 1480 1420

NW12-A-0-2/D 1110 1010 990 1000

WS7-D-0-2/D 190 141 248 223

SWHNW1-B-2-10/D 710 555 361 595 For more info, contact Deana Crumbling,
V5-B-2-10/D 762 460, 987 1030 crumbling.deana@epa.gov

Measures: 1) how well XRF dups agree;
2) how well ICP dups agree; and
3) how well XRF & ICP agree 24

For more information, contact Deana Crumbling, USEPA, crumbling.deana@epa.gov



An Unbiased Regression Technique for Comparability

| Dup ICP & XRF results |

2000 2500

1500

1000

95% confidence interval (dashed red lines)

bound the ICP vs ICP-dup regression line
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. . rd
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Vi s
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0 z Comparability
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e 7z of XRF to itself
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I’ /l
/l‘ © w
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/
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/
s
/
T T T T T T
500 1000 1500 2000 2500

prig ICP & XRF results ‘

The XRF-XRF dup
regression line (blue)
falls within ICP’s Cl (red),
meaning the XRF data is
as comparable to the ICP
data as the ICP is to
itself. Near the action
level (400), there is

good agreement.

Note that the XRF line
stays closer to the line
of perfect agreement
than the ICP line.
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For more information, contact Deana Crumbling, USEPA, crumbling.deana@epa.gov
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Using XRF to Guide Aspects of
Incremental Sampling for Metals

26



XRF & ICS: Perfect Together

XRF aids developing and verifying ICS sample processing
procedures prior to lab metals analysis.

Set DU boundaries to avoid mixing large “clean” and “dirty”
areas into same DU for purposes of remediation & source
delineation.

Use XRF to approximate mean and SD across a DU.
— How many increments per incremental sample?

- O Enlarge the XRF sample support to ~“same mass as the increment
sample support, or will over-estimate between-increment variability!

Use XRF to evaluate IS samples before leave the DU:
— Do you have enough replicate ISs to meet statistical decision goals?
— See “Reference version” for this PPT presentation for details
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Heasurement

8

R

Date:| 5/23/2006

Element:|As |

Acquisition
Time: 120 sec

RPD Calculations Here are for Comparison ONLY
Lower Upper Is the duplicate Does the
1st | Erroras |Error Type| Bound of Bound of |Instrument- | resuit within the .Relaﬂve Absolute RPD check
Result of [Reported| (1.1sSD; | 95% 95% | Reported |  statistical Difference: | Relative | Isthe | agree w/the
Sample|Duplicate| bythe | 2.2sp) |Confidence Confidence | Duplicate Confidence Numerical a-b Percent | RPD | statistical
ID Pair XRF | (Notes2 &3)| Interval Interval Result Interval? Difference Difference | <20%? check?
SW1 991 47 1 90 108 104 yes 47 46% yes yes
SW2 289 39 1 21 - 37 26.3 yes 26 94% yes yes
SW3 188 23 1 14 - 23 143 yes 45 212% no no
SW15 193 33 1 13 - 26 237 yes -44 205% no no
SW26 260 69 1 246 - 274 295 no -350 126% yes no
SW37 1406 184 1 1370 - 1442 1396 yes 100 0.7% yes yes
Swas 459 18 1 436 = 482 473 ves 140 -0030 30% | yes yes
SW59 5828 90.9 1 5650 - 6006 5803 yes 250 0.004 04% yes yes
Ensure Sufficient & Appropriate
o H 4 H .
(see “Reference version” for this PPT presentation)
N Control Chart
800+
Mean +38D (36.77 E
ol 1,036x + 10668 i
Mean +28D (2.77) y = 1.036x + 10.
o R?=0.9571
A A AN TN A -
/ Maan (24.75) 400
VANARY LBV z
Y 300
Maan - 28D (16.74) 200
100

Mean - 38D (12.73)

12 3 4 6 6 7 % 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Run Number

100 300

500 2879
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