PASSIVE SAMPLING PILOT STUDY REPORT

STRINGFELLOW HAZARDOUS WASTE SITE

July 2009

SUBMITTED TO:

California Department of Toxic Substances Control 8810 Cal Center Drive, Second Floor Sacramento, California 95826

PREPARED BY:

GeoLogic Associates 1831 Commercenter East San Bernardino, California 92408 (909) 383-8728

In Association with: Bryan A. Stirrat & Associates 1360 Valley Vista Drive Diamond Bar, California 91765

PREFACE

GeoLogic Associates is a contractor for the Groundwater Monitoring Program at Stringfellow Hazardous Waste Site (Stringfellow Site), Riverside County, California. This work was performed for the State of California, Department of Toxic Substances Control, contract number 00-T2122.

This document provides results obtained for groundwater samples that were collected as part of a passive sampling pilot study at the Stringfellow Site during March 2008, and compares these results with analytical data obtained for samples that were collected using traditional purge-and-sample methods during the Spring 2008 and Fall 2008 monitoring events.

GeoLogic Associates personnel involved in the program include Mr. Michael Reason, PG, CHg, who serves as the Project Manager, and Mr. Eric White, PG, CHg who serves as Project Geologist. Ms. Carol Wilson is the DTSC Project Manager.

Approved:

Michael D. Reason, PG, CHg Senior Hydrogeologist

Eisulen

Eric White, PG, CHg Project Geologist

Stringfellow Hazardous Waste Site, California

EXECUTIVE SUMMARY

This report presents a summary of a passive sampling pilot study that was performed at the Stringfellow Hazardous Waste Site (Stringfellow Site) to evaluate if there is depthdiscrete differences in samples collected with a sampling device that employs passive sampling technology, and determine if the concentrations from the depth-discrete passive sampling devices are comparable with the results obtained from samples that are collected using traditional purge-and-sample techniques. This report summarizes the results from the two sampling methods and provides recommendations for future sampling events.

For this study, passive HydrasleeveTM sampling devices were deployed in six wells and allowed to equilibrate for 49 to 50 days. To evaluate possible variation in concentrations with respect to variations in permeability or preferential contaminant pathways due to variation in aquifer materials, multiple HydrasleeveTM sampling devices were deployed in each well. Three passive samplers were deployed at vertically discrete intervals in two wells, and four samplers were deployed at vertically discrete intervals in four wells. The depth of deployment was based on permeable zones as determined from boring logs and the available saturated zone within a well at the time of deployment. The passive samples were tested for perchlorate by EPA Method 314.0 and IC-MS/MS, and VOCs by EPA Method 8260. Analytical results obtained from the passive samples were compared with results for the Spring 2008 and Fall 2008 monitoring events, which employed traditional purge and sample methodology.

Based on the results from the study, it is concluded that the HydrasleeveTM passive sampling devices provide similar results as samples collected using traditional purge and sample methods, as summarized below:

- Analytical results from one well (CTS-OW3) indicated some vertical stratification for perchlorate, with the highest concentrations reported in the deepest sample. No apparent vertical stratification was noted for perchlorate in the other wells, nor for VOCs in any of the wells.
- The samples from two wells (OC-11B and OW-68D1) required dilution before testing by EPA Method 314.0 because of matrix interference, which resulted in detection limits that were higher than the analytical results provided by the IC-MS/MS test method. Based on the average result from the EPA Method 314.0 testing and IC-MS/MS testing for the other 14 passive samples, the reported analytical result for a specific test method was within 5 percent of the average concentration for 8 samples, within 5 to 8 percent for 4 samples, and within 11 percent for the remaining 2 samples.
- For EPA Method 314.0 testing, the average perchlorate concentrations reported for the passive samples differed from the results from the Spring 2008 sampling by less than 13 percent for 3 samples. However, the concentrations for CTW-OW3 differed by 60 percent due to the relatively high concentrations reported for the deepest passive sample.

- Differences between IC-MS/MS analytical results for the average concentration from passive samples and the concentration from the Fall 2008 sampling event ranged from 0 to 15 percent.
- For detected VOCs, the analytical results for the passive samples were generally within 10 percent of the results for samples collected using traditional purge and sample techniques.
- The differences in concentrations reported for the pumped and passive samples can be partly explained by the elapsed time between sampling events (1 to 8 months).

Based on the conclusions described above and the information obtained during sample collection, the following recommendations have been developed:

- Little variability was noted for depth-discrete samples in a single well. Therefore, it appears to be sufficient to collect one sample in the middle of the saturated screen interval, although the local geology should be evaluated in wells that span several geologic units (alluvium and bedrock, for example).
- The sample volume provided by the passive sampling devices (less than 0.7 liters for a 2-inch device; approximate 1.6 liters for a 4-inch device) may limit the analytical suite, but this limitation could be overcome by deploying multiple HydrasleeveTM devices in a single well if an expanded analytical suite is planned.
- Retrieval of HydrasleeveTM sampling devices from open borehole wells should be performed with caution owing to the potential for tearing of the device on rough bedrock walls or the bottom of the protective surface casing.
- If additional comparisons between sampling methods are performed, the temporal difference between the two samples should be minimized. Optimally, the passive samples should be collected immediately prior to purging of the well for samples collected using traditional purge-and-sample techniques.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1-1
	1.1	BACKGROUND	1-2
	1.2	MONITORING PROGRAM OBJECTIVES	1-3
	1.3	REVIEW OF PASSIVE SAMPLING TECHNOLOGY	1-3
2.0	SAN	APLING PROCEDURES	2-1
	2.1	SAMPLE LOCATIONS	2-1
	2.2	SAMPLING PROCEDURES	2-1
	2.3	QUALITY ASSURANCE/QUALITY CONTROL SAMPLES	2-2
	2.4	LABORATORY TETSING AND DATA VALIDATION	2-2
3.0	МО	NITORING RESULTS	3-1
	3.1	PASSIVE SAMPLER DEPLOYMENT AND	
		MONITORING RESULTS	3-1
	3.2	PERCHLORATE TEST METHOD COMPARISON	3-3
	3.3	SAMPLING METHOD COMPARISON	3-4
4.0	CO	NCLUSIONS AND RECOMMENDATIONS	4-1
	4.1	CONCLUSIONS	4-1
	4.2	RECOMMENDATIONS	4-2
5.0	REI	FERENCES	5-1

LIST OF TABLES

Table 2-1	Well Locations and Depth of Hydrasleeve TM Deployment
Table 3-1	Summary of Analytical Results

LIST OF FIGURES

- Figure 1-1 Project Location Plan
- Figure 1-2 Site Vicinity
- Figure 1-3 Location of Zones 1-4
- Figure 1-4 Index Map Passive Sampler Pilot Study, May 2008
- Figure 1-5 Zones 1A and 1B Well Location Map
- Figure 1-6 Zones 2 and 3 Well Location Map
- Figure 1-7 Upgradient Zone 4 Well Location Map
- Figure 1-8 Downgradient Zone 4 Well Location Map
- Figure 3-1 Well OC-11B Results
- Figure 3-2 Well OW-68D1 Results
- Figure 3-3 Well MW-9B Results
- Figure 3-4 Well LEO-11A Results
- Figure 3-5 Well CTS-OW3 Results

TABLE OF CONTENTS (Continued)

LIST OF FIGURES (Continued)

Figure 3-6	Well FC-1020A Results
Figure 3-7	Comparison of Perchlorate Concentrations in Passive Samples
Figure 3-8	Comparison of Perchlorate (EPA Method 314.0) Concentrations
Figure 3-9	Comparison of Perchlorate (IC-MS/MS) Concentrations
Figure 3-10	Comparison of PCE Concentrations
Figure 3-11	Comparison of TCE Concentrations
Figure 3-12	Comparison of Chloroform Concentrations

APPENDIX A

Lithologic logs

APPENDIX B

Field Data Sheets

APPENDIX C

Laboratory Analytical Reports

APPENDIX D

Data Validation Report

APPENDIX E

Time-Series Charts

APPENDIX F

Comments and Responses

1.0 INTRODUCTION

This report presents a summary of a passive sampling pilot study that was performed at the Stringfellow Hazardous Waste Site (Stringfellow Site). As requested by the State of California Department of Toxic Substances Control (DTSC), groundwater samples were collected using HydrasleeveTM passive sampling devices from two wells in Zone 1B, one well in Zone 2, one well in Zone 3, and two wells in Zone 4. Field activities were conducted in general accordance with the standard operating procedures in the Groundwater Monitoring Program Work Plan (Groundwater Monitoring Work Plan) (GeoLogic Associates (GLA), 2001), except the wells were not purged and sampled as stated in Sections 3.3 and 3.4 of the Groundwater Monitoring Work Plan. Instead, samples were collected using passive sampling devices that were deployed at depth-discrete intervals (LeBlanc and Vroblesky, 2008). Laboratory analyses were completed in accordance with the quality assurance plan that is detailed within Appendices A, B, and C of the Groundwater Monitoring Work Plan.

Section 1.0 of this report provides a brief background of the Stringfellow Site and an overview of the site monitoring program.

Section 2.0 summarizes field data collection activities, including the groundwater monitoring wells that were sampled, and sampling procedures associated with the HydrasleeveTM sampling devices.

Section 3.0 provides a summary of the sampling and laboratory analytical data validation performed by the Laboratory Data Consultants (LDC) for the passive sampling event.

Section 4.0 summarizes the laboratory analytical results from samples collected in March 2008 using the passive sampling techniques and compares these results with the analytical results from the April 2008 routine monitoring event, which employed purging methodology from the Groundwater Monitoring Work Plan.

Section 5.0 provides a list of references used in this report.

Appendix A provides lithologic logs of the wells included in this program.

