

Rapid Assessment Tools (RAT)

- Developed in-house as a stand-alone application
- Data is collected & captured "hands-off"
- Uses multiple devices (Radiation, Air, Soil) – Manual, Single, and Continuous Point Collection
- Real-time spatial visualization
- Immediate data storage and GIS file creation
- Data export

Development & Application History

- October 2003
 - Began Rapid Assessment Tools programming
- November 2003
 - Mapped a simulated car dirty-bomb using RAT for USEPA's "Operation River City" in Louisville, Kentucky.
- February 2004
 - Presented RAT to ERT team in Edison, New Jersey
- May 2004
 - Demonstrated the new viewer and database capabilities in the "Detroit Weapons of Mass Destruction Exercise".

Development & Application History

• July 2004

 "Ruby Slippers Exercise" - Utilized RAT extensively for a simulated downed satellite in Fort Leavenworth, KS.

• August 2004

- Presented RAT to the USEPA's Cincinnati ERT office.
- Proposed adding ERT's Scribe database export to RAT

September 2004

 Discussion with PacketHop Corporation in CA about deployment of a wireless mobile communication software that can be used in conjunction with RAT.

November 2004

 OSC Readiness training in Phoenix, Arizona. Three hour seminar utilizing RAT with WIFI radio communications in a live demonstration exercise.

Development & Application History

• December 2004

 Conducted an XRF survey surrounding the Jacobsville Lead Superfund Site, Evansville Indiana. Collected over 50 composite locations incorporating 250 lead sample cores for residences surrounding the site.

• February 2005

- A 2 day training for START contractors was conducted with an outdoor and hands on demonstration utilizing RAT with a GPS, radiation and air monitoring, and transportation devices.
- May 2005

 Presented RAT at the EPA technology forum in Washington DC with a focus on data storage the use of wireless connectivity with real-time data collection.

RAT Field Applications 2005/6

- Scio Pottery Removal Action, Lead (OSC Jim Augustyn)
- Plastics Fire ER Perimeter Monitoring (OSC Steve Renninger)
- Tire Fire ER Perimeter Monitoring, VOCs (OSC Jim Mitchell)
- Warren Recycling Removal Action of H2S (OSC Mark Durno)
- All-Star Game ER Predeployment for mobile perimeter monitoring
- Styrene Response ER Perimeter Monitoring
- CMC Properties, Minneapolis, MN Superfund Site Assessment for Arsenic in Soil (Tim Prendeville, RPM)
- Jacobsville, IN Continued Superfund Site Assessment for lead in Soil (Jena Sleboda Braun, RPM)
- Taylor Springs, IL Superfund removal for lead in residential neighborhood (OSC Craig Thomas)

EPA Deployment Options

Personal

Backpack system

- ➢ Single device
- Move through tough terrain

Mobile

Push Cart System

- Ability to run multiple devices
- Carry batteries for WIFI, GPS, and devices

Motorized

Kawasaki 4X4 Mule

- Ability to carry multiple devices
- ➢ Power plug-in
- > Carry multiple people

Contouring and Analysis

Collected data can be contoured at any time allowing easy visualization of data trends. Statistical Tools allow point and grid files to be summarized for quick trend and action level analysis.

What is GPS?

- GPS: Global Positioning System is a worldwide radionavigation system formed from a constellation of 25 satellites (space vehicles) and their ground stations.
- Uses the principle of triangulation and time-of-arrival of satellite signals to determine the location of a GPS receiver

Da ⁻ C	ta Collection SPS Setup	
	Select GPS Device	×
GPS Settings External Device Settings Timer Interval Status Window Trend Window	GPS Device Settings Device Name: NMEA 84 Communication Port: GPS Simulation Mode GPS Simulation Mode GPS Simulation Mode	Local Settings Time Zone: Central Standard Time Local Computer Date: 5/5/2006 Local ComputerTime: 3:36:55 PM
	Computer Clock Is Correct	OK Cancel

