SMART Conceptual Site Models Managing and Communicating Data Uncertainty

John Sohl – CEO

COLUMBIA Technologies www.columbiatechnologies.com

SmartData Solutions® is protected by U.S. Patent No. 7,058,509 and International PCT Application /US03/29812

© 2009 Columbia Technologie

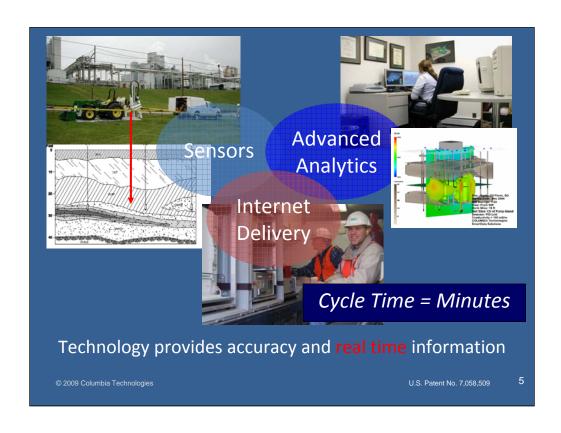
Factors Affecting Clarity of the

CSM coultesy of Robert Howe Tetra Tech EMI

A team's ability to build an adequate CSM to arrive at a consensus vision may depend on the following key factors:

- 1) Clarity of CSM presentation
- 2) Amount of data available for the site
- 3) Clarity of the intended reuse
- 4) Stakeholder expectations and past experiences
- 5) Economic and time constraints.

© 2009 Columbia Technologies


Triad Site Management Toolset

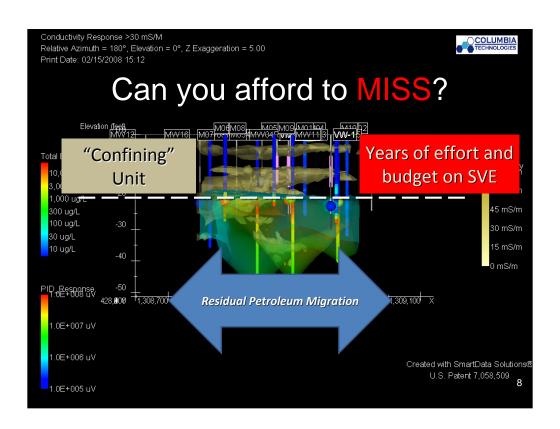
courtesy of Tom Palaia CH2M HILL

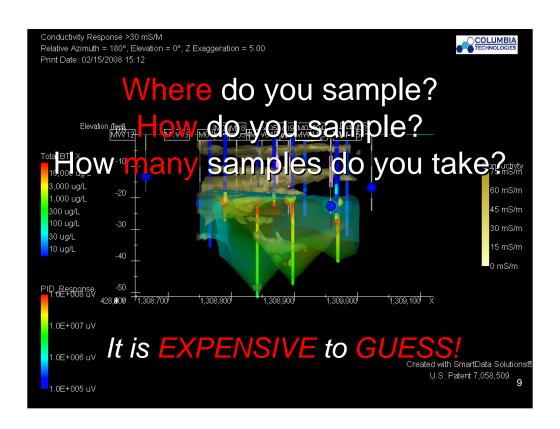
- To enable efficient selection of a site management strategy
 within the short duration of a Triad project, a core set of
 decision support tools are needed to assist project team
 members. The toolset described in this presentation includes:
 - A geospatial database to compile and visualize collaborative data sets,
 - A three-dimensional visualization and animation system to illustrate contaminant fate and transport, and
 - A multi-criteria decision support tool to assist with, among many tasks, analysis of site conceptual model (SCM) certainty and selection of a site management strategy.

© 2009 Columbia Technologies

.

What's the Value Proposition? \$\$\$\$

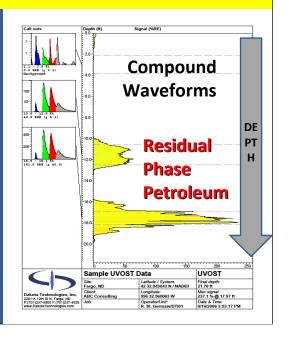

© 2009 Columbia Technologies


Ь

#1 - High Resolution

The greatest source of error and therefore risk of failure, poor remedial performance, and loss of capital in site characterization is the existence of data gaps.

