U.S. EPA Superfund Remedial Program's Approach for Risk Harmonization when addressing Chemical and Radioactive Contamination at Sites

CAUTION HAZARDOUS WASTE STORAGE

Stuart Walker U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation (OSRTI) Assessment and Remediation Division (ARD) Science Policy Branch (SPB)

> Presented to a CLUIN webinar on Wednesday May 22, 2024

DISCLAIMER

- The views of the author of this presentation are those of the author and do not represent Agency policy or endorsement
- Mention of trade names of commercial products should not be interpreted as an endorsement by the U.S. Environmental Protection Agency

EPA Addresses Site Cleanup Under Several Laws, Programs

This talk discusses only the Comprehensive Environmental Response, Compensation & Liability Act, CERCLA or "Superfund"
National Contingency Plan (NCP) is regulation for CERCLA
National Priorities List (NPL) guides EPA's remedial program on which sites need further attention

Purpose

- Provide brief description of CERCLA remedial program process
- Provide overview and comparison of key EPA CERCLA remedial program guidance and tools that specifically address radionuclides and their chemical precursor document
 - » Radionuclides are also addressed with other hazardous substances under general EPA CERCLA guidelines
 - » EPA's approach has received high-level review
 - » EPA began this approach in guidance from the 1980's/1990's

How to Address Radiation in a Chemical Program?

- With only approximately 66 radioactively contaminated NPL sites out of 1,797 total, the focus of the Superfund remedial program has been on chemicals
- Question: How to best address radiation?
- Answer: Address radiation in a consistent manner with chemicals, except to account for the technical differences posed by radiation
 - » Radiation easily fits within Superfund framework
 - » Improves public confidence by taking mystery out of radiation

»Radioactively contaminated NPL sites also have chemical contamination

Why Does Radiation Easily Fit within the Superfund Remedial Program's Framework?

Primary effect is cancer

- People ingest, inhale, eat, same amount of contaminated dust and food whether it is chemical or radioactive contamination
- Dust gets resuspended the same whether it is chemically or radioactively contaminated
- Inorganic elements move through the subsurface whether they are radioactive or not

Regional Screening Levels (RSLs)

Regional

Screening

Levels (RSLs)

<u>Home Page</u>

User's Guide

What's New

Equations

Contact Us

<u>RSL Calculator</u>

Generic Tables

Frequent Questions

To download the most recent Regional Screening Level tables, please go to the Generic Tables page. For assistance/questions please use the RSL Contact Us page

Welcome

Welcome to the "Regional Screening Levels for Chemical Contaminants at Superfund Sites" screening

level/preliminary remediation goal website. This website was developed with DOE's Oak Ridge National Laboratory (ORNL) under an Interagency Agreement as a merger of the EPA Region 3 RBC Table, Region 6 HHMSSL Table and the Region 9 PRG Table. The RSL website is now the source of screening levels for all the EPA regions. The RSL tables provide comparison values for residential and

commercial/industrial exposures to soil, air, and tapwater (drinking water). The unified use of the RSLs, to screen

chemicals at Superfund sites, promotes national consistency. Here you will find tables of riskbased screening levels, calculated using the latest toxicity values, default exposure assumptions and physical and chemical properties, and a calculator where default parameters can be changed to reflect site-specific risks. To ensure proper use of the screening level tables and the calculator, please review the What's New, User's Guide, Frequent Questions, and Download Area links. Below is a general description of screening levels for chemical contaminants. If the calculator is used with non-default inputs in a decision on a Superfund site, it is recommended that the inputs be clearly identified and justified by the user.

Introduction

Part 1. **Technical Guidance & Tools** for the Superfund Remedial Program

 What's New Frequent Questions Equations PRG Calculator Radionuclide Decay Chain ingestion inhalation external Air Ingreation
 inhalation
 Immersion
 consumptie of produce Air Air Soll Screening Level - peer - milk - swine - fish - goat - goat - goat - sheep - sheep mi

Velcome to the EPA's "Preliminary Remediation Goals for Radionuclide Contaminants at Superfund Sites" (PRG) Download and Calculator vebsite. The recommended PROs on this website are preliminary remediation goals (PROs) for contaminated soil, water, and air. PROs are ddressed in the NCP and EPA CERCLA guidance. Typically PRGs are risk-based, conservative screening values to identify areas and ontaminants of potential concern (COPCs) that may warrant further investigation.

his tool presents risk-based preliminary remediation goals (PRGs) calculated using default input parameters and the latest toxicity values. I ddition, you are able to modify the input parameters to create site-specific PRGs to meet the needs of your site. To ensure proper application f the PRGs, please see further guidence on how to use the PRGs presented on this site located in the "<u>PRG User's Guide"</u>, "<u>PRG What's New</u>", RG FAQ", and "PRG Download Area" links. The EPA has prepared a <u>fact sheet</u> for the general public that describes PRG uses, PRG calculate peration and land uses available for assessment. Additionally, this fact sheet describes the PRG and Dose Compliance Concentrations (DOC alculators in greater detail for EPA staff. The Office of Solid Waste and Emergency Response (OSWER) Directive, Superfund Radiation Risk sessment: A Community Toolkit was also developed by the EPA to help the public understand more about the risk assessment process Superfund sites with redipective contemination

he PRG calculator results were previously verified. The documentation from these may be seen on the Internal Verification and External erification pages. The PRG calculator was previously peer reviewed and the documentation of those peer reviews may be seen here. The P slculator was previously part of several model comparison, and the documentation of one of those reviews may be seen in NCRP Report N 46: Approaches to Risk Management in Remediation of Radioactively Contaminated Sites. This report examines EPA Superfund and NRC ecommissioning programs approach to rediation site cleanup. Section 3.3.3 is a "Comparison of EPA Preliminary Remediation Goals with IRC Screening Levels." It is part of a larger Section 3.3 "Methods of Site Characterization and Dose or Risk Assessment." Several other omparison reviews that focused on describing the default parameters in various models may be found here.

Introduction

Welcome

A purpose of this suidance is to provide a PRG calculation tool to assist risk assessors, remedial project managers, and others involved with isk assessment and decision-making at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (commor nown as Superfund) in developing PRGs

FΡΔ

Generic Tables

PRG Home

PRGs for

Home Page

User's Guide

Nine CERCLA Remedy Selection Criteria – Two Threshold

- ♦ Two threshold criteria (both must be met)
 - 1. Protect human health and the environment
 - 2. Comply (attain or waive) with other federal and state laws: Applicable or Relevant and Appropriate Requirements (ARARs)
 - Protect current or future sources of drinking water (e.g., attain MCLs or more stringent state standards)

CERCLA Cleanup Levels

- ♦ ARARs often determine cleanup levels
- Where ARARs are not available or protective, EPA sets site-specific cleanup levels that
 - » For carcinogens, represent an increased cancer risk of 1×10^{-6} to 1×10^{-4}
 - —10⁻⁶ used as "point of departure"
 - —PRGs are established at 1 x 10^{-6}
 - » For non-carcinogens, will not result in adverse effects to human health (hazard index (HI) <1 is protective)</p>
- ♦ Address ecological concerns
- To-be-considered (TBC) material may help determine cleanup level

CERCLA Cleanup Levels Are <u>NOT</u> Based On

NRC decommissioning requirements (e.g., 25, 100 mrem/yr mrem/yr [0.25, 1 mSv/yr] dose limits) 10 CFR 20 Subpart E

- » If used as an ARAR, 10⁻⁶ still used as point of departure, and 10⁻⁴ to 10⁻⁶ risk range must be met
- Guidance outside risk range and/or if expressed as a dose (# mrem/year). This includes:
 - » DOE orders, NRC guidance (e.g., NUREGs), ICRP guidance, IAEA guidance, NCRP guidance, ANSI/HPS guidance, EPA/DHS PAGs, and Federal guidance

Risk-based Cleanup Levels for Radioactive Contamination

- Superfund uses radiation cleanup levels expressed as risk levels, not mrem [mSv], derived from using "slope factors"/ risk coefficients instead of dose conversion tables to estimate cancer risk from radioactive contaminants. These slope factors represent the:
 - » probability of cancer incidence as a result of a unit exposure to a given radionuclide averaged over a lifetime using LNT.
 - » age-averaged lifetime excess cancer incident rate per unit intake (or unit exposure for external exposure pathway) of a radionuclide

Prepared by Michael Bellamy Lauren Finklea Fred Dollalager

UT-BATTELLE

The slope factors used by Superfund are updated values from FGR 13 supplement using ICRP 107 decay data. The derivation is outlined in a 2014 ORNL Technical Manual.
 EPA