Appendix B provides field data sheets that were completed at the time of sampling.

Appendix C provides laboratory certificates of analysis.

Appendix D provides a data validation report prepared by laboratory data consultants.

Appendix E provides time-series charts showing historical monitoring results for the tested wells.

Appendix F provides a comments and response matrix for the draft version of this report.

1.1 BACKGROUND

The Stringfellow Site is a former Class I industrial waste disposal facility located approximately 50 miles east of the City of Los Angeles in southern California (Figure 1-1). The Stringfellow Site is located at the northern edge of Riverside County near the community of Glen Avon (Figures 1-2, 1-3, and 1-4). During its operation from 1956 to 1972, the Stringfellow Site contained as many as 20 surface impoundments to contain and evaporate liquid chemical wastes. About 34 million gallons of liquid industrial process wastes containing spent acids and caustics, solvents, pesticide by-products, metals, and other inorganic and organic constituents were discharged into the site's evaporation ponds during the site's operating life.

After operation for 16 years as an industrial waste disposal facility, the Stringfellow Site stopped accepting wastes in November 1972. From the time that heavy rains in March 1969 first caused impacted surface overflow downstream into Glen Avon, the Stringfellow Site operators had faced a growing number of indications that the facility was not in compliance with waste discharge requirements that had been established by Riverside County and the California Regional Water Quality Control Board, Santa Ana Region (RWQCB). By 1975, all efforts by the site operator to re-open the facility were exhausted and, after the operator was unable to undertake site closure, the RWQCB declared the Stringfellow Site a nuisance. An interim abatement effort was initiated in 1980 after completion of a series of engineering assessments of closure options. The interim abatement included removal of all surface ponds, construction of a subsurface barrier wall on the downgradient side of the site, installation of a surface cover and other drainage control features, and installation of several on-site and downgradient groundwater monitoring wells. The period just prior to initiation of the interim abatement (1977-1980) was marked by three years of heavy rainfall, which resulted in an overflow into the Glen Avon community.

The Stringfellow Site was placed on the Superfund National Priority List (NPL) in 1982 and was, at the same time, declared California's highest priority toxic waste site. In October 1983, the California Department of Health Services declared the Stringfellow Site an "imminent or substantial endangerment to the public health and the environment," reinforcing a May 1983 finding by the U.S. Environmental Protection Agency (EPA) in its lawsuit filed against the Responsible Parties.

At the present time, an active groundwater pump-and-treat system is in place to collect impacted groundwater. The groundwater is treated on-site at a pretreatment plant located in the mid-canyon area, where metals and organics are extracted. The treated effluent from this process is transferred to the Santa Ana Regional Interceptor (SARI) line where it is discharged under a permit from the Santa Ana Water Project Authority (SAWPA). The SARI line presently transports municipal and industrial wastewater to Orange County, California, where after primary treatment it is discharged directly into the Pacific Ocean.

Figure 1-4 illustrates the overall work area and site zones. The specific well locations included in the passive sampling pilot study are shown in Figure 1-5 for Zone 1B, in Figure 1-6 for Zones 2 and 3, and in Figures 1-7 and 1-8 for Zone 4. DTSC selected the wells

based on the historical monitoring results such that a relatively wide range of concentrations could be evaluated, from wells with relatively greater groundwater impacts (Zone 1B) to wells with low concentrations of volatile organic compounds (VOCs).

1.2 MONITORING PROGRAM OBJECTIVES

A routine groundwater monitoring program has been implemented at the Stringfellow Hazardous Waste Site since August 1984. In coordination with the EPA, DTSC developed a structured groundwater monitoring program to evaluate the Stringfellow Site. The groundwater monitoring workplan was last revised April 2001 (GLA, 2001). The purpose of the program is to collect groundwater quality data to identify of Stringfellow-related groundwater impacts, and to evaluate waste migration, changes in constituent concentrations, and the effectiveness of the groundwater pump-and-treat system.

The purpose of this pilot study is two-fold:

- To evaluate if there is depth-discrete differences in samples collected with a sampling device that employs passive sampling technology, and
- To determine if the average concentrations from the depth-discrete passive sampling devices are comparable with the results from traditional purge-and-sample techniques.

If passive sampling data quality is consistent with results obtained using standard sampling methods, passive sampling methods could be used during future routine monitoring events to reduce labor and/or purge water disposal costs.

1.3 REVIEW OF PASSIVE SAMPLING TECHNOLOGY

Passive groundwater sampling methods have been developed to reduce the need for presampling well purging and subsequent treatment and disposal of purge waters. Passive sampling techniques may be more cost effective than traditional purge-and-sample techniques and can provide depth-discrete information.

The HydrasleeveTM disposable sampler was selected for this study because of its effectiveness, cost, and ease of use. The HydrasleeveTM can be used to test for all compounds, provides a repeatable sampling method, can be used in slow recharge wells, and no purge water disposal is required. The U.S. Geological Survey (USGS) compared results from diffusion bag sampling techniques to traditional purge and sample techniques during an investigation of perchlorate and explosive compounds in groundwater at Camp Edwards in Cape Cod, Massachusetts (LeBlank and Vreblosky, 2008). While the diffusion bag sampling results were similar to the results for pumped samples in the USGS study, the HydrasleeveTM samplers were selected for this study because they can be used for all compounds.

Sampling involves deployment of the HydrasleeveTM devices prior to sampling (for this study, the devices were deployed 7 weeks in advance, but the devices could be deployed a

day before the sampling event). Samples can be collected in less than 15 minutes and equipment decontamination procedures between wells are not needed. Multiple HydrasleeveTM sampling devices can be deployed in a well to evaluate impacts at vertically discrete zones.

Disadvantages of the HydrasleeveTM device include a limited sample volume per device, which limits the analytical testing that could be performed on an individual sample. Field parameter testing is limited because the accuracy of some analytes can be affected if a flow-through cell is not employed. In addition, the HydrasleeveTM sampler can tear if caution is not used when retrieving the sampling device, especially if the device is deployed in a well without casing such as the open borehole wells at the Stringfellow Site. If depth discrete information is required, care must be used when retrieving the sampling device because if the sampler is raised slowly, the check valve may not immediately open and the sample may be collected at a higher location in the water column than was originally intended.

2.0 SAMPLING PROCEDURES

The passive sampling pilot study was conducted between January 28 and March 18, 2008. DTSC selected six wells representative of the Zones 1 through 4 to be sampled with the passive method. The wells were selected based on their locations along the length of the volatile organic compound (VOC) plume, with high concentrations historically measured in samples from Zone 1 wells to concentrations near the regulatory limit to concentrations near the detection limit in wells located at the distal ends of the VOC plume. In each well, the sample depths were selected based on the most permeable water bearing zones identified on the lithologic boring logs (Appendix A).

2.1 SAMPLE LOCATIONS

The locations of the six groundwater monitoring wells selected for the passive sampling pilot study are shown on Figures 1-4 through 1-8. A total of 22 Hydrasleeve[™] passive sampling devices were deployed at up to 4 depth-discrete interwell intervals (Table 2-1). Due to small water columns, only three sampling devices were deployed in two of the wells. The vertical intervals for Hydrasleeve[™] placement were selected based on the most permeable water-bearing zone identified on the lithologic boring log (Appendix A). For bedrock wells, the samplers were positioned at variable intervals to evaluate changes in contaminant concentrations with depth.

2.2 SAMPLING PROCEDURES

General: The HydrasleeveTM sampler includes a sleeve to which a weight is attached to the bottom, and the empty device is lowered into a well with a rope. Water pressure keeps the bag collapsed and a check valve located at the top of the sleeve closed, preventing entry of water. Following deployment, the water level in the well is allowed to return to equilibrium prior to sampling. For sampling, the device must be raised faster than one foot per second, which allows the check valve to open and the bag fills with water. The check valve may not open immediately if the HydraseelveTM is removed at a slower rate, which would result in sample collection at a more shallow depth than originally intended. The water level change is minimal and there is minimal agitation to the sample. When the bag is full, the check valve closes, disallowing extraneous water from entering the HydraseelveTM sampling device. The HydraseelveTM can then be

removed from the well, and the water within the sleeve can be transferred to appropriate sample containers (HYDRASleeve, 2008).

Stringfellow Passive Sampling: The sampling procedures listed below were employed during passive sampler deployment and retrieval:

- Hydrasleeve[™] passive sampling devices were deployed at depths listed in Table 2-1 and were retrieved 49 to 50 days after deployment.
- During sampler retrieval, field measured pH, conductivity, turbidity, dissolved oxygen, and temperature values were recorded on field sampling sheets (Appendix B).
- All samples were transferred to approved sample containers, and each container was filled completely and immediately capped, labeled, and placed in a cooler with ice.
- Samples were immediately placed in an ice-filled cooler for transport to E.S. Babcock & Sons Laboratory, a California-certified laboratory located in Riverside, California. Samples were kept chilled (at about 4°C) until delivery.
- A trip blank that was provided by the laboratory was added to the chain of custody as a QC sample and added to the cooler.
- A completed Chain-of-Custody form, detailing the sample identification numbers, date and time collected, analyses requested, and other project information accompanied each sample to the laboratory. The Chain-of-Custody forms were signed and dated by all personnel retaining custody of the samples.

2.3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

The Quality Assurance/Quality Control (QA/QC) program included collection and analyses of duplicate samples from wells MW-9B (57 feet) and OW-68D1 (53 feet). The duplicate samples were collected, handled, and tested in the same manner as the primary samples. A trip blank sample was scheduled to be submitted and tested for volatile organic compounds; the sampling crew reported that the trip blank was in the cooler (trip blank indicated on chain of custody), but the laboratory reported that no trip blank was received with the sample delivery and was not analyzed.