© 2009 Columbia Technologies



- Compound specific
- Stratigraphic
- Minimal data gaps
- Real time
- Digital
- Easy to communicate
- Low economic cost

10 © 2009 Columbia Technologies

#2 - Speed

Speed enables the Triad team to identify and close data gaps with little or no additional cost in *real time*.

© 2009 Columbia Technologies

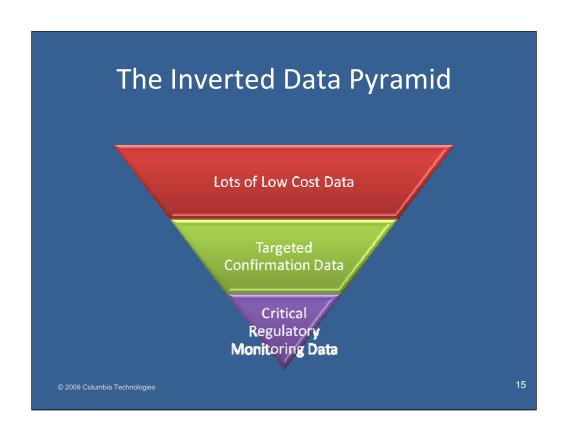
#3 - Communication

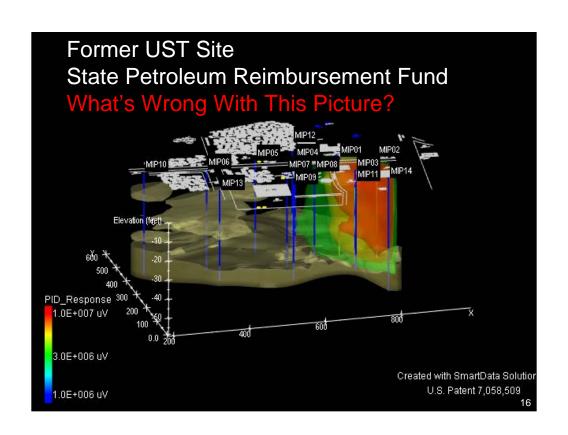
Easy to understand.
Easy to involve all stakeholders.
Easy to communicate globally.

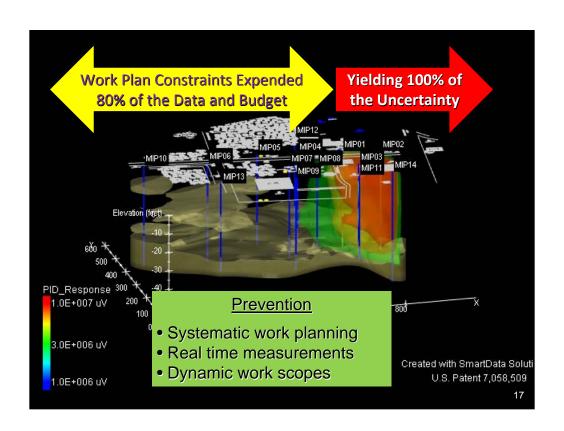
© 2009 Columbia Technologies

#4 – Cost Alternatives

Cost of remedial implementation?
Cost of traditional characterization?
Cost of rework or failure?


vs. the **incremental** cost of high resolution characterization?


© 2009 Columbia Technologies


What is the Cost of Error? How do we deal with:

Complex geologies?
Non-representative samples?
Groundwater in lieu of soil samples?

© 2009 Columbia Technologies

Triad - A Smarter Alternative

- Less data gaps and less risk
- Accelerated decision making
- More cost-effective use of resources
- More cleanups "on target"

© 2009 Columbia Technologies

What's the Return on Your Triad Investment?