Site consistency

- To help facilitate compliance with NCP and cleanup sites, EPA Headquarters provides:
 - » Guidance documents
 - »Models (calculators)
 - » Training (developed with State led ITRC)
 - »16 Annual Meetings with EPA Regions
- Guidance, models, training are available for free on the internet
 » Also provided 47 all day classes on Superfund Radiation Risk Assessment

EPA

Guidance: CERCLA Cleanup

- Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination (8/22/97) OSWER Directive 9200.4-18
- Radioactive contaminants at CERCLA sites are governed by the NCP like all other contaminants
 - » Cleanups based on ARARs or risk range
 - » Groundwater restored to beneficial reuse
 - » Use reasonably anticipated land use

Guidance: Risk Assessment Q&A Old Superseded

- Adiation Risk Assessment at CERCLA Sites: Q&A (12/99) OSWER Directive 9200.4-31P
- Provides overview of then current EPA guidance for radiation risk assessment
- Written for users familiar with Superfund but not radiation
- ♦ Adds some new guidance
 - » Dose assessment only for ARAR compliance
 - » No dose-based TBCs (including No 15 mrem/yr [0.15 mSv/yr])
 - » Direct exposure rate may supplement sampling

Revised 2014 Risk Assessment Q&A issued June 2014

- Adiation Risk Assessment at CERCLA Sites: Q&A (5/2014)
 OSWER Directive 9200.4-40
- Provides overview of current EPA guidance for radiation risk assessment
- Written for users familiar with Superfund but not radiation

<u>Summary of Key Policy Points</u> of Revised 2014 Risk Assessment Q&A

- 1. Still do not use dose-based (expressed as # millirem per year (mrem/yr) guidance as TBCs
 - » Including NRC, DOE, or international guidance
- 2. Dose-based ARARs not protective if greater than 12 mrem/yr [0.12 mSv/yr], instead of 15 mrem/yr [0.15 mSv/yr]
- 3. Use EPA Superfund risk assessment models (PRG and DCC calculators)
- 4. Don't use Area Averaging (MARSSIMM) survey method for rad when using Not To Exceed for chemicals

Update Policies Based on Newer Science

For an effective dose standard ARAR to be considered protective, it should be 12 mrem/yr [0.12 mSv/yr] or less.

» Change from 15 mrem/yr [0.15 mSv/yr] based on risk to dose estimate in Federal Guidance 13

» Cleanup levels not based on an ARAR continue to be based on cancer risk range (10⁻⁴ to 10⁻⁶) not dose

More consistency on Risk Assessments (Rad & Chem)

- Explain what type of circumstances these Superfund guidance and tools are recommended
- Reiterate more strongly that risk assessments (e.g., models used) should be consistent with chemicals at site and with other regional sites
- Don't use a steady state model for chemical and a transfer/dynamic model for radionuclides

» Such as using RSL calculator for chemicals then RESRAD for radionuclides

More consistency on Surveys (Rad & Chem)

- Explain what type of circumstances these Superfund guidance and tools are recommended
- Reiterate more strongly that site surveys (e.g., characterization and confirmation) should be consistent with chemicals at a site and with other regional sites
- Don't use not-to-exceed (NTE) for chemicals and area averaging (AA) for radionuclides for residential
 - » NTE for residential cleanup of chemicals but AA approach like MARSIMM for the radionuclides

Guidance: chemical SSG

◆Soil Screening Guidance [SSG] documents (7 & 5/96) OSWER Directives 9355.4-23 and 9355.4-17A » User Guide » Technical Background Document Guidance to screen out areas, pathways, and/or chemicals early in the process » 1 x 10⁻⁶ and MCLs (leaching from soil) »Residential land use » Survey procedures for site characterization » Evaluates 9 soil to groundwater models EPA

Page-20

Guidance: Rad SSG

 Soil Screening Guidance for Radionuclides [rad SSG] documents (10/00) OSWER Directives 9355.4-16A and 9355.4-16

- » User Guide
- » Technical Background Document
- Guidance to screen out areas, pathways, and/or radionuclides early in the process
- ♦ Consistent with 1996 chemical SSG
 - > 1 x 10⁻⁶ and MCLs (leaching from soil)
 - » Residential land use
 - » Survey procedures for site characterization
 - » Evaluates 5 soil to groundwater models
 - » Accounts for technical differences of radiation

ΕΡΑ

Guidance: Chemical RSL Calculator

Calculator to establish Screening Levels/PRGs, when:
 » ARAR is either not available or sufficiently protective
 Electronic equations (risk and leaching to groundwater) also are on Internet
 » 1x10⁻⁶ and MCLs (leaching from soil)

» Includes dermal exposure

Page-22

Guidance: Chemical RSL Calculator (continued)

♦ Nine scenarios/land uses available

- 1. Residential
- 2. Recreator
- 3. Construction
- 4. Indoor workers
- 5. Outdoor workers

6. Fish ingestion
 7. Tap water
 8. Soil to groundwater
 9. Air

Includes chemical toxicity of uranium

Guidance: Rad PRG Calculator

Calculator to establish PRGs, when:

- » ARAR is either not available or sufficiently protective (e.g., 25 mrem/yr [0.25 mSv/yr] or more)
- Electronic equations (risk and leaching to groundwater) also are on Internet
 - » 1x10⁻⁶ and MCLs (leaching from soil)
 - » Accounts for technical differences of radiation (e.g., gamma, plant uptake)

Guidance: Rad PRG Calculator (continued)

Ten scenarios/land uses available

- 1. Residential
- 2. Recreator
- 3. Construction
- 4. Indoor workers
- 5. Outdoor workers

- 6. Fish ingestion
 7. Tap water
 8. Soil to groundwater
 9. Air
 10.Farmer
- Chemical RSL equations should be used for chemical toxicity of uranium
- EPA developed Internet-based training with States (ITRC) on calculator and radiation risk assessment
 - http://www.clu-in.org/conf/itrc/rads_051507/ EPA

Guidance: ARAR Dose Calculator

 Calculator to establish Dose Compliance Concentrations (DCC) for single dose limit ARARs requiring a dose assessment

♦ Ten scenarios/land uses available

- 1. Residential
- 2. Recreator
- 3. Construction
- 4. Indoor workers
- 5. Outdoor workers

6. Fish ingestion
 7. Tap water
 8. Soil to groundwater
 9. Air
 10. Farmer

Equations are similar to those used for PRG calculator, except dose conversion factors (ICRP 107, 72, 32) used instead of slope factors

Page-26

RSL, PRG, DCC, Similar Look and Feel

RSL Calcul	ator	
Hover over any <u>form section</u> for instructions about the indi requirements.	vidual selection and	Regional Screening Levels (RSLs)
Select Screening Level Type		Home Page User's Guide
 Regional Screening Levels (RSLs) Regional Removal Management Levels (RMLs) 		What's New Frequent Questions Equations
Select Hazard Quotient		RSL Calculator Generic Tables
0.1		<u>Contact Us</u>
Other:		
Select Target Risk		
0 10-9		
Other:		
Select Scenario		
Resident		
O Indoor Worker O Uutdoor Worker		
Composite Worker (presented in Generic Tables) Construction Worker (Site Specific only)		
Fish (Site Specific Only)		
Soli to Groundwater Recreator (Site Specific only)		
Select Media:		
Soll		
Tapwater		
Select Screening Level Choice		
 Defaults Site Specific 		
Select Risk Output		
No Yes		
Select RfD/RfC Choice		
Chronic Subchronic		
*Chronic selection will retrieve Chronic-only RfDs/RfCs; Subchronic select	ion will retrieve subchronic values w	here possible.
Select Chemicals		
Type to select some chemicals		
clear all selections		
Select All Chemicals		
Ves		
Select Include Metadata		
Yes		
Retrieve		
		Top of Pag
Right-click and select "Save target as" to download database-ready files that	can be read into EQuIS and SADA.	
EOulS Format THQ=1.0 and TR=1E-06 EOulS Format THQ=0.1 and TR=1E-06		
CODA Frontiac (RUCULI and IR-1E-00		

SADA Format THO=0.1 and TR=1E-06

Hover over any <u>form section</u> for instructions about the individual selection and requirements.	PRGs for Radionuclides
Select Target Risk	Home Page User's Guide What's New Frequent Questions Southous PRO Calculate Baldonuclide Decay Chain Senset: Cables
Select Scenario Select Scenario Select Media Select Media Select Stena Lispane Sele	
Select Units	
Competer List Selected	
Common Isotopes	
Dr Select All િ તા. Source and Decay Output Options	

