

FACTORS AFFECTING THE FRACTIONAL EQUILIBRIUM FACTOR (F_{EQ}) OF RADON (RN-222) AND ITS PROGENY INDOORS

Caitlin Shanahan

1

ACKNOWLEDGEMENTS LEWIS LANGUAGE STATES TO THE STATES TO T

ACKNOWLEDGEMENTS

Stuart Walker
US EPA/OLEM/OSRTI/ARD/SPB
Superfund Remedial Program's National Radiation Expert

Michele Burgess, PhD US EPA/OLEM/OSRTI/ARD/SPB

Fred Dolislager
Oak Ridge National Laboratory
University of Tennessee

Jon Richards US EPA Region 4 SEMD

3

RVISL CALCULATOR

- ➤ Radon Vapor Intrusion Screening Level (RVISL) Calculator
- Establishes RVISLs, preliminary remediation goals (PRGs)
- Covers residential, commercial, and industrial exposure
- Accounts for Rn-222 in groundwater, air, and soil

Table 1. Summary Statistics of Current Suggested Indoor Concentrations Limits and Equilibrium Factors (F_{eq}) of Rn-222, Rn-220, and Rn-219

	RADON (RN-222)		ТНОК	ON (RN-220)		ACTINON (RN-219)			
Source	Concentration (pCi/L)	Concentration (Bq/m3)	Feq	Concentration (pCi/L)	Concentration (Bq/m3)	Feq	Concentration (pCi/L)	Concentration (Bq/m3)	Feq
US Environmental Protection Agency (US EPA) ^a	4	60	0.4	7.5	-	-	-	-	-
Uranium Mill Tailings Radiation Control Act (UMTRCA) ^b	5	185	0.4	7.5	277.5	-	-	-	-
International Commission on Radiological Protection (ICRP) Indoor Standard ^c	5.405	300	0.4	2.703	100	0.1	2.703	100	-
National Council on Radiation Protection and Measurements (NCRP) ^d	8±2	296±74	0.4-0.5	-	-	-	-	-	-
National Institutes of Standards and Technologies (NIST) ^e	2-4	-	0.5	-	-	-	,	,	-
Oak Ridge National Laboratory (ORNL) Resident ^f	-	-	0.8899	-	-	0.2106	-	-	0.8569

5

Table 1 (Continued). Summary Statistics of Current Suggested Indoor Concentrations Limits and Equilibrium Factors (F_{eq}) of Rn-222, Rn-220, and Rn-219

	RADON (RN-222)			THOR	ON (RN-220)		ACTINON (RN-219)			
Source	Concentration (pCi/L)	Concentration (Bq/m3)	F_{eq}	Concentration (pCi/L)	Concentration (Bq/m3)	Feq	Concentration (pCi/L)	Concentration (Bq/m3)	Feq	
Oak Ridge National Laboratory (ORNL) Commercial ^f	-	-	0.7209	-	-	0.5227	-	-	0.6379	
United Nations Scientific Committee on The Effects of Atomic Radiation (UNSCEAR) ^g	-	-	0.2	2	74	0.02	-	-	-	
World Health Organization (WHO) ^h	2.703	100	-	-		-	-	-	-	
European Environment & Health Information System (ENHIS) ⁱ	1.081	40	-	-	-	-	-	-	-	

Sources are available upon request and/or are referenced in the paper

LEWIS UNIVERSITY

TABLE 2. FACTORS INCREASING INDOOR RN-222 FEQ

Factor Type	\mathbf{F}_{eq}	Reference		
Smoking	0.72	US EPA, 2004, Pgs. 18-25		
High Altitude	0.71	Chen & Harley, 2018, Pg. 493-495		
Humidity/Rain	0.69 ±	Acree, 2014, Pgs. 3-5		
Trumdity/Kam	0.18	Actee, 2014, Fgs. 3-3		
Smog	0.63 ±	Chambers et al., 2015, Pgs. 1178-1180		
Sillog	0.15	Chambers et al., 2013, Fgs. 11/8-1180		
Tighter Construction (concrete, brick, etc.)	$0.60 \pm$	Collé et al., 1981		
Tighter Construction (concrete, brick, etc.)	0.24	Conc et al., 1981		
Inactivity (4:00 P.M. to 6:00 P.M.)	0.59	Kusuda et al., 1980, Pgs. 1203-1204		
High Population Density	0.58	Chen & Harley, 2018, Pg. 492		
(greater than or equal to 300 persons/km²)				
Increased Emanation Rate	0.56	Kusuda et al., 1980, Pgs. 1202-1205		
Y 1 4	0.54	Kreuzer and McLaughlin, 2010, Subsection "Health		
Underground Workspaces	0.54	Effects"		
Suggested Average Limit	0.4	US EPA, 2004, Pgs. 1&3		