- Reduced cost of additional mobilizations and data collection
- Reduced impact of collecting inadequate or incorrect data on follow on work planning and remedial alternatives
- Too many or too few or incorrectly placed sample locations
- Too many or too few or incorrectly placed or screened expensive monitoring wells
- Too much, too little, or incorrectly targeted remedial • hardware, approaches, or injection chemicals

www.columbiatechnologies.com

CEO - John Sohl jsohl@columbiatechnologies.com

Services throughout North America

Tel: 888-344-2704

SmartData Solutions® is protected by U.S. Patent No. 7,058,509 and International PCT Application /US03/29812

© 2009 Columbia Technologies

:0

Tools and Approaches for Managing Multi-Site, Multi-Year, Large Volume Datasets to Allow and Enhance Triad Implementation

45th Space Wing – Cape Canaveral Air Force Station and Patrick Air Force Base, FL

Regina Dixon Butler, 45 CES/CEAN Mark Kershner, 45 CES/CEAN

Purpose

Illustrate application of Triad principles to streamline and accelerate management of a large environmental restoration program

- Conceptual applicability
- Case Study: Programmatic Triad implementation within 45th Space Wing Environmental Restoration Program
 - History/Setting
 - Challenges, issues, and constraints
 - Tools and strategies
 - Lessons learned

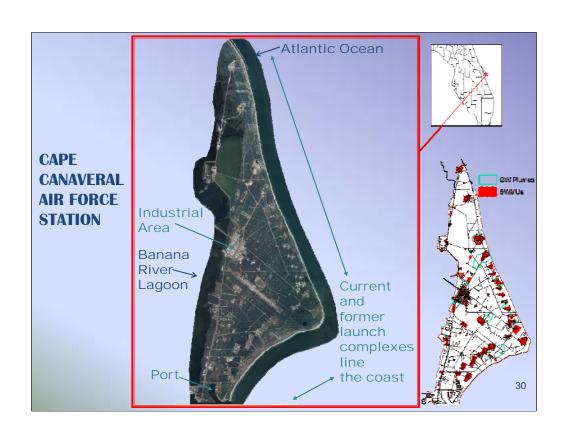
CONCEPTUAL APPLICABILITY

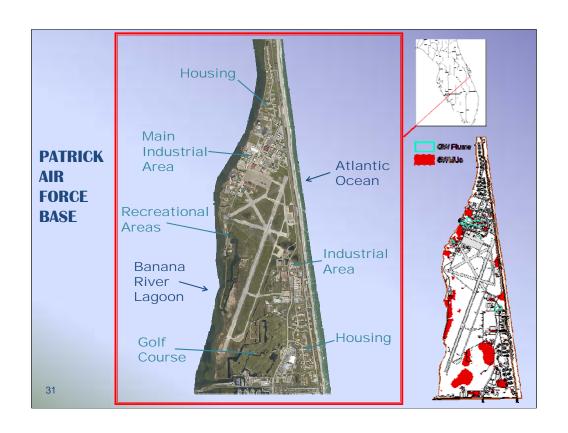
Programmatic Triad – Conceptual Applicability

- Equally effective for site and program management
- Streamline restoration process cradle to grave
- Establish programmatic framework to simplify Triad implementation at site/project-level

Ingraining Triad Management

- Focus on outcome, not regimented process
 - Establish <u>flexible</u> framework for consistent decisions
 - Look toward long term goals and short term success
- Work as a team, not adversaries
 - Formal partnering = cooperation and teamwork
 - Identify constraints and craft effective, shared solutions
- Foster innovation throughout the management and implementation process
 - Applies to planning, data management, reporting, and decision-making, not just technological advancement
 - Even paper-pushers can innovate!


CASE STUDY


45th Space Wing Environmental Restoration Program

Patrick Air Force Base (PAFB), Cape Canaveral Air Force Station (CCAFS), and down range facilities

- 320 Solid Waste
 Management Units (165 IRP "Sites")
- Past expenditures: \$169M (1991-2007)
- Remaining requirements: \$135M (2008-2040)

Cleanup Issues

- 1,200+ acres of contaminated groundwater
 - -Major issue: past use of chlorinated solvents
 - 9 Sites with DNAPL/high concentration dissolved solvents
 - Other sites with more dilute daughter products
- 2003-2008: 7 Major cleanup actions (\$36M+)
- Two major additional actions planned (\$25M+)
- 180,000 tons contaminated soil removed to date in over 141 separate actions
 - Major issue: polychlorinated biphenyl (PCB) and lead contamination due to historical paint coatings