Dose Compliance Concentrations (DCC)		
Hover over any <u>form section</u> for instructions about the individual selection and requirements.	DCCs for Radionuclides	
Select Dose Limit (mrem/yr)	Home Page Unit's Guide What's New Prequest Questions Equations Calculator Seneric Tables	
Basket Capacity Water Capacity Water Canpoint Canpoint Water Canpoint Canpoint Water Canpoint		
Select Media: Arr Try Water 2 20 Edemait Exposure Fab		
Select Site Info Type © Defaults		
Ste-specific Select Dose Output		
No Var		
Show Individual Produce Output		
© № ○ ₩s Select ICRP Rule		
In7 - Center for Radiation Protection Knowledge 60/68/72 30		
Select Units		
© pCl O Bq		
Select Individual Isotopes		
Complete List Selected Ac223 Ac226 Ac223 Ac226 Ac223 Ac226 Ac223 Ac226 Ac223 Ac226 Ac224 Ac226		
Common Isotopes Are 342 C 431 H3 H3 H3 H2 Po238 Po240 Po		
Or Select All		
Source and Decay Output Options		
Assumes secular equilibrium throughout chain (no decay) Does not assume secular equilibrium, provide results for progeny throughout chain Does not assume secular equilibrium, provides results for selected isotopes only		
Show Individual Progeny Contributions:		
Ves		
Retrieve		

Page-27

RSL, PRG, DCC, Consistent Exposure Assumptions

P		+ D - + - 11 -
F VDOSIITA	receeding	r herails
LAPOSUIC.	133633111611	

Age Segment (yr)	AF (mg/cm²)	BW (kg)	ED (yr)	EF (day/yr)	ET (hr/day)	IRS (mg/day)	SA (cm²/day)
0-2	0.2	15	2	350	24	200	2373
2-6	0.2	15	4	350	24	200	2373
6-16	0.07	80	10	350	24	100	6032
16-26	0.07	80	10	350	24	100	6032
Child (0-6)	0.2	15	6	350	24	200	2373
Adult (6-26)	0.07	80	20	350	24	100	6032

Parameters Common to all Exposure Routes

Parameters Common to all Exposure Route Equations

Particulate Emission Factor Wind Driven			
PEF Equation			
Default	City (Climatic Zone) - Selection based on most	11.32	U _t (equivalent threshold value)
likely climatic conditions for the site		0.5	V (fraction of vegetative cover) unitless
0.5	A _s (acres)		
4.69	U _m (mean annual wind speed) m/s		
16.2302	A (PEF Dispersion Constant)	0.194	$F(x)$ (function dependent on U_m/U_t) unitless
18.7762	B (PEF Dispersion Constant)	1359344438	PEF (particulate emission factor) m ³ /kg
216.108	C (PEF Dispersion Constant)	93.77	Q/C_{wind} (inverse of the ratio of the geometric mean
		air concentration	to the
		omission flux at t	he conter of a course course) a /m ² a par l/a /m ³

	Particulate Emission	h Factor Wine	a Driven
F Equation			
efault	✓ City (<u>Climatic Zone</u>) - Selection based on most	11.32	U _t (equivalent threshold value)
ely climatic con	nditions for the site	0.5	V (fraction of vegetative cover) unitless
.5	A _s (acres)		
.69	U _m (mean annual wind speed) m/s		
6.2302	A (PEF Dispersion Constant)	0.194	$F(\boldsymbol{x})$ (function dependent on $\boldsymbol{U}_m/\boldsymbol{U}_t)$ unitless
8.7762	B (PEF Dispersion Constant)	1359344438	PEF (particulate emission factor) m ³ /kg
16.108	C (PEF Dispersion Constant)	93.77	Q/C _{wind} (inverse of the ratio of the geometric mean
		air concentration	to the
		emission flux at t	he center of a square source) g/m²-s per kg/m³

	Particulate Emission	n Factor Win	d Driven
PEF Equation			
Default	City (Climatic Zone) - Selection based on most	11.32	U _t (equivalent threshold value)
likely climatic c	onditions for the site	0.5	V (fraction of vegetative cover) unitless
0.5	A _s (acres)		
4.69	${\rm U_m}({\rm mean}\;{\rm annual}\;{\rm wind}\;{\rm speed}){\rm m/s}$		
16.2302	A (PEF Dispersion Constant)	0.194	$F(\boldsymbol{x})$ (function dependent on $\boldsymbol{U}_m/\boldsymbol{U}_t)$ unitless
18.7762	B (PEF Dispersion Constant)	1359344438	PEF (particulate emission factor) m ³ /kg
216.108	C (PEF Dispersion Constant)	93.77	${\rm Q/C}_{\rm wind}$ (inverse of the ratio of the geometric
		mean air concent	tration to the
		emission flux at t	the center of a square source) g/m ² -s per kg/m ³

RSL, PRG, DCC Consistent treatment of inorganics

- ♦ Resuspension same
- Soil to groundwater same
- All 3 steady state models. Not depleting source (transfer/dynamic) models

Guidance: World Trade Center (WTC) Benchmark

- Document used to establish 1x10⁻⁴ risk based cleanup levels for the reuse of chemically contaminated buildings after the 9/11 attacks
- Equations and parameters were the latest EPA chemical risk assessment methodology
- Ingestion, inhalation, and dermal
 - » http://www.epa.gov/wtc/reports/ contaminants_of_concern_benchmark_study.pdf

World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks

May 2003

Prepared by the Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Task Force Working Group

Contributors:

U.S. Environmental Protection Agency	New York City Department of Health and
Mark Maddaloni	Mental Hygiene
Charles Nace	Nancy Jeffery
Peter Grevatt	Ken Carlino
Terry Smith	Jeanine Prudhomme
Dore LaPosta	Chris D'Andrea
John Schaum	Caroline Bragdon
Dana Tulis	James Miller
Jennifer Hubbard	

<u>Agency for Toxic Substances and Disease Registry</u> Sven Rodenbeck Danielle DeVoney

<u>New York State Department of Health</u> Robert Chinery

Occupational Safety and Health Administration David Ippolito Dan Crane

Guidance: World Trade Center (WTC) Benchmark (continued)

WTC benchmark document includes 1 land use scenario
 » Residential
 This land use includes 2 exposure media
 » Settled dust
 » Ambient air

Guidance: Building PRG (BPRG) Calculator

- Calculator to establish 1x10⁻⁶ risk based PRGs for the reuse of radioactively contaminated buildings
- Equations and parameters are derived from latest EPA chemical methodology (e.g., assessment at WTC which used 1x10⁻⁴ cleanup level)
 - » Adjusted to account for technical differences posed by radiation
- EPA and ITRC Internet-based training on BPRG calculator and D&D
 - » http://www.clu-in.org/conf/itrc/radsdd_040308/

Guidance: Building PRG (BPRG) Calculator (continued)

BPRG calculator includes 2 land use scenarios » Residential »Indoor worker ◆Both land uses include 3 exposure media » Settled dust »Ambient air » Direct external exposure —5 Room sizes and 4 receptor locations —5 Room materials, and 2 composite rooms —5 Source thickness

ΕΡΑ

Building Dose Cleanup Concentrations (BDCC) ARAR Dose Calculator

- <u>BDCC Purpose</u>: to establish BCCs for Inside Buildings for single dose limit ARARs (# mrem/yr)
- ◆BDCC includes 2 land use scenarios (Residential, Indoor Worker)
- Equations similar to those used for BPRG calculator, except dose conversion factors used instead of slope factors

Vapor Intrusion Screening Level (VISL) Calculator

- Calculator to assesses whether chemicals found in groundwater or soil gas can pose a significant risk through vapor intrusion; and,
 - » if so, whether a site-specific vapor intrusion investigation is warranted

Vapor Intrusion Screening Level Calculator

Contents

Calculator

Near-source soil gas

Sub-slab soil gas; and

Indoor air

hese screening-level concentrations (i.e., the VISLs) are based on

Default residential or nonresidential exposure scenarios

A target cancer risk level of one per million (10⁻⁶); and

A target hazard quotient of 0.1 for potential non-cancer effect

e primary objective of risk-based screening is to identify sites or buildings unlikely to pose a oncern through the soil gas intrusion pathway. Generally, at properties where subsurfac centrations of vapor-forming chemicals, such as those in groundwater or "near source" soil s, fall below the recommended screening levels (i.e., VISLs), no further action or study is rranted. This condition is generally true so long as the exposure assumptions match those ounted for in the calculations, and the site fulfills the conditions and assumptions of the conceptual model underlying the screening levels. Similarly, the results of risk-based ening can help the data review team identify areas, buildings and/or chemicals that can be minated from further assessment

e VISL calculator output also provides risk estimates for residential and commercial/indus posures to soil gas, air and groundwater. The calculator uses the same database of toxicity alues, chemical parameters, and inhalation exposure equations as the Regional Screening evels (RSLs) for Chemical Contaminants at Superfund Sites. The calculator provides defaul arameters that can be changed to reflect site-specific exposure scenarios

o consideration is given to ecological effects in the values presented in this calculator adionuclides are not addressed on this website

ensure proper use of the calculator, please review the What's New, User's Guide, and uently Asked Ouestions links. If the calculator is used with non-default inputs to support a sk management decision regarding a site, the inputs should be clearly identified and justified by the user