2.4 LABORATORY TESTING AND DATA VALIDATION

Samples were submitted for testing of volatile organic compounds (EPA Method 8260) and perchlorate [EPA Method 314.0 and ion chromatography tandem mass spectrometry (IC-MS/MS)]. Both test methods for perchlorate were performed because EPA Method 314.0 can be subject to matrix interferences, especially if the sample contains high concentrations of other anions. In addition, p-chlorobenzenesulfonic acid (pCBSA), a known contaminant at the Stringfellow Site, has been identified as an interfering compound near the retention time for perchlorate by EPA Method 314.0, and the IC-MS/MS method provides confirmation regarding the presence of perchlorate.

Certificates of analysis for the samples collected using passive techniques are provided in Appendix C.

Data validation was performed by Laboratory Data Consultants (LDC) under a separate contract to DTSC. A copy of LDC's data validation report is provided in Appendix D.

3.0 MONITORING RESULTS

A description of the local geology of the wells sampled in this study and a summary of the monitoring results are provided in this section.

3.1 PASSIVE SAMPLER DEPLOYMENT AND MONITORING RESULTS

A summary of the analytical results for the passive samples, Spring 2008 routine monitoring event, and Fall 2008 routine monitoring event is presented in Table 3-1. Figures 3-1 through 3-6 summarize well construction, local geology, depth to groundwater measurements, HydrasleeveTM placement intervals, a summary of the purging record from the April and November 2008 monitoring events (which employed traditional purge and sample techniques), and bar graphs for the analytical results for commonly detected VOCs and perchlorate obtained from the passive sampling and routine monitoring events. A graphical depiction of a comparison between analytical results for perchlorate test methods (EPA Method 314.0 and IC-MS/MS) from passive samples is shown in Figure 3-7, and analytical result comparisons between sampling techniques are shown on Figures 3-8 through 3-14.

Zone 1B Well OC-11B

The local geology at well OC-11B includes about 30 feet of alluvium overlying granodiorite (Figure 3-1). Groundwater at this location occurs in fractured bedrock. The depth to groundwater at the time of deployment of the HydrasleeveTM samplers was 32.70 feet. Four samplers were deployed within the open-borehole well at depths of 39 feet, 42 feet, 68 feet, and 71 feet. During sampler retrieval, the sampler that was installed at a depth of 39 feet was damaged (presumably by either the bottom of the metal casing or by scraping against the bedrock) and a portion of the water leaked from the bag. As a result, this sample could only be tested for VOCs.

Comparison of the water quality results indicates that there is no apparent vertical stratification of contaminant concentrations in this well (Figure 3-1). While the laboratory diluted the samples that were collected during the routine monitoring events (April and November 2008), which resulted in higher detection limits, the VOC concentrations reported for the routine monitoring events are generally comparable to the four passive samples (Table 3-1). As shown on Table 3-1, the detection limit for the April 2008 routine samples were higher than the concentrations reported for the passive samples and the November 2008 routine samples. For the passive samples, no perchlorate was detected in any of the tests that employed EPA Method 314.0 because of the high detection limits; perchlorate was measured in the samples that were tested using IC-MS/MS, which had a lower detection limit. For the routine samples, the laboratory reported sample matrix interference using EPA Method 314.0, and the reported concentration (1,200 micrograms per liter $[\mu g/L]$) may be elevated due to the interference. For the IC-MS/MS testing, the perchlorate concentration reported for the November 2008 sampling event was equal to the average concentration from the passive samples (160 µg/L).

Zone 1B Well OW-68D1

Well OW-68D1 is screened in fractured bedrock. Owing to a small water column, the passive sampling devices were installed at only three intervals (50, 53, and 56 feet). Upon retrieval of the sampling devices, only the lower two contained sufficient water for analytical testing. As shown on Figure 3-2 and Table 3-1, the VOC concentrations for each of the passive sampling intervals are similar to the routine sample except for low concentrations of gasoline compounds that were detected in the November 2008 routine sample. Perchlorate was identified using the IC-MS/MS method in both of the passive samples. No perchlorate was identified in any of the samples using EPA Method 314.0 because the samples required dilution, which resulted in higher detection limits. The perchlorate concentration from IC-MS/MS testing reported for the November 2008 sampling event (150 μ g/L) was 25 percent higher than the average passive sample results (120 μ g/L).

Zone 2 Well MW-9B

Zone 2 Well MW-9B was constructed in sand and gravelly sand (Figure 3-3). Four sampling devices were deployed at depths ranging from 57 to 81 feet within this well. The analytical results from the passive samplers indicated no apparent vertical stratification for VOC or perchlorate concentrations (Figure 3-3). Perchlorate and trichloroethene (TCE) concentrations for the sample collected during the routine sampling events were similar to those measured in the passive samples (within 15 percent). However, low concentrations of chloroform [5.0 to 6.0 micrograms per liter (μ g/L)] were reported for each of the passive samples, but no chloroform was detected in the samples from the routine monitoring events. It should be noted that all six of the samples were diluted because of the relatively high TCE concentrations, and the reported chloroform values for the samples that were collected using passive techniques were slightly above the method detection limit (MDL; 4.6 μ g/L).

Zone 3 Well LEO-11A

Well LEO-11A is screened in silty sand and silty sand with gravel (Figure 3-4). While three HydrasleeveTM sampling devices were deployed in this well at depths ranging from 55 to 61 feet, insufficient water was present for sampling of the upper device. TCE, chloroform, and perchlorate were detected in both passive samples at similar concentrations, indicating no vertical stratification. In addition, the analytical results for the samples collected using purge and sample techniques were generally similar to the average concentrations of the passive samples (within 20 percent), although the November 2008 TCE concentration was 24 percent higher than the average TCE concentration reported for the passive sampling devices.

Zone 4 Well CTS-OW3

The screen interval for well CTS-OW3 was constructed across interbedded sand and silty sand (Figure 3-5). Four HydrasleeveTM sampling devices were deployed within two of the screened sand horizons. Perchlorate, chloroform, and TCE were detected in each of the samples; the reported concentrations of each of these compounds were highest in the deepest sample (by factors of about 1.5 to 2), suggesting some vertical stratification. All three compounds were also detected in the samples that were collected using purge and sample techniques. For perchlorate monitoring results, the IC-MS/MS testing of the November 2008 pumping sample was within 5 percent of the average concentration reported for the passive samples. However, for EPA Method 314.0 testing, the pumped result (11 μ g/L) was less than half of the average from the passive samples (28.5 μ g/L). The TCE concentrations for both of the pumped samples were less than half of the average concentration reported for the passive samples (Table 3-1). It is also noted that the TCE concentrations reported for each of the HydraseelveTM samples was higher than the regulatory limit (5 μ g/L), while the TCE concentrations for both of the pumped samples were below the regulatory limit.

Zone 4 Well FC-1020A

Well FC-1020A is screened across silty sand from 15 feet to 55 feet, and in decomposed granitic bedrock from 55 to 60 feet (Figure 3-6). Four passive sampling devices were deployed at 5-foot intervals at depths ranging from 35 to 50 feet. Perchlorate and TCE were detected in all samples (Table 3-1). The analytical results for the passive samplers suggested no apparent vertical stratification of contaminant concentrations. The TCE and perchlorate concentrations reported for the Spring 2008 routine monitoring event were within 25 percent of the average concentrations reported for the passive samples. For the November 2008 routine sample, the TCE concentration was within 25 percent of the average for the passive samples, but perchlorate was 35 percent higher than for the average from the passive samples.

3.2 PERCHLORATE TEST METHOD COMPARISON

Samples collected from the passive sampling devices were tested for perchlorate using EPA Method 314.0 and IC-MS/MS methods, while only EPA Method 314.0 was employed for the Spring 2008 routine samples and only IC-MS/MS test methods were employed for the Fall 2008 perchlorate testing. To compare the analytical test methods for a given sample, the perchlorate results from the passive samples from wells MW-9B, LEO-11A, CTS-OW3, and FC-1020A were plotted on a single graph (Figure 3-7). Wells OC-11B and OW-68D1 were omitted because the samples were diluted for the EPA Method 314.0 testing, which resulted in elevated detection limits.

On Figure 3-7, equal concentrations for both test methods would plot on the 1:1 diagonal line. As shown, the data points plot close to the 1:1 diagonal line, indicating that the perchlorate results from EPA Method 314.0 are comparable to the results from IC-

MS/MS. The good agreement was observed at a wide variation in concentration levels (from 16 μ g/L to nearly 500 μ g/L).

3.3 SAMPLING METHOD COMPARISON

The reported concentrations for the pumped and passive samples for select contaminants of concern [perchlorate by EPA Method 314.0, perchlorate by IC-MS/MS, tetrachloroethene (PCE), trichloroethene (TCE), and chloroform] are compared graphically on Figures 3-8 through 3-14. On these figures, only the Spring 2008 data are plotted against the passive sampling results to minimize temporal variations. As described above, if the passive and pumped sampling methods produced samples with equal concentrations, all of the points on the graphs would fall on the respective 1:1 diagonal line.

The finding that most of the points fell close to the 1:1 diagonal lines indicates that the analytical results from the HydrasleeveTM samples were comparable to the samples that were collected following the purge-and-sample collection techniques. The results from well CTS-OW3 showed the greatest variance from the 1:1 diagonal line; the results from this well also showed the most variance for the depth-discrete passive samples, with the highest concentrations reported for the deepest sample.