*Table 2 exhibits factors that increase the F_{eq} of Rn-222. While minimal data is presented in literature, it is understood that these increases are representative of Rn-220 and Rn-219, as each factor listed increases the incident equilibrium.

7

LACK OF AIR EXCHANGE

Suggested Average Limit	0.4	US EPA, 2004, Pgs. 1&3		
Inactivity (4:00 P.M. to 6:00 P.M.)	0.59	Kusuda et al., 1980, Pgs. 1203-1204		
Tighter Construction (concrete, brick, etc.)	0.60 ± 0.24	Collé et al., 1981		

- ➤ Porosity and permeability of building materials like concrete lessen air flow
- >HVAC usage increases radon concentration
- Less activity means less particle deposition and less air exchange

TABLE 3. FACTORS DECREASING INDOOR RN-222 F_{EQ}

Factor Type	F_{eq}	Reference		
Hours of High Activity (6:00 A.M. to 4:00 P.M.)	0.27-0.78	Chen & Harley, 2018, Pgs. 493-495		
Thermal Spas	0.3	Chen & Harley, 2020, Pg. 345		
Sea Level Altitude	0.31 ± 0.09	Nero et al., 1990, Pgs. 60-66		
Snow Coverage	0.32	Yamazawa et al., 2005, Pg. 2		
Ventilation (open windows, minimal HVAC use, greater sq. ft., etc.)	0.33	Chen & Harley, 2018, Pgs. 493-495		
Sparse Population Density (less than or equal to 90 persons/km²)	0.34 ± 0.12	Chen & Harley, 2018, Pg. 492-493		
Loose Construction (wood, gapping, lack of insulation, etc.)	0.36	Collé et al, 1981 and Appleton & Miles 2010, Pgs. 802-803		
Tourist Mines and Show Caves	0.39	Chen & Harley, 2020, Pg. 343		
Aerosol Particle Plate Out/Deposition	0.39 ± 0.04	Harley et al., 2012, Pgs. 461-462 and Porstendörfer et al.1978, Pgs. 468-472		
Suggested Average Limit	0.4	US EPA, 2004, Pgs. 1&3		

*Table 3 exhibits factors that decrease the F_{eq} of Rn-222. While minimal data is presented in literature, it is understood that these increases are representative of Rn-220 and Rn-219, as each factor listed increases the incident equilibrium

13

RN-222 F_{EQ} PERCENT INCREASE BY FACTOR 80.00% 70.00% 60.00% 40.00% 30.00% 20.00% 10.00% 0.00% Frithing Altitude Light Robert Light Ro

FUTURE WORK

Seasonal impacts of smoking and smog on Rn-222 F_{eq}

Expand research and sampling of Rn-220 and Rn-219

Propose an update to RVISL calculator to consider factors such as smoking and smog for ELCRs and PRGs

15

WE WANT TO HEAR FROM YOU!

HELP US OUT

- 1. Are you aware of a study that assessed equilibrium levels of radon, thoron, and actinon that is not included in this presentation?
 - >Yes, it is publicly available
 - >Yes, it is not publicly available
 - ≽No
- 2. If it is publicly available, please provide information on it (e.g., name of government agency, university, company, etc) and how to obtain it (e.g., website, contact name and phone number)
- 3. What ongoing research, if any, are you aware of regarding radon, thoron, and actinon risk assessment?

QUESTIONS?

Contact Information

Caitlin Shanahan
Office #: +1 (312) 353-2690
Work Email: Shanahan.Caitlin@epa.gov
Other: Caitlin.Shanahan@comcast.net

Stuart Walker Office #: +1 (202) 566-1148 Work Email: walker.stuart@epa.gov

Frederick Dolislager Office #: +1 (865) 576-5451 Work Email: dolislagerf1@ornl.gov