This VISL calculator is based on the <u>Technical Guide for Assessing and Mitigating the Vapor</u> Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (June 2015). Additional nformation about risk-based screening and the generic conceptual model underlying the VISLs can also be found here

EPA developed this website with the Department of Energy's Oak Ridge National Laborato der an interagency agreement

Radon Vapor Intrusion Screening Level (RVISL) Calculator

- Internet calculator tool developed to provide concentrations of radon and thoron in soil and groundwater that will not result in radon intrusion into buildings that exceed target levels
- Indoor Rn-222, Rn-220, and Rn-219 target level concentrations based on:
 - »Risk (default to 1 x 10-6)
 - »UMTRCA (only Rn-222 and Rn-220) correspond to 0.02 Working Levels
 - » Dose (default to 1 mrem/yr)

This figure depicts the migration of radon (Rn) in soil gas from redioactively contaminated soil and groundwater into buildings at a Superfun site. Radon in soil gas is abown to enter buildings through credis in the foundation and openings for utility lines similar to other forms of contaministion. At through their conditions and building verifiations are shown to influence redon soil gas instauco.

Welcome

Welcome to the "Redon Vapor Intrusion Streening Level (RISSL) claulator Home Page for Redonvalide Conteminants at Superfund Sites". This vebsite use developed with the Department of Energy's (DOE) Oak Ridge Netional Laborstory (ORIL) under an Interagency Agreement with the U.S. Environmental Protection Agency (EPA). The main purpose of this pulsance is to provide RISSL calculation tools to taskit risk seasons, remedial project mengers, and others involved with risk assamment and decision-making at Competencine Environmental Response, Compensation, and Lability Act (CERCLA) sites in developing RVISLs or preliminary remediation goals (PROM) for indoor RP-022, R-023, and R-013 that are risk or does sed and for Avoining compliance with the UNTRCA indoor redon danderds for R-022 and R-022

The RNSL website is now the generally recommended source of indoor radon screening levels (Su) from radioactive contaminents at Superfund sites for all EPA regions. The RVISL calculator output provides screening values and risk and dose estimates for residential and commercial (Induitie) expanses to earlo in suil gas, air, and groundwater. The unified use of the RVISL to screen redon et Superfund sites promotes national consistency. The RVISL uses the same database of toxicity values, chemical persmeters, and inheliation exposure equation as the <u>PROS for Radionuclide Contaminants at Superfund Sites</u> calculator. RVISL as are a type of PRO and both are a specific variety of the broas screening level (Su) category.

Note that for CERCLA remedial actions, dose assessment is generally done only to show compliance with a dose-based Applicable or Relevant and Appropriate Requirement (ARAR). EPA would recommend, where possible, Regions use measurements of radon indoors rather than rely on the transport portions of the RVISL. In particular, testing of groundwater or soil gas is not required to demonstrate compliance with RVISL Working Levels (WL), risk, or dose targets.

RTISS: calculator provides default parameters that can be modified to reflect alte-specific conditions. In addition, the calculator presents explore actions to region to comprese the indicor is concentration, entered by the user or derived from providented to regions to comprese activity of the calculator presents. Utanium Mill Tailings Rediction Control Act (UNTRC) standards, which also any be potential ARAs. Below is a general description of SLs readow. The calculator is used with non-default inputs in a decision on a Superfund site, it is recommended that the inputs be clearly emitted and yields by the user.

Page-36
VISL and RVISL Similar look and feel

EPA

Vapor Intrusion Screening Levels (VISL) Calculat	or
	Contents
Hover over any <u>form section</u> for instructions about the individual selection and requirements.	Home Page User's Guide
Select Hazard Quotient	FAQ Faultions
0.1 1 Other:	<u>Calculator</u>
Select Target Risk	
 10⁻⁸ 10⁻⁵ 10⁻⁴ Other: 	
Select Exposure Scenario	
Resident Commercial	
Predict indoor air concentrations, and risk, from measured media concentration	ons?
No Yes (requires Site-specific mode)	
Select Screening Level Type	
Default Site Specific	
Groundwater Temperature (° C)	
25	
Select Individual Chemicals	
Type to select some chemicals	
clear all selections	

↑ Top of Page

VISL and RVISL Consistent parameters

Indoor Air Screening Level Equations and Parameters		Indoor Air Screening Leve	el Equations and Parameters
úr Carcinogenic Inhalation	AirInha	lation PRG	
Air Carcinogenic-(Trichloroethylene) Inhalation	<u>Air Subr</u>	mersion PRG	
Air Carcinogenic-(Vinyl Chloride) Inhalation	Air Tota	<u>IPRG</u>	
Air Non-Carcinogenic Inhalation 26 ED _{res} (exposure duration) years 350 EF _{res} (exposure frequency) days/year 24 ET _{res} (exposure time) hours/day	0.18 26 20 6 350 350 350 24	✓ Select air exchanges per hour for F _{eq} and A _{eq} ED _{res} (exposure duration - resident) yr ED _{res} (exposure duration - resident adult) yr ED _{res} (exposure duration - resident adult) yr ED _{res} (exposure frequency) day/yr EF _{res} (exposure frequency) - resident adult) day/yr EF _{res} (exposure frequency - resident adult) day/yr EF _{res} (exposure frequency - resident child) day/yr ET _{res} (exposure time - resident) hr/day	24 ET _{res-e} (exposure time - resident adult) hr/day 24 ET _{res-c} (exposure time - resident child) hr/day 1.0 GSF _a (gamma shielding factor - air) unitless 161000 IFA _{res-cl} (age-adjusted inhalation factor) m ³ 20 IRA _{res-cl} (inhalation rate - resident adult) m ³ /day 10 IRA _{res-cl} (inhalation rate - resident child) m ³ /day 26 t _{res} (time - resident) yr 1E-06 TR (target cancer risk) unitless
Groundwater and Soil Gas Equation and Parameters		Groundwater and Soil G	as Equation and Parameters
Correcting the Henry's Law Constant for GW Temperature	Correct	ting the Henry`s Law Constant for GW Temperature	
Correcting the Henry's Law Constant for GW Temperature	Correct	ing the Henry's Law Constant for GW Temperature 29 Adjustment for GW Temperature	
Correcting the Henry's Law Constant for GW Temperature Enthalpy Adjustment for GW Temperature Groundwater Screening Level Equation	Correct Enthals Ground	ing the Henry's Law Constant for GW Temperature av Adjustment for GW Temperature iwater Screening Level Equation	
Correcting the Henry's Law Constant for GW Temperature Enthalpy Adjustment for GW Temperature Groundwater Screening Level Equation Soil Gas Screening Level Equation	Correct Enthale Ground Soil Gas	ing the Henry's Law Constant for GW Temperature 27 Adjustment for GW Temperature iwater Screening Level Equation a Screening Level Equation	
Correcting the Henry's Law Constant for GW Temperature Enthalpy Adjustment for GW Temperature Groundwater Screening Level Equation Soil Gas Screening Level Equation Vapor Concentration at the Source	Correct Enthalia Ground Soil Gas Vacor C	ing the Henry's Law Constant for GW Temperature 29 Adjustment for GW Temperature Iwater Screening Level Equation 2 Screening Level Equation Concentration at the Source	
Correcting the Henry's Law Constant for GW Temperature Enthalpy Adjustment for GW Temperature Groundwater Screening Level Equation Soil Gas Screening Level Equation Vapor Concentration at the Source 0.001 AF _{gw} (Attenuation Factor Groundwater) unitless 0.03 AF _{gw} (Attenuation Factor Sub-Slab) unitless	Correct Enthals Ground Soil Ga Vacor C 0.001 0.03	ing the Henry's Law Constant for GW Temperature av Adjustment for GW Temperature iwater Screening Level Equation a Screening Level Equation Concentration at the Source AF gw (Attenuation Factor Groundwater) unitless AF s (Attenuation Factor Sub-Slab) unitless	25 T _{pv} (Groundwater Temperature) [*] C
Correcting the Henry's Law Constant for GW Temperature Enthalpy Adjustment for GW Temperature Groundwater Screening Level Equation Soil Gas Screening Level Equation Vapor Concentration at the Source 0.001 AF _{gw} (Attenuation Factor Groundwater) unitless 0.03 AF _{gs} (Attenuation Factor Sub-Slab) unitless 0.03 AF _{gs} (Attenuation Factor Sub-Slab) unitless	Correct Enthals Scolids Vacor C Coord Coor	ing the Henry's Law Constant for GW Temperature py Adjustment for GW Temperature iwater Screening Level Equation a Screening Level Equation Concentration at the Source AF _{gy} (Attenuation Factor Groundwater) unitless AF _{gs} (Attenuation Factor Sub-Slab) unitless	25 Top of Page