While 35 to 42 days elapsed between collection of the HydrasleeveTM samples and the Spring 2008 samples, time-series charts (Appendix E) suggest that the concentrations for both sample sets correlate with historical analytical results. The concentration differences between the two sampling methods are not significant for samples with high concentrations, but are significant for samples with concentrations near the regulatory limits. For example, at well CTS-OW3, the TCE concentrations for the HydrasleeveTM samples exceeded the regulatory limit but were below the regulatory limit for each of the pumped samples. Additional sampling of wells with VOC concentrations near regulatory limits should be performed to further evaluate the variation in VOC concentrations for the two sampling methods.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Based on the results of the sampling program described in this report, the following conclusions were developed:

- Passive HydrasleeveTM sampling devices were deployed in six wells and allowed to equilibrate for 49 to 50 days.
- To evaluate possible variation in concentrations with respect to variations in permeability or preferential contaminant pathways due to variation in aquifer materials, multiple HydrasleeveTM sampling devices were deployed in each well. Three passive samplers were deployed at vertically discrete intervals in two wells, and four samplers were deployed at vertically discrete intervals in four wells. The depth of deployment was based on permeable zones as determined from boring logs and the available saturated zone within a well at the time of deployment.
- The passive samples were tested for perchlorate by EPA Method 314.0 and IC-MS/MS, and VOCs by EPA Method 8260.
- Analytical results from one well (CTS-OW3) indicated some vertical stratification for perchlorate, with the highest concentrations reported in the deepest sample. No apparent vertical stratification was noted for perchlorate in the other wells, nor for VOCs in any of the wells.
- The samples from two wells (OC-11B and OW-68D1) required dilution before testing by EPA Method 314.0 because of matrix interference, which resulted in detection limits that were higher than the analytical results provided by the IC-MS/MS test method. Based on the average result from the EPA Method 314.0 testing and IC-MS/MS testing for the other 14 passive samples, the reported analytical result for a specific test method was within 5 percent of the average concentration for 8 samples, within 5 to 8 percent for 4 samples, and within 11 percent for the remaining 2 samples.
- For EPA Method 314.0 testing, the average perchlorate concentrations reported for the passive samples differed from the results from the Spring 2008 sampling by less than 13 percent for 3 samples. However, the concentrations for CTW-OW3 differed by 60 percent due to the relatively high concentrations reported for the deepest passive sample.
- The routine sampling events were performed one month (Spring 2008) and eight months (Fall 2008) following the passive sampling event.
- Differences between IC-MS/MS analytical results for the average concentration from passive samples and the concentration from the Fall 2008 sampling event ranged from 0 to 15 percent.
- For detected VOCs, the analytical results for the passive samples were generally within 10 percent of the results for samples collected using traditional purge and sample techniques. A notable exception includes TCE concentrations in samples from well CTS-OW3, where HydrasleeveTM samples contained TCE concentrations at levels above the regulatory limits, while TCE concentrations in

samples collected using traditional purge-and-sample techniques were below regulatory limits.

• The differences in concentrations reported for the pumped and passive samples might be partly explained by the elapsed time between sampling events (1 to 8 months).

In summary, it is concluded that the HydrasleeveTM passive sampling devices provide similar results as samples collected using traditional purge and sample methods.

4.2 **RECOMMENDATIONS**

Based on the conclusions described above and the information obtained during sample collection, the following recommendations have been developed:

- Little variability was noted for depth-discrete samples in a single well. Therefore, it appears to be sufficient to collect one sample in the middle of the saturated screen interval, although the local geology should be evaluated in wells that span several geologic units (alluvium and bedrock, for example).
- The sample volume provided by the passive sampling devices (less than 0.7 liters for a 2-inch device; approximate 1.6 liters for a 4-inch device) may limit the analytical suite, but this limitation could be overcome by deploying multiple HydrasleeveTM devices in a single well if an expanded analytical suite is planned.
- Retrieval of HydrasleeveTM sampling devices from open borehole wells should be performed with caution owing to the potential for tearing of the device on rough bedrock walls or the bottom of the protective surface casing.
- If additional comparisons between sampling methods are performed, the temporal difference between the two samples should be minimized. Optimally, the passive samples should be collected immediately prior to purging of the well for samples collected using traditional purge-and-sample techniques.
- Additional testing of wells with concentrations near regulatory limits should be performed to support selection of optimal sampling and analytical methods.

5.0 **REFERENCES**

GeoLogic Associates, 2001, "Work Plan, Groundwater Monitoring Program, Stringfellow Hazardous Waste Site," prepared for California Department of Toxic Substances Control, Stringfellow Branch, April.

HYDRASleeve, 2008, No-Purge Groundwater Sampler, http/www.nopurgesampling.com/.

- LeBlanc, D.R., and Vroblesky, D.A. 2008, Comparison of pumped and diffusion sampling methods to monitor concentrations of perchlorate and explosive compounds in ground water, Camp Edwards, Cape Cod, Massachusetts, 200-05: U.S. Geological Survey Scientific Investigations Report 2008-5109, 16 p.
- U.S. Environmental Protection Agency, 1989, "Test Methods for Evaluation Solid Waste," U.S. EPA SW-846.

TABLES

TABLE 2-1 WELL LOCATIONS AND DEPTH OF HYDRASLEEVE™ DEPLOYMENT PASSIVE SAMPLING PILOT STUDY REPORT STRINGFELLOW HAZARDOUS WASTE SITE

Zone 1A	Zone 1B	Zone 2	Zone 3	Zone 4						
OC-11B	OW-68D1	MW-9B	LEO-11A	CTS-OW3	FC-1020A					
39	50	57	55	55	35					
42	53	65	58	58	40					
68	56	73	61	75	45					
71	-	81	-	78	50					

Note: Depths are listed in feet below top of well casing.

1.