Program Management Challenges

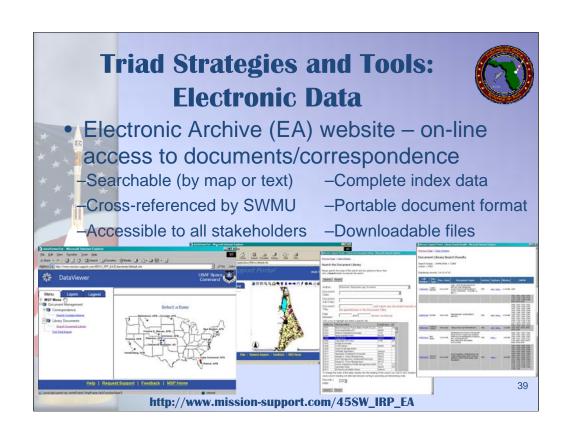
- Mission requirements/facility re-use
- Lengthy review and coordination
- Changing stakeholders/Evolving Process
- Goals and Expectations
- Process inconsistency
- Remedy Selection/Formalization/Implementation
- Long term planning/maintaining schedules

Stakeholder Involvement (Con't)

- AF project managers, regulators, contractors
 - Formal partnering relationship established -1995
 - Tiered structure within management levels
 - Team includes AF, regulatory agencies, contractors, service agencies
- Other Installation personnel
 - Align restoration activities with mission
 - Proactive mission planning, not reactive
 - Facilitate dig waivers/exemptions to reduce delays

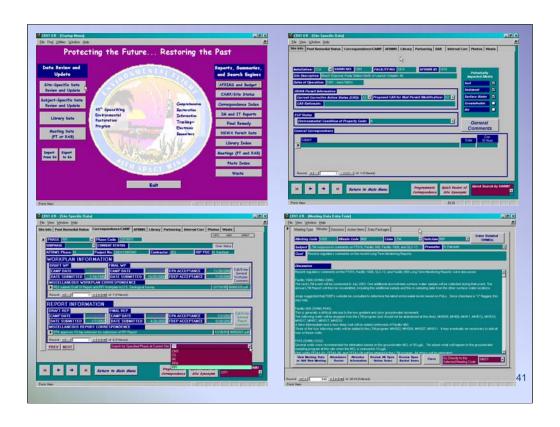
- AF Management
 - Buy-in through formal partnering process
 - Advocates for funding; defends requirements/goals
- Restoration Advisory Board (public)
 - Past challenges overcome through communication
 - Advocates for program
 - Sounding board for new ideas/innovations
 - Encourages cross-feed

Triad Strategies and Tools: Programmatic Documents



- Provide direction/consistency
- Continuity; How/why things are done
- Establish lines of communication
- Define common goals
- Eliminate redundant planning documents
- Programmatic documents include:
- -Decision Process Document -Quality Assurance Program Plan
- -Field Sampling Procedures -Program Orientation/Status Manual
- -Land Use Management Plan -Operating Procedures

Triad Strategies and Tools: Templates


- Help stakeholders track and find information
- Standardization = faster review, coordination
- Standard templates include:
 - Corrective Action Management Plan
 - Land Use Control Implementation Plans
 - Fact Sheets
 - Statements of Basis
 - Minimum requirements for workplans/reports

Electronic Data (Con't)

- CRIT-ER Database (Comprehensive Restoration) Information Tracking – Electronic Repository)
 - Custom desktop database; automated tools, graphical user-interface
 - Facilitates day-to-day management decisions
 - Memorializes past decisions
 - Components include (all cross-referenced by SWMU):
- Meeting Minutes/Decisions
 Status Information
- Site-Specific Work Phases
 Monitoring Program Details
- •Site/Regulatory Schedules •Interface w/ other data sources
- Photo Index

Land Use Controls

Electronic Data (Con't)

- Geographic Information System (GIS)
 - Spatial representation of data (SWMU boundaries, plumes, sampling locations, etc.)
 - Integration with existing databases as visualization/problem solving tool
 - Foundation for custom automation
 - Core layers on "geobase," with visibility to installation stakeholders

Overcoming Programmatic Management Challenges (Con't)