Surfaces PRG (SPRG) Calculator

- Establish 1 x 10⁻⁶ risk based PRGs for radioactively contaminated outside hard surfaces (e.g., slabs, pavement, sidewalks, sides of buildings)
- Derived from rad PRG and BPRG calculators

SPRG Exposure Scenarios

SPRG includes 3 land use scenarios

- » Residential
- » Indoor Worker
- » Outdoor Worker

3 land uses include 3 exposure media
 » Settled dust (pave and unpaved street level)
 » Fixed Direct External 3-D (street level)
 —Surface and Volumetric
 » Fixed Direct External 2-D (slabs)
 —Surface and Volumetric

Surface Dose Cleanup Concentrations (SDCC) ARAR Dose Calculator

- <u>SDCC Purpose</u>: to establish DCCs for Outside Hard Surfaces for single dose limit ARARs (# mrem/yr)
- SDCC includes 3 land use scenarios (Residential, Indoor Worker, Outdoor Worker)
- ♦3 land uses include 3 exposure media (Settled dust, Fixed Direct External 3-D, Fixed Direct External 2-D (slabs))
- Equations similar to those used for SPRG calculator, except dose conversion factors used instead of slope factors

MNA for Inorganics (metals and radionuclides) Policy document

- Complements 1999 overall MNA policy document "Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites"
 - »Helps clarify policy issues unique to inorganics not addressed in 1999
- ♦ 3 Volume ORD MNA for inorganics documents is the technical support document for this policy document
 - » Also complemented by 2010 ITRC guidance on MNA for inorganics

Technical Background Documents for MNA Guidance for Inorganics

- 3 Technical Reports "Monitored Natural Attenuation of Inorganic Contaminants in Ground Water"
 - » "Volume 1 Technical Basis for Assessment" 2007
 - » "Volume 2 Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium" 2007
 - » "Volume 3 Assessment for Radionuclides Including Americium, Cesium, Iodine, Plutonium, Radium, Radon, Strontium, Technecium, Thorium, Tritium, Uranium" 2010

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 2 Assessment for Non-Radionuclides Including Arsenic. Cadmium, Chromium, Copper, Lead Nickel, Nirake, Nickel, Shrane Perchicrate, and Selenium A memory of the second second

surface water groundwater Transport Processes - Hydraufic Residence Tim

RISK ASSESSMENT AND **RISK MANAGEMENT IN REGULATORY DECISION-MAKING**

Evaluation of Guidelines for Exposures to **Technologically Enhanced** Naturally Occurring **Radinactive Materials**

THE PRESIDENTIAL/CONGRESSIONAL COMMISSION ON RISK ASSESSMENT AND RISK MANAGEMENT

FINAL REPORT VOLUME 2 1997

Part 2. **High Level Scientific and Risk Management/Policy Review of the Superfund Approach**

Interagency Steering Committee on **Radiation Standards**

Final Report

A Method for Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY ASHINGTON, D.C. 20460

Administrator U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460

Subject: Commentary on Harmonizing Chemical and Radiation Risk-Reduction Strategies

Dear Mr. Reilly:

The Science Advisory Board's Radiation Advisory Committee would like to bring to your attention the need for the Agency to develop a more coherent policy for making risk-reduction decisions with respect to radiation and chemical expo-sures. As detailed in the attached commentary, Harmonizing Chemical and Radiation Risk-Reduction Strategies, the regulation of radiation risks has developed under a different paradigm than for regulation of chemical risks, and a significant potential exists for EPA decisions on radiation risk reduction to be seen as unjusti fied by the health physics community, the chemical risk management community, both. Our concern has been stimulated by three recent reviews that we have conducted: the Idaho Radionuclides Study (EPA-SAB-RAC-LTR-92-004), the Radionuducted: the idano (Radionucnes Study Lr. Awards And M. A. 1997) cides in Drinking Water proposal (EPA-SAB-RAC-COM-92-003), and the Citizens' Guide to Radon (EPA-SAB-RAC-LTR-92-005). In the first two reviews, we observe that application of the chemical paradigm to radiation issues was questioned by many in the radiation protection community. The Agency's treatment of radon in indoor air has been more in line with traditional radiation risk management, but i is inconsistent with the Agency's proposals for control of radon in drinking water.

Although the reasons for the differences between the two paradigms are historical as well as scientific, an important feature of radiation risk assessmen reduction is the existence of a natural background of radiation in the range of about 70 to 250 millirem (mrem) per year exclusive of indoor radon. With current EPA ment assumptions, the average background - say, 100 mrems per year is estimated to produce a cancer risk of about 3 per thousand people over a lifetim

Printed on Recycled Paper

OFFICE OF THE ADMINISTRATOR

May 18, 1992 EPA-SAB-RAC-COM-92-007 Honorable William K. Reilly

High Level Review of Superfund Approach

- EPA's approach of addressing radiation and chemicals in a similar approach has received outside high-level review, both:
 - »Risk management/policy review
 - » Scientific review
 - 1. Blue Ribbon (Presidential/Congressional) committee report
 - 2. National Academy of Science (NAS) report
 - 3. EPA Science Advisory Board (SAB)
 - 4. ISCORS report signed by US Federal Agencies

Blue-ribbon committee

- The Presidential/Congressional Commission on Risk Assessment and Risk Management developed a 1997 report to Congress on the appropriate uses of risk assessment and risk management in Federal regulatory programs
- Final Report Volume 2 issued 1997, Risk Assessment and Risk Management In Regulatory Decision-Making recommended:
 - »Radiation and chemicals should be addressed consistently, particularly when co-located
 - » Superfund should continue to use the 10⁻⁴ to 10⁻⁶ cancer risk range and reasonably anticipated land use

EPA

Blue-ribbon committee screen shots (pp 82, 122)

RISK ASSESSMENT AND RISK MANAGEMENT IN REGULATORY DECISION-MAKING

THE PRESIDENTIAL/CONGRESSIONAL COMMISSION ON RISK ASSESSMENT AND RISK MANAGEMENT

FINAL REPORT Volume 2 1997

FΡΔ

Recommendation

A concerted effort should be made to evaluate and relate the methods, assumptions, mechanisms, and standards for radiation risks to those for chemicals to clarify and enhance the comparability of risk management decisions and investments, especially when both types of hazards are present.

Recommendation

EPA should continue to use its 10⁻⁶ to 10⁻⁴ risk range as a guide for site-specific risk-based cleanup goals, related to future land use. Site-

Pade-47

National Academy of Science (NAS)

- 1999 NAS report "Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials"
 - »NAS compared EPA's approach for risk assessment (slope factors) and NRC's approach (use EDE then convert to risk)
 - —NAS found EPA's approach methodologically more rigorous for assessing risks from chronic exposure to radionuclides.
 - » Compared EPA and NRC risk management approaches and determined differences were a matter of policy and not science, and should reflect societal values

EPA

NAS screenshots on comparison of NRC/EPA risk assessment approach (pg 222)

Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials

NATIONAL RESEARCH COUNCIL

The Nuclear Regulatory Commission's approach to estimating risk posed by chronic radiation exposure of the public normally is based on ICRP recommendations on estimating doses per unit exposure and the risk per unit dose. The Nuclear Regulatory Commission estimates lifetime risks on the basis

EPA has developed a methodologically more rigorous approach to assessing risk posed by chronic lifetime exposure to radionuclides, which is particularly important for internal exposure and differs in several respects from the simple approach described above.

NAS screenshots on comparison of NRC/EPA risk assessment approach (pg 234)

Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials

This committee offers the following comments on the issue of a limit on acceptable risk and, therefore, acceptable dose. First, the determination of an acceptable risk for any exposure situation clearly is entirely a matter of judgment (risk-management policy) which presumably reflects societal values. Inasmuch as EPA and the Nuclear Regulatory Commission have used essentially the same assumptions about the risks posed by radiation exposure in establishing radiation standards, it is clear that the determination of a limit on acceptable dose for any exposure situation also is entirely a matter of judgment. Therefore, any differences between the views of EPA and the Nuclear Regulatory Commission on an acceptable dose have no scientific or technical basis.