TABLE 3-1 SUMMARY OF ANALYTICAL RESULTS PASSIVE SAMPLING PILOT STUDY REPORT STRINGFELLOW HAZARDOUS WASTE SITE

Well Name	Zone	Sample Type	Depth Interval of Sample (feet below TOC)	Date Passive Sampler Deployed	Date Sample Collected	Days Passive Sampler in Well	Days Between Collection of Passive and Pumped Samples	Depth to Groundwater (feet below TOC)	Perchlorate IC-MS/MS (µg/L)	Perchlorate 314.0 (µg/L)	1 ,2-DCB (µg/L)	1, 3-DCB (µg/L)	1,4-DCB (μg/L)	Chlorobenzene (µg/L)	Chloroform (µg/L)	MTBE (µg/L)	PCE (µg/L)	TCE (µg/L)	Acetone (µg/L)	cis-1,2- DCE (µg/L)	Methylene Chloride (µg/L)	1,2,4- ТМВ (µg/L)	Toluene (μg/L)	MIBK (µg/L)	Ethylbenzene (µg/L)	Xylenes (m+p) (µg/L)	Xylenes (ortho) (µg/L)
00-116	1B 1B	Passive	39	1/28/2008	3/17/2008	49		32,7	not tested	not tested	1000	35j	260	170	380	<43	110	2400	3201	110	400	<9.3	<22	<95	<26	<36	<41
	IB	Pageivo	68	1/28/2008	3/17/2008	49	· · ·	32.7	150	<230	1300	37j	330	220	470	<43	110	2500	290i	75	520	10	271	<95	<26	<36	<41
	IB	Passive	71	1/28/2008	3/17/2008	49	•	32,7	160	<230	1200	42j	300	200	430	<43	110	2300	330i	92	470	<93	26i	<95	<26	<36	1</td
	IB	Passive	Average	1/20/2008	3/17/2008	49	· · · · · · · · · · · · · · · · · · ·	32.7	170	<230	1200	38j	310	190	460	<43	120	2700	220j	82	540	<93	28j	981	<26	<36	<41
	IB	Routine	NA	NA	1/21/2008	NA	-	-	160	NC	1175	38j	300	195	435	NC	112.5	2475	290j	90	483	< 9.3	23	<95	<26	<36	<41
	18	Routine	NA	NA	4/21/2008		35	33.72	NA	1200*	1100	<60	320	210	480	<170	110	2500	<2000	<74	560	<37	<89	<380	<110	<160	<160
OW-68D1	1B	Passive	50	1/28/2008	2/18/2008	50	254	34.06	160	NA	850	30	210	140	410	<43	110	2500	<500	120	370	< 9.3	22	<95	<26	<36	<41
	1B	Passive	53	1/28/2008	3/18/2008	50	•	49.6	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	IB	Passive	56	1/28/2008	3/18/2008	50	•	49.6	120	<1200*	6000	190j	1600	1500	1100	<170	470	6300	3000	120j	870	50j	1101	420	<110	<140	<160
1 S	IB	Passive	Average	NA	NA	NA		49.6	120	<2300*	5300	160j	1400	1500	980	<170	410	6200	2800	110j	830	<37	100i	470	<110	<140	<160
	1B	Routine	NA	NA	4/24/2008	INA	27	-	120	NC	5650	175	1500	1500	1040	NC	440	6250	2900	115j	850	<37	105j	445	<110	<140	<160
	1B	Routine	NA	NA	11/26/2008		253	51.5	NA 150	<460*	5400	160j	1600	1500	1000	<170	440	7100	2600	130j	870	50j	140j	440	<110	<140	<160
MW-9B	2	Passive	57	1/28/2008	3/17/2008	40	233	48.03	150	NA	5900	190	1600	2200	1300	<43	430	6700	2400	100	960	21j	100	430j	110	94	411
0 2	2	Passive	65	1/28/2008	3/17/2008	49		47.4	390	440	<2.0	<1.5	<0.72	<2.3	5.6	<4.3	<1.7	120	27j	<1,8	<5.0	< 0.93	<2.2	<9.5	<2.6	<36	<41
n - 3	2	Passive	73	1/28/2008	3/17/2008	49		47.4	410	420	<2.0	<1.5	< 0.72	<2.3	5	<4,3	<1.7	130	33j	<1.8	<5.0	< 0.93	<2.2	<9.5	<2.6	<3.6	<4.1
	2	Passive	81	1/28/2008	3/17/2008	49	-	47.4	410	460	<2.0	<1.5	<0.72	<2.3	5.2	<4.3	<1.7	140	28j	<1.8	<5.0	< 0.93	<2.2	<9.5	<2.6	<3.6	<4.1
	2	Passive	Average	NA	NA	NA		47.4	410	470	<2.0	<1.5	<0.72	<2.3	6	<4.3	<1.7	140	30j	<].8	<5.0	< 0.93	<2.2	<9.5	<2.6	<3.6	<4.1
	2	Routine	NA	-	4/28/2008	INK	42	40.61	405	447.5	NC	NC	NC	NC	5.5	NC	NC	132.5	30j	NC	NC	NC	NC	NC	NC	NC	NC
	2	Routine	NA		12/1/2008		250	51.25	NA	410	<2.0	<1.5	<0.72	<2.3	<4.6	<4.3	<1.7	130	<50	<1.8	<5.0	<0.93	<2.2	<9.5	<2.6	<3.6	<4.1
LEO-11A	3	Passive	55	1/28/2008	3/17/2008	49	257	52 71	330	NA	<2.0	<1.5	<0.72	<2.3	<4.6	<4.3	<1.7	120	<50	<1.8	<5.0	< 0.93	<2.2	<9.5	<2.6	<3.6	<4.1
	3	Passive	58	1/28/2008	3/17/2008	49		52.71	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
	3	Passive	61	1/28/2008	3/17/2008	49		52.71	120	150	<0.2	<0.15	< 0.072	< 0.23	2.4	<0.43	< 0.17	36	1.3j	<0.18	<0.50	< 0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
	3	Passive	Average	NA	NA	NA		33.71	120	140	<0.2	<0.15	< 0.072	< 0.23	2.7	< 0.43	<0.17	38	1.5j	<0.18	<0.50	< 0.093	<0.22	<0.95	<0.26	< 0.36	< 0.41
[3	Routine	NA		4/21/2008		35	55.00	120 NA	145	NC	NC	NC	NC	2.6	NC	NC	37	1.41	NC	NC	NC	NC	NC	NC	NC	NC
	3	Routine	NA	-	11/21/2008	-	249	54.69	140 NA	120	<0.2	<0.15	<0,072	< 0.23	2.3	< 0.43	< 0.17	36	<5.0	<0.18	< 0.50	< 0.093	< 0.22	< 0.95	<0.26	< 0.36	<0.41
CTS-OW3	4	Passive	55	1/28/2008	3/17/2008	49	21)	26.05	140	NA Dí	<0.2	<0.15	<0.072	<0.23	3	< 0.43	<0.17	46	<5.0	<0.18	<0.50	< 0.093	<0.22	<0.95	<0.26	< 0.36	<0.41
	4	Passive	58	1/28/2008	3/17/2008	49		26.05	25	26	<0.2	<0.15	< 0.072	<0.23	0.82	< 0.43	< 0.17	8.1	1.7	<0.18	<0.50	< 0.093	< 0.22	<0.95	< 0.26	< 0.36	< 0.41
	4	Passive	75	1/28/2008	3/17/2008	49		26.05	22	23	<0.2	<0.15	<0.072	<0.23	0.68	< 0.43	<0.17	7	2 41	<0.18	< 0.50	< 0.093	< 0.22	<0.95	< 0.26	< 0.36	< 0.41
	4	Passive	78	1/28/2008	3/17/2008	49		26.05	20	25	<0.2	<0.15	<0.072	< 0.23	0.61	<0.43	<0.17	8.2	2.6j	< 0.18	<0.50	< 0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Passive	Average	NA	NA	-		20.03	25.0	40	<0.2	<0.15	<0.072	<0.23	1.3	< 0.43	<0.17	16	<1.2	<0.18	< 0.50	< 0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Routine	NA	-	4/21/2008	-	35	25.47	2J.0	28.5	NC CO D	NC 15	NC	NC	0.9	NC	NC	9.8	1.8j	NC	NC	NC	NC	NC	NC	NC	NC
	4	Routine	NA	+	11/19/2008	-	247	27 22	27	NA	<0.2	<0.15	<0.072	<0.23	0.53	< 0.43	<0.17	3.7	5.3	<0.18	<0.50	< 0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
FC-1020A	4	Passive	35	1/28/2008	3/17/2008	49	517	12.31	17	NA 16	<0.2	<0.15	<0.072	<0.23	0.59	<0.43	<0.17	4.7	<5.0	< 0.18	<0.50	<0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Passive	40	1/28/2008	3/17/2008	49		12.31	16	10	<0.2	<0.2	<0.072	< 0.23	<0.46	<0.43	< 0.17	0.67	1.6j	<0.18	< 0.50	<0.093	<0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Passive	45	1/28/2008	3/17/2008	49		12.31	17	1/	<0.2	<0.2	<0.072	< 0.23	<0.46	<0.43	<0.17	0.62	1.5j	<0.18	<0.50	< 0.093	< 0.22	<0.95	< 0.26	< 0.36	< 0.41
	4	Passive	50	1/28/2008	3/17/2008	49		12.31	10	10	<0.2	<0.2	<0.072	<0.23	<0.46	< 0.43	< 0.17	0.57	<1.2	<0.18	< 0.50	< 0.093	< 0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Passive	Average	NA	NA			10.41	17	16.9	<0.2	<0.2	<0.072	<0.23	<0.46	< 0.43	<0.17	0.58	1.5j	<0.18	<0.50	< 0.093	<0.22	<0.95	<0.26	< 0.36	< 0.41
	4	Routine	NA	(e)	4/23/2008	52 C	37	14 74	NA	10.8	INC CO 2	NC CO D	NC	NC	NC	NC	NC	0.61	1.3j	NC	NC	NC	NC	NC	NC	NC	NC
	4	Routine	NA		11/19/2008	-	247	16.52	22	1.5 NA	<0.2	<0.2	<0.072	< 0.23	<0.46	< 0.43	<0.17	0.72	5.2	<0.18	<0.50	<0.093	<0.22	<0.95	<0.26	< 0.36	< 0.41
otes: *	- Indicate	es lab reportin	g limit elevated due	to sample matrix				10-32	25	11/3	NU.2	<0.2	<0.072	<0.23	<0.46	<0.43	<0.17	0.74	<5.0	<0.18	<0.50	<0.093	< 0.22	<0.95	<0.26	< 0.41	< 0.41

j - Indicates estimated trace concentration (between MDL and PQL).

NA - Not applicable.

.

NC - Not calculated.

FIGURES

Figure 1-2 Site Vicinity

Figure 1-3 Location of Zones 1 - 4

Figure 1-4 Index Map - Passive Sampler Pilot Study, May 2008

Figure 1-5 Zones 1A and 1B Well Location Map - Passive Sampler Pilot Study, May 2008

Figure 1-6 Zones 2 and 3 Well Location Map - Passive Sampler Pilot Study, May 2008

Figure 1-7 Upgradient Zone 4 Well Location Map - Passive Sampler Pilot Study, May 2008

-

Figure 1-8 Downgradient Zone 4 Well Location Map - Passive Sampler Pilot Study, May 2008

53 56 4/24/2008 11/26/2008

Note:

Numbers indicate depth intervals of passive samples (feet below TOC). Dates indicate day of sample collection using purge and sample technique.

.....

Note:

Numbers indicate depth intervals of passive samples (feet below TOC). Dates indicate day of sample collection using purge and sample technique.

FIGURE 3-7 COMPARISON OF PERCHLORATE CONCENTRATIONS IN PASSIVE SAMPLES

FIGURE 3-8

FIGURE 3-9 COMPARISON OF PERCHLORATE (IC-MS/MS) CONCENTRATIONS

FIGURE 3-10

FIGURE 3-12 COMPARISON OF CHLOROFORM CONCENTRATION

PURGE AND SAMPLE CONCENTRATION (µg/L)

FIGURE 3-14

APPENDIX A

LITHOLOGIC LOGS

 \sim

GeoLogic Associates

SENT BY:

8-24- 0 ; 1:16PM ;	TETRA
TETRA TECH BORING	LOG

TETRA TECH.→

BORING I.D. NO. <u>OW-68D2</u>

Page 1 of 2

CLIEN	T	DTSC			т.с	10740-02	LOCATION .	Stringfellow	DATE 12/27/99
DRILL	METHOD	MUD	ROT	TARY		AUGER DIAMETER	2.4"	FIELD GEOLOGIST _	Stephen Anderson
OEPTH (feet)	BLOW	(mqq)	SAMPLE	GRAPHIC COLUMN	nscs		GEOLO	GIC DESCRIPTION	
				00000	GW	<u>GRAVELLY SAND</u> - coarse-grained sa	Yeliowish Br nd with angul	own (l0YR 5/6), well grade ar gravel, dry.	d line-to
- 5 -		0.0		000000000000000000000000000000000000000		Gravelly sand as a	bove.		
- 10 -	0	0.0		000000		Gravelly sand as a	DOVE.		
- 15 -		0.0	X			Gravelly sand as a	dove.		
- 20 -		0.0	X	000000000000000000000000000000000000000		Gravelly sand as a	Dove.		
- 25 -	-	0.0		0.00	ŚM	<u>SILTY SAND</u> - Yew with 20% silt. dry.	owish Brown	(10YR 5/4), poorly graded	fine grained sand
- 30 -		0.0			(+	/11.4 ******			
35 -		N/R	X	00000000	DGr	GRAVEL	I <u>ITICS</u> - Fria	die, crumbles to a coarse s	and,
40			٨		Mts DGr	METASEDIMENTS			
REVIE	WING GE	OLOGISI		Steph	en Ande	NSON SIGNATURE	Miga	tur lander	REG. NO. 4501