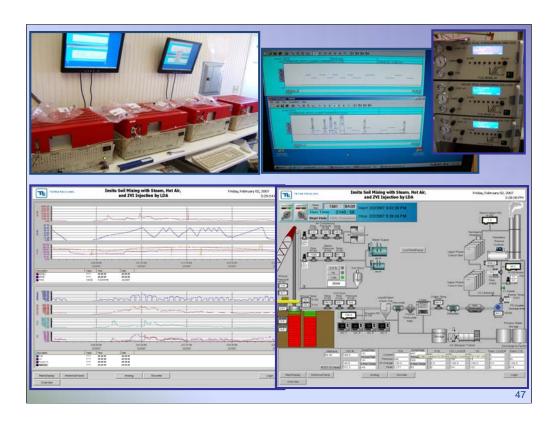
- Mission requirements/re-use
 - Early communication with planning personnel
 - -GIS to help visualize constraints
 - Help site new launch programs, rather than hinder siting process on back-end
- Process Inconsistency
 - Inconsistencies breed future problems
 - SB templates resolved 2+ year conflict
 - 30+ SBs completed/formalized since 2002
 - Currently establishing process for SB modification

Overcoming Programmatic Management Challenges (Con't)

- Lengthy review and coordination
 - Partnering Team = on-board reviews, prioritization
 - Programmatic documents = decision framework
 - Streamlined review through templates
 - Up-front planning facilitates back-end approval
- Changing Stakeholders/Evolving Process
 - Establish clear documentation for all decisions
 - Eases personnel transitions
 - Provides justification
 - Build confidence through information exchange

Overcoming Programmatic Management Challenges (Con't)

- Funding/Program Expectations and Goals
 - Communication sets realistic expectations
 - Leave your hats at the door; Put cards on the table
 - Educate stakeholders about constraints/goals
 - Share agency goals; understand significance
 - Agency-specific constraints influence planning
- Long term planning/maintaining schedules
 - Information tools = automated schedules
 - Establish guidelines for phasing and schedules
 - Discuss scheduling constraints
 - Optimization/Five Year Review/Exit Strategies


Overcoming Programmatic Management Challenges (con't)

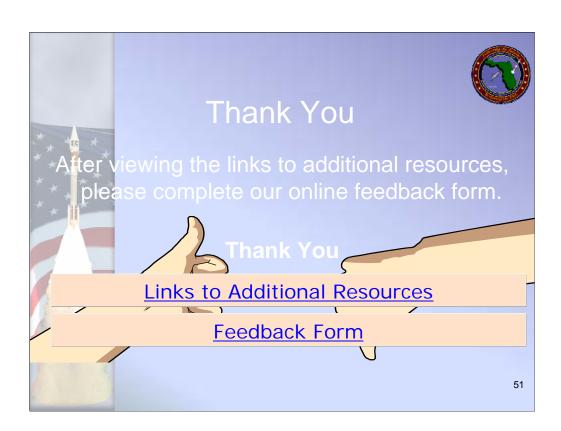
- Remedy Formalization/Implementation
 - Triad buy-in at programmatic level facilitates projectspecific triad implementation
 - Executed 3 innovative soil mixing remediation projects
 - Addressed deeper contamination than planned
 - Added/deleted cells based on real-time data
 - Increased treatment time based on real time data
 - Testing, proving, full-scale implementation of numerous innovative technologies

Vegetable oil injection, emulsifed zero valent iron injection, in-canal ozone treatment, horizontal sparge system, soil washing, etc.


 Programmatic decision framework and information exchange streamlines real time data management and decision-making in the field

Lessons Learned

- Communication builds realistic expectations
- Prioritization is a key to project success
- Information resources should be accessible
- Maintain information resources locally
- Document, organize, document some more
- Process is important, but only if it's beneficial
 - Don't follow process just to "check the box"
 - Look for opportunities to innovate/streamline



Acknowledgements

Thanks to Space Command, the 45th Space Wing Partnering Team and Support Staff:

John Armstrong (FDEP)	Mark Ashton (HQ AFSPC A4/7PC)
Stephen Ball (EPA)	Ron Bond (45 CES/CEAN)
Mike Bowers (45 CES/CEANR)	Anne Chrest (Portage Env)
Harlan Faircloth (CORE)	Teresa Fiorillo (45 CES/CEAN)
Joe Foran (Management Edge)	Patrick Giniewski (45 CES/CEA)
Paul Goldsmith (CORE)	Mike Higgins (Tetratech)
Deda Johansen (Jacobs Eng.)	Loren Lorenz (Portage Env)
Karen Mengden (Ageiss)	Eric Nuzie (FDEP)
Greg Simonson (HQ AFSPC A4/7PC)	Dennis Theoret (Apex Env)