NATIONAL RESEARCH COUNCIL

EPA Science Advisory Board (SAB)

- In 1992 the EPA SAB sent a letter to the EPA Administrator "Commentary on Harmonizing Chemical and Radiation Risk-Reduction Strategies." The SAB:
 - » SAB acknowledged that EPA guidance for Superfund sites, including DOE sites under CERCLA, would use a consistent risk-based approach for addressing radiation and chemical contamination in both risk assessment methodology and cleanup levels (e.g., no more than 10⁻⁴ cancer risk)
 - » SAB viewed the harmonization of radionuclides to the chemical approach as scientifically valid

SAB screenshots (pg 9)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

May 18, 1992

EPA-SAB-RAC-COM-92-007

OFFICE OF THE ADMINISTRATOR

Honorable William K. Reilly Administrator U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460

Subject: Commentary on Harmonizing Chemical and Radiation Risk-Reduction Strategies

Dear Mr. Reilly:

The Science Advisory Board's Radiation Advisory Committee would like to bring to your attention the need for the Agency to develop a more coherent policy for making risk-reduction decisions with respect to radiation and chemical exposures. As detailed in the attached commentary, Harmonizing Chemical and Radiation Risk-Reduction Strategies, the regulation of radiation risks has developed under a different paradigm than for regulation of chemical risks, and a significant potential exists for EPA decisions on radiation risk reduction to be seen as unjustified by the health physics community, the chemical risk management community, or both. Our concern has been stimulated by three recent reviews that we have conducted: the Idaho Radionuclides Study (EPA-SAB-RAC-LTR-92-004), the Radionuclides in Drinking Water proposal (EPA-SAB-RAC-COM-92-003), and the Citizens' Guide to Radon (EPA-SAB-RAC-LTR-92-005). In the first two reviews, we observed that application of the chemical paradigm to radiation issues was questioned by many in the radiation protection community. The Agency's treatment of radon in indoor air has been more in line with traditional radiation risk management, but it is inconsistent with the Agency's proposals for control of radon in drinking water.

Although the reasons for the differences between the two paradigms are historical as well as scientific, an important feature of radiation risk assessment and reduction is the existence of a natural background of radiation in the range of about 70 to 250 millirem (mrem) per year exclusive of indoor radon. With current EPA risk assessment assumptions, the average background - say, 100 mrems per year is estimated to produce a cancer risk of about 3 per thousand people over a lifetime

Phinted on Recycled Paper

The facilities of the Department of Energy that are part of the nuclear weapons complex form another group of problem sites where radionuclides are a significant or even dominating part of the cancer risk equation. Whether these facilities are treated as Superfund (CERCLA) problems or current waste disposal sites under the Resource Conservation and Recovery Act (RCRA), the treatment of radioactive materials is seen as necessarily being subject to the same types of risk analyses and remedial responses that EPA has used for chemicals. The document "Risk Assessment Guidelines for Superfund" (RAGS), for example, contains a section on how to assess the cancer risks from exposure to radionuclides, but does not suggest any different risk-reduction strategies than for carcinogenic chemicals. The implication is that remediation is expected if the lifetime risks from radionuclides are calculated to exceed about 10⁴ (or lower in some proposals for radiation sites).

SAB screenshots (pp 10, 12)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

May 18, 1992

EPA-SAB-RAC-COM-92-007

OFFICE OF THE ADMINISTRATO

Honorable William K. Reilly Administrator U.S. Environmental Protection Agency 401 M Street, S.W. Washington, DC 20460

Subject: Commentary on Harmonizing Chemical and Radiation Risk-Reduction Strategies

Dear Mr. Reilly:

The Science Advisory Board's Radiation Advisory Committee would like to bring to your attention the need for the Agency to develop a more coherent policy for making risk-reduction decisions with respect to radiation and chemical exposures. As detailed in the attached commentary, Harmonizing Chemical and Radiation Risk-Reduction Strategies, the regulation of radiation risks has developed under a different paradigm than for regulation of chemical risks, and a significant potential exists for EPA decisions on radiation risk reduction to be seen as unjustified by the health physics community, the chemical risk management community, or both. Our concern has been stimulated by three recent reviews that we have conducted: the Idaho Radionuclides Study (EPA-SAB-RAC-LTR-92-004), the Radionuclides in Drinking Water proposal (EPA-SAB-RAC-COM-92-003), and the Citizens' Guide to Radon (EPA-SAB-RAC-LTR-92-005). In the first two reviews, we observed that application of the chemical paradigm to radiation issues was questioned by many in the radiation protection community. The Agency's treatment of radon in indoor air has been more in line with traditional radiation risk management, but it is inconsistent with the Agency's proposals for control of radon in drinking water.

Although the reasons for the differences between the two paradigms are historical as well as scientific, an important feature of radiation risk assessment and reduction is the existence of a natural background of radiation in the range of about 70 to 250 millirem (mrem) per year axclusive of indoor radon. With current EPA risk assessment assumptions, the average background - say, 100 mrems per year is estimated to produce a cancer risk of about 3 per thousand people over a lifetime

Printed on Recycled Paper

Need for Harmonization

Clearly, EPA needs to adopt policies that will allow its staff, the regulated community, scientific consultants to both parties, and the general public all to know what to expect in EPA's regulation of residual radioactivity and other radiation issues. The Radiation Advisory Committee does not claim any special insight in how the resolution should be accomplished, but does emphasize the importance of achieving such harmonization. Interest in the comparative risks of radiation and chemicals has a substantial history (NCRP, 1989) and is now becoming more widespread (Kocher and Hoffman, 1991).

Clearly, the choice among these options – and others that may exist – is a policy choice that transcends scientific analysis. The leadership of the Environmental Protection Agency has the authority and the responsibility to make the choice. We urge the choice to be articulated clearly so that the scientists who assess the risks of radiation and chemicals can understand the basis for subsequent decisions about risk reduction.

Interagency Steering Committee on Radiation Standards (ISCORS) Report

- A 2002 report by ISCORS entitled "A Method for Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE)." ISCORs includes EPA, NRC, DOE, and DOD. The report stated:
 - » The simple method of converting dose to risk is insufficient for a complex risk assessment such as those for CERCLA sites
 - » Recommendation to use slope factors when a complex risk assessment is needed for assessing radionuclides, such as at a CERCLA sites

ISCORS screenshot (pg 1)

Interagency Steering Committee on Radiation Standards

Final Report

A Method for Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE)

ISCORS Technical Report 2002-02

equivalent to cancer risk may be appropriate when radionuclide-specific data is missing. The conversion of dose to risk referred to in this document refers primarily to a conversion of total effective dose equivalent (TEDE, as defined by the Department of Energy in 10 CFR 835.2)² to lifetime cancer incidence and mortality risks. The conversion of TEDE to cancer risks using these conversion factors will not satisfy the requirements for a comprehensive radiation risk assessment, but may be of use for making less rigorous comparisons of risk. For situations in which a radiation risk assessment is required for making risk management decisions, the radionuclide-specific risk coefficients published in Federal Guidance Report No. 13 should be used.³ For radiation risk assessments required by EPA's Superfund Program, the risk coefficients in EPA's Health Effects Assessment Summary Tables (HEAST)⁴ should be used. Although

Part 3. Involving Stakeholders at Superfund Remedial Program Sites

EPA

EQUIVALENT TO ONE PERSON OUT OF A COLLEGE ARENA CROWD.