8-24-0;1:17PM; SENT BY: TETRA TECH. → 9163243107;# 8/11 TETRA TECH BORING LOG BORING I.D. NO. <u>OW-68D2</u> Page 2 of 2 _____ T.C. 10740-02 LOCATION Stringtellow DATE 12/27/99 DTSC CLIENT ___ FIELD GEOLOGIST ______ Stephen Anderson MUD ROTARY AUGER DIAMETER ______ DRILL NETHOD _ SAMPLE USCS (feet) BLOW AVO Mado GEOLOGIC DESCRIPTION DGr 0.0 DECOMPOSED GRANITICS - (Granodiorite) fractures at 45 degrees from horizontal, mafics are mostly weathered and Drown. 45 0.0 50 soft zone, possibly sill, lost recovery. 0.0 55 DECOMPOSED GRANITICS as above, soft zone, possibly sill, lost recovery. N/R 60 end of highly weathered zone. Brd N/R GRANODIORITE - 50% of core has weathered matics that have turned brown. 85 GRANODIORITE - Unweathered, possibly one horizontal fracture. N/R 70 three horizontal fractures, some brown weathered matics. Total Depth = 72.8'. Barehole converted to monitoring well. 75 80 REVIEWING GEOLOGIST ______ Stephen Anderson fun REG. NO. 4591 linter SIGNATURE -

MONITORING WELL CONSTRUCTION SPECIFICATIONS

CLIENT: DTSC BORING WELL #: OW-68D1 DATE: 1/4/2000

PROJECT #: _____10740-02

PROJECT NAME: Stringfellow

COUNTY: Riverside

WELL PERMIT #: _____N/A___

DRILLING CONTRACTOR: Water Development Corporation

k

b

EXPLORATORY BORING

GEOLOGIST: Stephen Anderson

REGISTRATION: #4591

_____ SIGNATURE: ______ fundamen

e. TOTAL DEPTH______59___ft.

10.625 in. 6. DIAMETER_____ DRILLING METHOD Mud Rotary

WELL CONSTRUCTION

C.	TOTAL CASING LENGTH	<u>61</u> ît	L
	MATERIAL	Schedule 40 PVC	
d.	INSIDE DIAMETER	4 ir	1.
●.	DEPTH TO TOP PERFORATION	5 <u>41</u> n	1.
f.		<u>15</u> #	
	PERFORATED INTERVAL FROM	41 to 56 ft	
	PERFORATION TYPE	PVC Slotted	
	PERFORATION SIZE		٦.
g.	SURFACE SEAL	2	4
	SEAL MATERIAL	Cement	
h.	BACKFILL	<u> </u>	L.
	BACKFILL MATERIAL	ement/Quick Gel	
í.	\$EAL	ħ	ł.
	SEAL MATERIAL	Bentonite	
ŀ	GRAVEL PACK	î	4
	PACK MATERIAL LADUS LUSTE	#3. Monterey sand	
k,	SEDIMENT TRAP	<u> </u>	
t.	CENTRALIZERS	15.36.57 ft	
nin.			
		10.75 ir	۱.
n.	WELL COVER DIAMETER	<u> </u>	1.
n.	WELL COVER DIAMETER CONCRETE PAD DIAMETER THICKNESS _	ir 2n 3.5in	1. ¥

BORI J NO. 0 -- 11B DEPTH DRILLED SO. 1'BLS TAIE SCREENED FORMATION(S) Germadionite Science Applications International Corporation 8400 Westberk Drive, McLeen, Virgime 22102 (703) 734-2528 STATIC W.L_ 16.61 'BLS (10/3/85) CLIENT <u>Celifornie PHS</u> LOCATION Stringteller DEVELOPMENT ____ Air Lift: 0.91 hr PROJECT No. 078-65 SURVEY DATA (Coord.) 1679, 349. 29 E 1,634, 711, 53 TOP of PIPE ELEV. 1030 65" GROUND ELEV. 1029.65" DRILLER ME-Orlegdi/History RIG TYPE Bortedull/IR TH-60 NOT TO SCALE END 7/31/85 START 6/20/05 STICKUP 19 BIT SCHEDULE 15" Tringing (15-20,7'015); 9" Tringing (15-29.5'015); St" Himmer (LS-2011'OLS) DRILLING FLUIDS American Collindal Sugar God-Y (15-30-365). Aic (30'ALS-80-1'045) WATER ENCOUNTERED AT ant discorrible 26.7' 29.5' CONSTRUCTION CASING SCHEDULE 10" SEG 10 STal (207'615-15); 7"560 40 Steel (29.5'065-1.0'ALS) BACKFILL SCHEDULE Type I-I Portland Coment: Concerter aranodiorite (29.5'OLS-LS) GEOPHYSICAL LOGS Suite "8" Packer/Slugtest merval: 29.51- 80.1' bas COMMENTS K= 9.44 × 10-6 cm/s. T= 10.1 gpd / Ft TO DRILLED SO.I'SLS TX_1129645 WELL CONSTRUCTION SUMMARY

C-296

06-11B

AMPLE TYPE	SYMBOL	DEPTH	DESCRIPTION TOLES Same	COMMENTS
552		Ø-44'	It yel by hore will; fi sz, so si to med to co sz;	BC: 10-29-9 Rec: 1.5"
-		ant	losse dry; SW-SM dt val be love u/w) w/wh (sve Neli) mt/s: fi se se si to	OVA: 1200 (blad); blad (in jar) - Regelith OVA: L.Sppm (in jar)
			al. To mad sa; compact; frieble; dry; sw 517-56	+ Fill / alla vince
551		5-5.5'	dk yal be (10 ye 4/4). si so fi to med so so climed	BC: 17-20-20 Rec: 1.45"
		5.3-65'	dt val be (10 ve 4/6) whead yel (25 ve 6/8) and whiteve well)	ova: blgd(in jac)
_			ently; mad so, so is to al; compact; saft; posely inducated;	
			dry: sm-sc	BC: 11-16-20 Rec: 1.2'
553		10-10,9	de brizerey/4/; si, so el et ti to mon sa et az pa,	ova: blad (damabala and is jar)
"		109-162"	de br (2.5 ve ste) w/asle yel (2.5 v 7/v) atte: ch so si to ca	ova: blad (in jer)
			ab, v compact massing trate il maist; CH	()
		<u>11.2-115</u>	strong ac(2.54 e 4/1) fi se se si se si se al sempect sott;	ava: 3ppm (in jar)
<u>534</u>		<u>15-16.8</u>	demp; SM-SC dk red br (5403/3); cl, so si; dansa; compacti damp; CL	BC: 17-17-17 Rec: 1.2' OVA: 35 ppm (downhole); bkgd (in joc)
u		15.7-K.5"	de yel br (100 ve 3/6); si to fi sa, so al to med sa; compecti	QVA: 4 ppm (in jac)
PT		17-19.5	dk be (1048313) w/dk as (10484/1), blk (10482/1) and yel	Pulldown: 175-275 165; Rec: 1.0'
			red (5485/6) mills: fi sa to v f. pa, so si tr cl. tr med	
555		20-20.5	dk yel be ligvestal; si so ch so fi sa; compact; form; "	BG: 13-43-25 Rec: 0.4'
_			damp: ML	OVA: Il soom (in inc)
11		20.5-215	de yel br (10 x R 3/4) to gr (10 x R 6/1/- si to ti siz to cler	
556		15-16.5	dk be (10×13/3) w/v dk ge be (10×13/2) atts: Ei sa to si	BC:13-18-17 Rec: 1.35"
			tr cl. tr co sa; compact; mad sohesive; al moist; SM-MH	ova: " open (do rande) reports of
		27.3'		ac mp sec: 0
557		28'		OVA: 60 pom (do-shele
			1	SAL by C. Kruger
C	LIE	NT	Celiforniz Pits	SHEET 1 of 2
L	DCA	TION_	Stringtellen SAIL.	BORING NoOC-11
PI	ROJ	ECT N	No	

TX_1129646

FIELD LOG C-292 (

ł

SAMPLE TYPE	SYMBOL	ОЕРТН	DESCRIPTION	COMMENTS	D.II Rata St/min
e		30-32 5'	gd; It ge; med to co xtln;~10% but schust unabasions;	+ yel centert	
			so It red be stain		
٩		31.5.15'	ad; It of med to constly; ~10t bist schust inclusions;		Ø.77
C	1	15-39'	ad: It as: med to ca xtln: ~107 bist schist inclusions_		
C		39-42'	biot (-172) ad; It by; mad to an atla; axtensive red be	+ Fracture @ ~39.5'aus	
			stein		
C		42-44'	ad: It br; med to ca xtla; to hist	capit deilling	
c		44-47.5*	biot (~172) gd; It ge sed It be; med to ca stlas; so yal be		5
			stain and centing		
C		425-49.5	motterez firstalad; gr; fi to med stone; to yet be stain	and the second	
2		19.5-9.5	but (5-107 & star) adjar; fi to ned attac		
C		<u>51.6-545</u> *	botts-107 fixthad ad; us; fi to med attas: so yel be stain		
C		F6.5-61'	biot (2-370) gd; It br: med to co xtlne; axtensive It yel br		
_			stain		
C		61-68	mot (2-372) ad it be; med to co atlas; to the yel be stain	tairly show drilling	
C		18-7Y	biot (2-372) gd; It be; mad to co stlaa; abundant thisk	highly tractured	
_			ral be stain; so frac fill mat'l (yel be, si to all		
Ċ		<u>14-77.5'</u>	biot (2-37 lgd; the; med to caxtla; tr. It yel be stern		
C		77.5-80	biot(2-37. lad; It br; mad to co attaisa It yel be stan		
5		80-80,1	but (2.3.7. lgd; It be; med to co xla; (r It yel be side		
-			TP = 80.1'BLS		
	245				
_					
_					
				- TX_1129647	
			allformia 2HS	SAI by C. Kruger W Gr	055
	1611 0 AT	·	Stepatellow GATE	SHEET OF	
PR	OJE	CT N	0. <u>\$78-65</u>	BORING No	

FIELD LOG

06-11

Zone 2

.