Add	ing a Device	
S Instrument Information		
Instrument Category:	SCRIBE Information Instrument Serial Number:	
Manufacturer:	Manufacturer for Scribe:	
Model:	Model for Scribe: 2221	
Detector: 44-10	Detector Serial Number:	
COM Port: Detect Automatically	Operator:	
Description:	Measuring Surface:	
	Sensor Height (m):	
	OK Cancel	

Collect G	SPS AI	rea
Data Collection Create/Open File Continuous Start	Stop	Collect Single Point
	Collect GPS Area	Collect Points Manually
 Line Area Sample Design Define hot spots Site boundary 	Collect GPS Area Select whether you w area: Collect. Collect (When you are done + must use the stop but	Area Line Collecting the line or area you ton on the main RAT form.) UK Cancel

	Manual Data Collection	
C	Create Collection Table	
	Field Data Type Size Dec_DEG_X Double 13 5 Data Type Image: Comparison of the second	
 Dat - Size - - - - - - Dec 	a Type: Text: entering a qualitative description (dry, saturated) Integer: values are whole numbers Double: allows you to enter decimal values e: number of text or numerical characters that you want to be able to enter e.g. 2= 99, 3 RAT **Note** Double: Add 1 for decimal point cimal Places:	=
-	set the number of decimal places to be entered (when Double is selected as a data type)	
		30

Field Data Type Size Decimal Value Field TIME Text 25 0 171024 Name Soil Dr0DP Double 13 5 3.60000 GPS_ELEV Double 13 5 2.184.410000 GPS_DEVICE Text 25 0 NMEA 84 Value Soil Set Value Set Va	Add Manual Point			X
S Ck Cancel Easting (X): 451687.261662 Northing (Y): 4633468.485841 Segment(m): Total (m): PDOP:	Field D2 TIME Te PDOP D0 GPS_ELEV Dc GPS_DEVICE Te SOIL_TYPE Te SOIL_TYPE The values may be assigned	ata Type Size Decimal ext 25 0 suble 13 5 suble 13 5 suble 13 5 suble 7 3 ext 7 0 ext 7 0 red to the checked fields only.	Value Field 171024 3.600000 184.410000 NMEA 84 Value	SolL Set Value 4
Easting (X): 451681.261662 Norming (Y): 463.3468.485841 Segment(m): Total (m): PDOP:				
	Segment(m):	Total (m):	PDOP:	1400

Data Analysis using GIS tools In RAT

Topics –

- I. Statistics
- **III. Trend Analysis**
- IV. Data Estimation using Contour Grids
- V. Data Merging
- VI. Advanced Analysis

Stat Exampl	istics e Output	
Point Statistics		
Number of observations:	51	
Mean:	7.705882	
Median:	7.700000	
Standard Deviation:	0.030754	
Maximum Value:	7.800000	
Minimum Value:	7.600000	
	[0K]	

Explain what each one means.

Ed Location (GPS) Data		Device I	Data N	Metadata		
Х	Y	RESULTS	CHEM NAME	DEVICE		
447683.908353	4636213.285576	1.1	Lower Explosive Limit	MultiRAE		
447683.909736	4636213.285566	7.7	Lower Explosive Limit	MultiRAE		
447684.050868	4636213.293782	7.7	Lower Explosive Limit	MultiRAE		
447684.764416	4636213.279288	7.7	Lower Explosive Limit	MultiRAE		
447685.244119	4636213.249856	7.7	Lower Explosive Limit	MultiRAE		
447686.501204	4636213.235071	7.8	Lower Explosive Limit	MultiRAE		
447687.909999	4636213.350561	7.7	Lower Explosive Limit	MultiRAE		
447689.276509	4636213.734691	7.7	Lower Explosive Limit	MultiRAE		
447690.837132	4636213.808354	7.7	Lower Explosive Limit	MultiRAE		
447692.449996	4636213.839071	7.7	Lower Explosive Limit	MultiRAE		
447693.953785	4636214.083403	7.7	Lower Explosive Limit	MultiRAE		
447694,870304	4636214.023006	7.7	Lower Explosive Limit	MultiRAE		
447696.576819	4636214.188126	7.7	Lower Explosive Limit	MultiRAE		
447698.362881	4636214.261986	7.7	Lower Explosive Limit	MultiBAE		
447701.979657	4636214.651801	7.8	Lower Explosive Limit	MultiBAE		
447702-007074	ACOCOL & 01/000	77	1 F	MALIND AL		