Page-56

 $1 \times 10^{-4} = 1$ out of ten thousand

Community Involvement

EPA has many tools to facilitate meaningful involvement by communities near sites

- ◆EPA hosts a community involvement national conference
- EPA has 2 tools designed specifically for use at radiation sites that are based on earlier tools for chemical sites

Booklet: Common Chemicals

- Common Chemicals Found at Superfund Sites (8/94) OSWER Directive 9203.1-17
- Booklet for the general public. It contains information on
 - » Health effects of chemicals commonly found at Superfund sites
 - » EPA policies for cleaning up these chemicals <u>Note</u> this booklet has been superseded by a website

Found at Superfund Sites

€PA

Booklet: Common Radionuclides Old Superseded

- Common Radionuclides Found at Superfund Sites (7/02) OSWER Directive 9200.1-34
- Booklet for the general public. It contains information on
 - » Health effects of radionuclides commonly found at Superfund sites
 - » EPA policies for cleaning up these radionuclides

Found at Superfund Sites

Toolkit: Radiation Risk Assessment

- Superfund Radiation Risk Assessment: A Community Toolkit (6/14)
- Collection of 22 fact sheets for the general public. It contains fact sheets on
 - » Superfund and Radiation
 - » Superfund risk assessment process at radiation sites
 - » Each of the 6 PRG and DCC calculators
 - » Replacement for the Common Rad booklet fact sheets

fund Radiation Risk Assessment:

Video: Chemical Risk Assessment

- Superfund Risk Assessment and How you can Help, an Overview (1999) OSWER Directive 9285.7-29A https://clu-in.org/video/sf_risk_assessment_overview.htm
- Video for the general public. It contains information on:
 - » The Superfund risk assessment process when addressing chemical contamination
 - » How the public is involved site-specifically

Video: Radiation Risk Assessment

- Superfund Radiation Risk Assessment and How you can Help, an Overview (3/05) OSWER Directive 9200.4-37 https://ertvideo.org/content.aspx?video_id=7392
- Video for the general public. It contains information on:
 - » The Superfund risk assessment process when addressing radioactive contamination
 - » How the public is involved site-specifically

Agency

€EPA

Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A)

EPA/540/1 -89/002 December 1989 P B 9 0 - 1 5 5 5 8 1

Interim Final

٩	Superformed Interformed Interpreter Interpreter Interformed Statements Statements Statements Interformed Interpreter Interformed Interpreter Interformed Statements Statements Interformed Interformed Interformed Interformed Interformed Statements Statements Interformed I	
Reg Reguest Statest Community Hard Folicies 4 Conduces 5 Reconstruction Alose Experiment Conduces 5 Reconstruction Conduces 5 Reconstruction Conduce	Activity approximate and a generative processing and a contract of the second processing approximative processing approxi	

Risk Assessment Guidance for Superfund: Volume I -Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals)

Interim

€EPA

Part 4. Past Practices of EPA Superfund Risk Harmonization Approach

Second Editio

٩	Superfund Exercised States Sta	
Sites Programs Regions & Partners Community	Soil Screening Guidance for Radionuclides	
Involvement	Analytes for Soil Screening Calculations	
Law, Policies &		
Guidances	Select Analytes. Select one or more analytes for the screening (or click on the "Select All" check box), one or more pathways, and an output format. Then click on the "Next" button. The next page will prompt you for equation parameters.	
About Superfund	Ac-223	
Conferences	Ac-224	
Superfund	Ac-226	
For Kide!	Ac-227	
	AC-22	
	Ag-102	
	Ag-103	
	Ag-104 An-104m	
	Ag-105	
	Ag-106	
	Ag-10bm	
	Ingestion of Solit	
	Inhalation of Fugitive Dust	
	Select Pathways External Exposure	
	clear selection NEXT	
	This site is maintained and operated through a cooperative agreement between the EPA Office of Superfund and Oak Ridge National Laboratory. For questions or comments please contact the Office of Superfund.	
	QSIVER Home I Superind Home I QI Soll Home	

for Radionuclides: User's Guide

Consistency with Rad and Chem Risk Assessment is EPA's Long-standing Policy

- EPA Superfund remedial approach to address chemical and radiation risks consistently dates back to 1989 guidance of that era
- More recent EPA guidance discussed earlier continues that approach
- Remaining slides in this section will demonstrate that earlier EPA guidance was consistent on this matter

EPA 1989 guidance against using different models for rad and chem risk assessment

 In "Risk Assessment Guidance for Superfund (RAGS) Part A" (December 1989), Chapter 10 "Radiation Risk Assessment Guidance,"

FΡΔ

» EPA warned that using different risk assessment models for radionuclides and chemicals may result in incompatibilities when trying to sum the risk assessment (see pg. 10-33)

> In cases where different environmental fate and transport models have been used to predict chemical and radionuclide exposure, the mathematical models may incorporate somewhat different assumptions. These differences can result in incompatibilities in the two estimates of risk. One important difference

Environmental Protection Agency	Office of Emergency and Remedial Response Washington, DC 20460	EPA/540/1 -89/002 December 1989 P B 9 0 - 1 5 5 5 8 1
Superfund		
Risk Asse	essment	
Guidance	ofor Super	fund
Volume I		
Llumon L	lealth	
питап п		
Evaluatio	n Manual	

Interim Final

€EPA

EPA 1991 Superfund chem & rad Risk Harmonization efforts

Since 1991 EPA has been developing consistent approaches for chemical and radiation Superfund risk assessments.

» See "Risk Assessment Guidance for Superfund (RAGS) Part B" (RAGS Part B), December 1991, Chapter 4, "Risk-based PRGs for Radioactive Contaminants," pg. 33

Agency	Washington, DC 20460	

Risk Assessment Guidance for Superfund:

> Volume I -Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals)

Interim

€EPA

EPA 1991 consistent PRGs

RAGS Part B includes PRGs for chemicals and radionuclides that use:

» Same land uses and similar equations

» Standard default exposure parameters for RME risk assessments

In general, standardized default exposure equations and parameters used to calculate riskbased PRGs for radionuclides are similar in structure and function to those equations and parameters developed in Chapter 3 for nonradioactive chemical carcinogens. Both types of risk equations:

 Calculate risk-based PRGs for each carcinogen corresponding to a pre-specified target cancer risk level of 10⁻⁶. As mentioned in Section 2.8, target risk levels may be modified after the baseline risk assessment based on site-specific exposure conditions, technical limitations, or other uncertainties, as well as on the nine remedy selection criteria specified in the NCP. Use standardized default exposure parameters consistent with OSWER Directive 9285.6-03 (EPA 1991b). Where default parameters are

not available in that guidance document, other appropriate reference values are used and cited.

 Incorporate pathway-specific default exposure factors that generally reflect RME conditions.

EPA 1991 PRGs for residential soil for chem and rad carcinogenic effects

RESIDENTIAL SOIL – CARCINOGENIC EFFECTS									
TR =	SF _o x C x 10 ⁻⁶ kg/mg x EF x IF _{soil/adj} AT x 365 days/yr								
C (mg/kg; risk- based)	$= \frac{\text{TR x AT x 365 days/year}}{\text{SF}_{o} \text{ x 10}^{-6} \text{ kg/mg x EF x IF}_{soil/adj}}$	(4)							
where:									
Parameters	Definition (units)	Default Value							
C TR SF _o AT EF IF _{soil/adj}	chemical concentration in soil (mg/kg) target excess individual lifetime cancer risk (unitless) oral cancer slope factor ((mg/kg-day) ⁻¹) averaging time (yr) exposure frequency (days/yr) age-adjusted ingestion factor (mg-yr/kg-day)	10 ⁻⁶ chemical-specific 70 yr 350 days/yr 114 mg-yr/kg-day (see Equation (3))							

	RADIONUCLIDE PRGs: RESIDENTIAL SOIL - CA	RCINOGENIC EFFECTS				
Total risk =	RS x [(SF _o x 10^{-3} g/mg x EF x IF _{soil/adj}) + (SF _e x 10^{-3}	³ g/kg x ED x D x SD x (1-S _e) x T _e)]				
RS (pCi/g; = risk-based)	$\frac{\text{TR}}{(\text{SF}_{o} \text{ x } 10^{-3} \text{ x EF x IF}_{\text{soil/adj}}) + (\text{SF}_{e} \text{ x } 10^{3} \text{ x ED x D x SD x } (1-\text{S}_{e}) \text{ x } \text{T}_{e})}$					
where:						
Parameters	Definition (units)	Default Value				
RS TR SF _o SF _e EF ED IF _{soil/adj} D SD S _e T _e	radionuclide PRG in soil (pCi/g) target excess individual lifetime cancer risk (unitless) oral (ingestion) slope factor (risk/pCi) external exposure slope factor (risk/yr per pCi/m ²) exposure frequency (days/yr) exposure duration (yr) age-adjusted soil ingestion factor (mg-yr/day) depth of radionuclides in soil (m) soil density (kg/m ³) gamma shielding factor (unitless) gamma exposure time factor (unitless)	10 ⁻⁶ radionuclide-specific radionuclide-specific 350 days/yr 30 yr 3600 mg-yr/day (see Equation (12)) 0.1 m 1.43 x 10 ³ kg/m ³ 0.2 (see Section 4.1.2) 1 (see Section 4.1.2)				

1989 Slope Factors for chemical carcinogens and radionuclide

 Health Effect Summary Tables (HEAST) issued in 1989 includes tables of slope factors for chem and rad