MW-7B, 8B, 19B

LITHOLOGIC LOGS (Continued)

Well No.	Depth Interval (feet)	Description
	0-30	SAND - dk brn (dry); silt to fine pebble gravel,
	30-40	SAND - brn (dry); clay to granule gravel, predom. v.
	4060	SAND and CLAY - brn (dry); clay to v. coarse sand, $\sqrt{9}$ predom. silt to v. fine sand; well sorted
14	60-80	SAND - brn (dry); clay to fine pebble gravel, predom.
	80-100	SAND with GRAVEL - brn (dry); silt to med. pebble gravel, predom. fine sand; poorly sorted (grains are) de
MW-8B	0-20	SAND - brn (dry); v. fine sand to med. pebble gravel (rare); predom. fine sand; mod. to well sorted
	20-40	SAND - brn (dry); clay to med. pebble gravel, predom.
	40-80	SAND - brn (dry); clay to granule gravel, predom. v. bound of the fine to fine sand; mod. sorted; increasing clay content with depth.
	80-100	SAND with CLAY - brn (dry); clay to granule gravel, predom. fine sand; well sorted
MW-9B	0-30	SAND - brn (dry); silt to fine pebble gravel, predom.
	30-60	SAND - brn (dry); clay to med. pebble gravel, predom.
	60-85	SAND and GRAVEL- brn (dry); v. fine sand to med.
	85-110	SAND and GRAVEL - brn (dry); med. sand to fine pebble gravel, predom. v. coarse sand to granule gravel; extensive hematite staining

TX 1124544

James M. Montgomery, Consulting Engineers, Inc.

TX0193493

		050	0070 0		00		PROJE	CT		JOB NO. ISH	EET NO. HOLE NO.
п	E	GEOL	JUGIC DI	ALL L	UG	COORDI	NATES	jt e.	110	W Hazardous Waste Site 19742 1 ANGLE	BEARING
FG	UN	Lowe	er Canyo			-		υn	-	N;E Vert	ical
4-	4-89	4-5	-89	Datum	Exp.	loratio	n ľ			CME-75 8.25" 63.0	2.8 65.5
OR	E REC	COVER	Y C0	RE BOX	ISAMI	P. 10P C	ASIN	G	GRO	DUND EL. GROUND WATER 89 10P	OF ROCK
ian	MER V	JEIGH	T/FALL	CAS	ING	LEFT I	N HOL	E		LOGGED BY:	
-1	46 1	bs. /	30 in.		GATE	-9		1.75		G, A, Day	
'n,	BRID	ά I	Malma	P	RESS	DRE	E	Ö	Ľ		NOTES ON:
	.Ö	õ	1000 A	oΣ	ЮH	μ.	<u>a</u>	I	E	DESCRIPTION AND CENSSIFICATION	WATER RETURN;
ñ۲	EZ	Ŭ,		OHL	mo.	ΣZZ HHH	õ	1 de	SP		DRILLING, ETC.
	ŝ	ñ		- 0	ai	<u></u> τ τ		Ō	Ц		
										(SM) Dark Yellowish	Advanced borehole with
				6	- 8					Brown (10YR 4/2) to	4-1/4" hollow
				1 1			1			Moderate Brown (5YR 4/4)	stem augers A-65, A ft
							5-			grained sand with minor	• 0000 TC0
SS	1.5	1.5	7-6-9						11	amounts of coarse	
				1			1		Π	graineo sano. Ury, loose densitu. poorlu sorted.	
				1			Ì			subrounded to angular.	
ĺ										Predominately quartz,	
55	1.5	1.5	7-9-18	1			10-		1	Grains tend to be	Sampled with 2"
-									1	moderately to highly	split spoon
										weathered. Traces of	ft. intervals.
		1								subangular gravels and	0.0
SS	1.5	1.5	5-5-7	+			15-			cobbles throughout	
_			0.00							12-16 ft. Gravel and	
				1 1						cobbles present in	
										matrix.	
59	1.5	1.5	5-11-13	-			20-			20-30 ft. Increase in	Formptered
_							1		1	clay content of matrix	decomposed
										along with decomposed granite.	granite "DG" at
											a depth of 63.8
						1	25.			CHILD EXCEPTION NOTED	ORRECTIONS NOTED
55	1.5	1.90	30-50/5						4.1		AND RESUBMIT
										LI SULT IT SPECIFIED THE	ANCE WITH THE
		1								DUSIGN CONCEPT OF THE PROJECT AND CE	ERAL COMPLIANCE
						1	39			WITH THE INFORMATION GLOUI IN THE CON	IRACT DOCUMENTS.
SS	1.5	1.0	15-50/5	1					1	HE T'S AND SPECIFICATIONS, CUNTRACTOR	spearciptive:dog
-									Π	DIMENSIONS WHICH SHALL BE CONFIRMED	based: on visual
										OF CONSTRUCTION, COSIDERATION OF HIS 1	SPH IT THAT OF
										ALL OTHER TRADES: AND THE SATISFACTOR	and auger
S=	SPLIT	SPO	DN; ST=SI	HELBY	TUBE	SITE		لتبله			HOLE NO.
=D	ENNIS	ON; P	PITCHE	R;0=01	HER	1				Lower Canyon Maraham	LEOLIA DAVE 4 /6789
											and the second se

2510 RED FILL AVE., SUITE SARTA ARA, CA 92705

TX 1124710

.

TX0815402

101

0

2

5

TX 1124713

LEOJIA

	GEOLOGIC D	RILL LOG	PRO Stri)JECT ingfello	JOB NO. W Hazardous Waste Site 19742	2 OF 3 LEO11
SAMP. TYPE SAMP. AD LEN CORE	RECOVERY SAMPLE BLOWS RECOVERY	PRESSU PRESSU TESTS 0 Z 0 0H 0 Z 0 0H 0 U 0 0 U 0 0 U 0 0 U 0 0 U 0		GRAPHICS SAMPLE	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS WATER RETURN CHARACTER DF DRILLING, ET
55 1.5	1.520-21-5			<u>nonnn</u>	35-55 ft. <u>SILTY</u> GRAVELS-SILTY SANDS (GH-SM) Gravel and cobbles angular to subangular, moderately	cuttings.
5S 1.5	1.521-30-5		TP5	000000	weathered, intermixed with silts and fine to medium grained sands. Includes angular pieces of feldspar, quartz,	Color descriptions from the GSA Rock Color
55 1.5	1.022-50/5	π	4		biotite, and severely weathered decomposed granite. Also traces of clays within matrix. 45 ft. Silty gravely sand becomes slightly	Chart (1948)
55 1.5	0.630-50/3	R	\$ 5		moist. 50 ft. Silty gravely sand becomes wet to saturated.	Installed 2' alluvium observation well 489
55 1.5	1.513-9-10		5		55-63.0 ft. Silty Sand (SM) Moderate Brown (SYR 3/4) fine sand and silt	
55 1.5	1.020-50/5	п 	6	- 8 - - -	medium to coarse sand and gravel and traces of clay. Coarse sand to gravel sized pieces of DG, moderately to	
55 0.5	-0.510~50/4	H H	6	5	severely weathered, rock fabric intact, severe loss of strength. 60 ft. Abundant decomposed granite pockets.	H
					63.0-65.0 ft. DECOMPOSED GRANITE Dark Yellowish Orange (10YR 6/6) and Grayish Orange (10YR 7/4), abundant discoloration of	74)
SS=SPLI1	SPOON: ST=S	HELBY TUBE	SITE	_ 1 _ 1 _	WILLELETZ (1+E+ LETG2DELZ	HOLE NO.
)=DENNIS	ON: P=PITCHE	R: O=OTHER			Lower Canyon	LE011A

TX 1124711

.

L

ē

1

LEOJJA

		GEO	LOGIC DR	ILL L	.0G	5	PROJE tring	CT [fel	lo	W Hazardous Waste Site 19742 3	OF 3 LEO11
SAMP. TYPE	SAMP. AD	RECOVERY	SAMPLE BLOUS % CORE RECOVERY	P ΩZL OH J	ALLS BSBAG		HL430	BRAPHICS	SAMPLE	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS WATER RETURN CHARACTER OF DRILLING, ET
			2					42		altering to clay minerals), gravel-cobble sized fragments of granite intermixed with silt and fine to medium grained sand. Predominate minerals include quartz, feldspar, and biotite. Very severely weathered, rock fabric discernible, soft to medium hard. Bottom of Hole 65.0 ft.	18
		2									
SS=: D=D	SPLIT	T SPO	ON; ST=SH =PITCHER	EL8Y		E SITE				Lower Cenuon	HOLE NO.

TX 1124712

TX0815404

F

x

(),e.