Edit Data						
GPS ELEV	GPS DEVICE	NO	TES	ZONE	UNITS	-
202.46	NMEA 84			16	%	=
202.45	NMEA 84			16	%	
202.35	NMEA 84	Spil	led coffee on laptop	6	%	
202.35	NMEA 84			16	2	
202.35	NMEA 84		Add notes	for individ	ual points	
202.47	NMEA 84		(other field	e connot k		
202.44	NMEA 84			s cannot L	e eulleu)	
202.42	NMEA 84			16	%	
202.47	NMEA 84			16	%	
202.49	NMEA 84			16	%	
202.12	NMEA 84			16	%	
202.03	NMEA 84			16	%	
202.48	NMEA 84			16	%	
202.34	NMEA 84			16	%	
202.13	NMEA 84			16	%	-
201.00	NUMEA OA			10	e/	

Contouring

- Create first approximation interpolation of the collected data points.
- Interpolation-
 - Create a grid of estimated values for unsampled locations surrounding your collected points.
 - R.A.T. uses a natural neighbor algorithm
 - Aids in the visualization of contaminant plumes
 - Helps to design a sample design by identifying areas of concern.

Going back to the GIS overview- viewing data with different classification schemes allows you to see different patterns in the data (geovisualization)

Advanced Analysis & Modeling

- After data has been collected and stored using R.A.T. it can be brought into other GIS packages for further analysis.
- **F/S Plus** is a stand-alone, 2D/3D data display and analytical tool that was also created by FIELDS
 - free download at http://www.tiem.utk.edu/~fields/
 - Using more complex GIS tools allows for more advanced analysis and visualization of the data.

Cincinnati Styrene Response Cincinnati, OH

"I have used the maps to brief incident commanders and mayors who are making evaluation decisions."

- Steve Renninger (OSC)

- RAT maps can be used in the field to view the data as it is being collected
- The maps can also be saved as .jpeg images for easy transfer of visual data from the field to all interested parties.
- The maps can also be used in reports and presentations after the situation has been resolved.

Alternative Plastics Fire Greendale, IN

- July 7, 2005 Greendale Fire Department responded to a fire at a plastics manufacturing plant.
- July 7th, EPA (Steve Renninger Lead OSC) began perimeter air monitoring using START resources, RAT software, and multiRAE devices.
- A Shelter area was defined and safety zones were established and updated based on the collected air monitoring data.
- The fire was controlled on July 8th and EPA air monitoring continued until the end of July 9th.

The United States Customs and Border Protection uses an array of radiation detection equipment to intercept contraband, conduct vehicle and cargo inspections, and screen people. These technologies include x-ray systems, radionuclides, accelerators, and neutron activation systems. Although the systems used by Customs cause little or no radiation exposure to their operators, Customs still provides training to the inspectors who use them and conducts rigid evaluations to verify that the equipment is optimized for the job and meets the strictest safety parameters. Part of the evaluation process includes a radiological footprint associated with the technology. This information is used by Customs personnel to establish radiation-restricted and exclusion areas for the equipment. Radiation systems provide Customs with a vital, technological edge in carrying out its mission. New systems are appearing regularly expand their "reach" and sensitivity for national security. These systems also provide new levels of safety for the people who operate them and those who may be exposed to their effects. Customs sees a strong potential for the EPA RAT tool to 1) quickly characterize existing systems to ensure safety measures and maintenance efforts are adequate, and 2) rapidly assess and implement the latest technologies to improve national security.

The <u>National Institute for Occupational Safety and Health</u> conducts research and makes recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) in the Department of Health and Human Services. This agency has extensive experience conducting field evaluations and assessments and is identified in the National Response Plan Worker Health and Safety Annex as the agency to conduct complex exposure assessments. NIOSH personnel will use the EPA *RAT* tool to provide and independent assessment of the various Customs screening technologies. Their experience, expertise, and feedback will help EPA improve the *RAT* tool as well as strengthen Customs occupational safety program.