TABLE OF CONTENTS	
	Page
INTRODUCTION	. 1
WHAT'S NEW IN THE FOURTH QUARTER HEAST	. 3
USER'S GUIDE: CHEMICAL TOXICITY	. 12
HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE A: SUBCHRONIC AND CHRONIC TOXICITY (OTHER THAN CARCINOGENICITY)	. A-1
HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE B: CARCINOGENICITY	. <mark>B-1</mark>
USER'S GUIDE: RADIONUCLIDE CARCINOGENICITY	. <mark>C-1</mark>
HEALTH EFFECTS ASSESSMENTS SUMMARY TABLE C: RADIONUCLIDE Carcinogenicity.	. <mark>C-7</mark>
REFERENCES FOR TABLES A	. D-1
REFERENCES FOR TABLES B	. D-83

Pade-69

NEALTH EFFECTS ASSESSMENT SUMMARY TABLE C: RADIONUCLIDE CARCINOGENICITY (Expressed in picocuries (pCi))							HEALTH	LFFECTS ASSE	SSMENTS SUMMARY	TABLE B: CARCIN	OGLNICITY						
				Slope Factor		Pathw	wy-Specific Unit	t Risk									
			Age-averag cancer ris exposure	ed lifetime exce k per unit intak	ss total e or	Age-avera cancer ri or exposu	aged lifetime ex isk per unit dail ure for 70 years	cess total ly intake	Compound	Exposure Inhalation; Oral	Sg Inhalati	oecles Ion Oral	Tumor S Inhelation	ite Oral	EPA Group/ or Ur [nhalation (ug/m ³) ⁻¹ [(mg/kg/day) ⁻¹]	/slope factor hit Risk Oral (mg/kg/day) ⁻¹	
Nuclide	ICRP"" Lung Class	GI Absorption Factor (f ₁)	Inhalation (pCi)	Ingestion (pCi)	Ground Surface (pCi/m²/yr) ⁻¹	Air (pCi/m ³) ⁻¹	Drinking Water (pCi/L) ⁻¹	External Exposure (pCi/g soil) ⁻¹	Acephate	NA; 2-year dietary	NA	mice	NA (also see	liver Table A)	ND	C/8.7E-3 ⁸	U.S. EPA, 1988/ Chevron Chemical Company, 1982; U.S. EPA, 1984; U.S. EPA, 1988
									Acrolein	HA: HA	HA	на	NA (also see	NA Table A)	C/ND ^a	C/MDa	U.S. EPA, 1987a,b/ U.S. EPA, 1987a,b
Am-241 Am-243 Ba-137m Bi-214 C-14	U D U	1.0E-03 1.0E-03 1.0E-01 5.0E-02 9.5E-01	4.0E-08 4.0E-08 6.0E-16 2.2E-12 6.4E-15	3, 1E-10 3,0E-10 2,4E-15 1,4E-13 9,1E-13	1.6E-12 3.6E-12 3.4E-11 8.0E-11 0.0E+00	2.1E-02 2.1E-02 3.0E-10 1.1E-06 3.2E-09	1.6E-05 1.5E-05 1.2E-10 7.2E-09 4.7E-08	1.6E-05 3.6E-05 3.4E-04 8.0E-04 0.0E+00	Acrylamide	NA; 2-year drinking water	MA	rat	HA (also see Table A)	CNS, mammary and thyroid glands, uterus, oral cavity	82/1.3E-3 [4.5E+0] ^{a,b}	82/4.5+0 ^a	U.S. EPA, 1988/ Johnson et al., 1986; U.S. EPA, 1985; U.S. EPA, 1988
Ce-144 Cm-243 Cm-244 Co-60 Cr-51	Y U Y Y	3.0E-04 1.0E-03 1.0E-03 3.0E-01 1.0E-01	3.4E-10 3.1E-08 2.7E-08 1.6E-10 3.0E-13	6.1E-12 2.3E-10 2.0E-10 1.5E-11 4.2E-14	1.2E-12 8.2E-12 5.8E-14 1.3E-10 1.9E-12	1.7E-04 1.6E-02 1.4E-02 8.1E-05 1.5E-07	3.0E-07 1.2E-05 1.0E-05 7.8E-07 2.1E-09	1.2E-05 8.2E-05 5.9E-07 1.3E-03 1.9E-05	Acrylonitrile	occupational; three drinking water studies	human	rat	lung	multiple	B1/6.8E-5 [2.4E-1] ⁸	81/5.4E-1 ^a	0'Berg, 1980; U.S. EPA, 1983, 1987a,b/Quast et al., 1980; Blo/dynamics, Inc., 1980a,b; U.S. EPA, 1983, 1907a,b
Cs-134 CS-135 Cs-137 Fe-59 H-3 I-129	D D U D	9.5E-01 9.5E-01 9.5E-01 1.0E-01 9.5E-01 9.5E-01	2.8E-11 2.7E-12 1.9E-11 9.8E-12 7.8E-14 1.2E-10	4.2E-11 4.0E-12 2.8E-11 2.8E-12 5.5E-14 1.9E-10	8.9E-11 0.0E+00 0.0E+00 6.2E-11 0.0E+00 1.5E-12	1.4E-05 1.4E-06 9.6E-06 4.9E-06 4.0E-08 6.1E-05	2.1E-06 2.1E-07 1.4E-06 1.4E-07 2.8E-09 9.6E-06	8.9E-04 0.0E+00 0.0E+00 6.3E-04 0.0E+00 1.5E-05	Aldrin	three dietary studies ⁹ : three dietary studies	Mouse	nkouse	liver (also see	liver Table A)	B2/4.9E−3 [1.7E+1]ª,b	B2∕1.7E+1 ⁸	HCI, 1977; Davis and Fitzhugh, 1962 Epstein, 1975; Davis, 1965; U.S. EPA, 1986, 1987b/ HCL, 1977; Davis and Fitzhugh, 1962 Epstein, 1975; Davis, 1965, 1987a,t
I-131 K-40 Nn-54	D	9.5E-01 9.5E-01 1.0E-01	2.4E-11 7.6E-12 5.3E-12	3.6E-11 1.1E-11 1.1E-12	2.9E-11 7.8E-12 4.7E-11	1.2E-05 4.0E-06 2.6E-06	1.8E-06 5.7E-07 5.7E-08	2.9E-04 7.8E-05 4.8E-04	Aniline	NA; 2-year dietary	MA	rat	NA	spleen	ND	82/5.7E-3 ^a	U.S. EPA, 1987/ CIIT, 1982; U.S. EPA, 1985, 19
M0-99	¥	8.0E-01	2.6E-12	1.7E-12	9.UE-12	1.3E-06	8.76-08	0.92-05	0625h				B -1				09/25/8

OSWER IOS 290

Health Effects Assessment

Summary Tables Fourth Quarter FY 1989

QERR 9200.4-30

EPA 1996 and 2000 SSG

- ◆Earlier mention of:
 - »1996 Soil Screening Guidance
 - »2000 Soil Screening Guidance for Radionuclide

Similar User Guides and Technical Background Documents

EPA SSG chem and rad calculators

The 1996 chem and 2000 rad SSG superseded the 1991 RAGs Part B equations with consistent calculators developed with ORNL

» These were superseded by the RSL and PRG calculators

Superiuna						
Recent Additions Contact	Us Search:			GO		
EPA Home > Superfund >	Health & Safety	> Risk Assessm	ient > <u>Tool</u>	s of the Trac	le > Soil Screenin	
Soil Screenir	na Guid	ance fo	r Che	mical	s	
	ig eala		•	mou	•	
Analytes for Soil	Screenin	g Calcula	tions			
Select Analytes.	Select one or i	more analytes	for the so	reening (or	click on the "Se	
ALAR]	
Acenaphthene						
Acephate						
Acetaldehyde						
Acetochlor						
Acetone						
Acetone Cyanohyd	Irin					
Acetonitrile						
Acetophenone						
Acrolein						
Acrylamide						
Acrylic Acid						
Acrylonitrile						
Alachlor						
Aldicarb				•	Select All	
	Indestion					
	Inhalation	of Eugitive	Dust	•		
	Inhalation	of Volatiles	Dust			
	Soil to Gro	undwater				
Select Pathways		ananator				
clear selection N	IEXT					

This site is maintained and operated through a cooperative agreement between the EPA

his site is maintained and operated through a cooperative agreement between the l

For Copies or More Information

 Guidance documents for radiation cleanup are on Superfund Radiation Webpage: »https://www.epa.gov/superfund/radiation-superfund-sites

 For further information or questions, contact Stuart Walker at » Phone: (202) 566-1148
 » Email: Walker.Stuart@epa.gov