GEOLOGIC DRILL LOG								PROJECT JOB NO. SHEET NO. Stringfellow 21106 2 of 2						
SAMP. BOY. LEN CORE	SAMPLE REC.	BUCKS LA	LOSS E.P.M 3	ASS SSA	TINE R	ELEV.	DEPTH	GRAPHICS	(Template= BCHTLLS) DESCRIPTION AND CLAS	SSIFICATION	NOTES HATER HATER CHARAC DRILL	ON: LEVELS, RETURN, TER OF ING, ETC		
	•					700.6_	75 -		73 - 81 ft. EAND (SP): Grayish medium-to coarse-grained, a with some small gravel.	-red (5R 4/2), ngular, dirty,		1		
						693.6_ 690.6_	80-		81 - 83 R. DECOMPOSED CE Moderate brown (5YR 3/4), coarse-grained, friable. BOTTOM OF HOLE : 83.0 FT.	ANITS: medium-to				
												a		
										2				
			¥2								Æ	ž		
											 	4991		
SPL1		XON: ST			I ST	·				h.				

		SC	DIL D	RILLIN	GLO	G				SE #I Pa Sa	3/MW#: FC1020A - 19030-32 lige 2 of 2 umpler: Todd Overturf
PR	OJECT		Pyrite	Canyon		_ LO	CATION <u>4930 Ag</u>	ate St	reet. (len	Avon, CA
Belou e(ft.)	Penetration Results		· Depth I (ft.)		ading a)	•	Seil Deseriation		c Log	Depth	Borshole Abaadoament/
Depth Surfac	Blows 6"-6"-6"	BPF	Sampler Interva	Sam	Hnu Re (PP	c	Sou Description Color, Texture, Moisture, Etc.	tini Cla	Graphi	Sample	Well Construction Details
- - - - - - - - - - - - - - - - - - -	37-50 24-42-50 42-76	87 92 118	35.0) 36.5 40.01 41.5 45.01 46.5	°C-3S-40 °C-3S-40	0	40.0	micaceous; saturated. Silty sand: (0,90,10,0); dark yellowish brown (10YR 4/4); medium graded; medium to coarse sand; subangular; dense; saturated. Sand and silt: (2,50,48,0); dark yellowish brown (10YR 4/4); medium dense; poorly graded; very fine to fine sand; saturated. @45' as above.	(ML SM			4° Sch 40 0.02° Slotted PVC Screen
50 55 	43-90 60-118	133	50.01 51.5 55.01 56.5	FC-38-50 , FC-38-55	0	٧ 55.0	(250' Silty sand: (0,80,20,0); dark yellowish brown (10YR 4/3); medium to coarse; subangular; poorly graded; very dense; saturated. (253' Hard drilling. Highly weathered granitic	DG			
	64-100	164	60.01 61.5	FC-38-60	0	60.0	rock: 50% plasioclase; 30% quartz; 10% k-feldspar; 10% hornblende and augite; hornblende weathered to mica; minor iron staining. 2060' As above.				PVC Cap T.D. =60' -

TX_2049255

APPENDIX B

FIELD DATA SHEETS

GeoLogic Associates

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE	Stri	ngfellow	
Well No. Collected By: Casing Diameter (inches): Starting Water Level (feet): Total Depth (feet): Water Column (feet):	CTS-OW3 Hg 25.47 81.10 555.63	Sampling Date: Purge Start Time: Purge Stop Time: Sampling Time: Ending Water Level (feet): Total Purged (gallons):	4.21-08 1710 1721 1730 25.48 28
Screen Length (feet); Purge Volume (gallons): Horiba Model S/N:	NIA 27 20 30009	PID FID Reading Duplicate Sample	N/A Yes No

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
5		6.8	1.37	113.0	5-3	82.7	67
10		68	1.37	60.9	5-3	22.6	104
15		Q.7	1.38	57.4	5.2	226	111
20		67	1.38	540	5-2	22.6	119
25		6.7	1.38	50.4	52	22.6	126
28		6.7	1.38	48.8	5.2	22.6	130.
			1				
		5					
				~			
	-						
				2			

claudy NOU eele de Purging Sampling Rates onter Well Condition: Oll Cleen, unri Additional Information/Comments:

5

(I:\DTSC\Stringfellow\forms\ Well 'Data.xls: Last Update 5/2/03)

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE:	Str			
Well No.	0W-68D1	Sampling Date:	4-24-	08
Collected By:	RR	Purge Start Time:	<i>.</i>	1
Casing Diameter (inches):	4"	Purge Stop Time:	- /	
Starting Water Level (feet):	51,31	Sampling Time:	17.	55
Total Depth (feet):	59.00	Ending Water Level (feet):		1
Water Column (feet):	7.69	Total Purged (gallons):	/	
Screen Length (feet):		PID/FID Reading	Ð	
Purge Volume (gallons):	0	Duplicate Sample	Yes	(No)
Horiba Model S/N:	303046			\smile

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
grab		3.0	12.3	46		23.4	259
				÷			
				1	6		
		÷					
2							

Purging Sampling Rates	sample	taken	. wit	h a	disp.	bailer
Additional Information/Co	mments:	ater d	ARK	RED	with	strong
ODDR. LUD	to H16-	TCR F	FOR	META	15, Pr	ovided

·zone-

D.

(I:\DTSC\Stringfellow\forms\ Well'Data.xls: Last Update 5/2/03)

containe

¥.

1L.

extra

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE:	Stri	ngfellow		
Well No. Collected By: Casing Diameter (inches): Starting Water Level (feet): Total Depth (feet): Water Column (feet):	<u>MW-9B</u> <u>BO-JG</u> <u>2~~</u> <u>49.61</u> <u>100.00</u> 50-39	Sampling Date: Purge Start Time: Purge Stop Time: Sampling Time: Ending Water Level (feet): Total Purged (gallons):	4-28-08 1433 1443 1443 1443 1443 1448 50.35	<u> </u>
Screen Length (feet): Purge Volume (gallons): Horiba Model S/N:	16.42	PID/FID Reading Duplicate Sample	Yes	(NO)

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
Ч		6,9	0.578	237.0	8.5	24.1	182
4		6.6	0.548	179.0	6.2	23.9	177
12		6.5	0.581	165.0	4.4	23.9	174
16		6.5	0.580	148.0	3.7	23.8	172
			C				
					• :		
	3 ¹						
							5
				3			

Purging Sampling Rates <u>OURGEN</u>	WELL @ 300 HZ FLOW @
Well Condition: OK, WATER TUR	LRID W/NO ODDR
Additional Information/Comments: SUN	NY, HOT LIGHT BREEZE
* CHECK PH WITH PH SI	RIP.

(I:\DTSC\Stringfellow\forms\ Well'Data.xls: Last Update 5/2/03)

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Stringfellow

SITE: Well No. Collected By: Casing Diameter (inches): Starting Water Level (feet): Total Depth (feet): Water Column (feet):

Screen Length (feet): Purge Volume (gallons): Horiba Model S/N: LEO-11A P20, P28 2 65,09 65,10 10.01 4,89 MP-20 Sampling Date: Purge Start Time: Purge Stop Time: Sampling Time: Ending Water Level (feet): Total Purged (gallons): PID/FID Reading Duplicate Sample

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
		6.69	1.74	69,5		22,82	156
2		6165	lns	758		22,74	157
3		6.62	115	421	-	87161	160
5		6,69	1:75	641		2278	165
						0.0	
						2	
						-	•

disposable Purging Sampling Rates tri MAG Well Condition: ((D A to dusk 0 0) P DACEC R 5 On Additional Information/Comments:

(I:\DTSC\Stringfellow\forms\ Well'Data.xls: Last Update 5/2/03)

<

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

	SITE:		Strin	gfellow		-	
Well No. Collected By: Casing Diamete Starting Water I Total Depth (fee Water Column (Screen Length († Purge Volume († Horiba Model S	er (inches): Level (feet): et): (feet): feet): gallons): /N:	00- 1- 733; 	-11B 3 0 72 10 72 10	Sampling Dat Purge Start Ti Purge Stop Ti Sampling Tim Ending Water Total Purged (PID/FID Read Duplicate Sam	e: me: me: e: Level (feet): gallons): ing nple	<u>4-30</u> <u>j24</u> <u>Yes</u>	-718 2 No)
Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
Grab		3,2	6,36	24.6	5,6	22.3	241
					Ē.		
				, i I			
Purging Sampling	Rates + yello	rodk	er gi	as Jai	mpll, Li	ginid op	peaved

Additional Information/Comments:

Certh, light breeze

Zoul-1

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE:	Stri	Stringfellow			*
Well No.	FC-1020A	Sampling Date:		4-23-0	5
Collected By:	BS, BO, M	APurge Start Time:	-	0830	0
Casing Diameter (inches):	<u> </u>	Purge Stop Time:	01-1	0850	······································
Starting Water Level (feet):	1474	Sampling Time:		1855	
Total Depth (feet):	60.00	Ending Water Level (fee	et):	14179	
Water Column (feet):	45,26	Total Purged (gallons):		60	
Screen Length (feet):		PID/FID Reading		60	•
Purge Volume (gallons):	59,10	Duplicate Sample	63	(Nes)	(No)
Horiba Model S/N:	9108		629	Q	\bigcirc

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C	ORP MV
15		7.0	1.20	7.5	57	77.0	495
20		7.0	1.21	7.1	410	22,1	486
US		711	1.21	1.1	3.8	72.25	481
60		7.3	1.71	0.9	3.0	22,2	460
							-
	4						

244 Hz. Ren (3 spm. b Purging Sampling Rates 8 00 0 0 0 Well Condition:

Additional Information/Comments:

MIND

HydraSleeve

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE: _	<u>.</u> 31	HWS		
Well No.:	0W-68D1	Sampling Date: Purge Start Time:	3/18/0	08
Casing Diameter (inches):	4	Purge Stop Time: Sampling Time:	1300	
Starting Water Level (feet):	49.61	Ending Water Level (feet): Total Purged (gallons):	Ø	
Water Column (feet):		Counter - Cycles to Fresh H ₂ 0: Horiba Model S/N:	3020	30
3 Well Volumes (gations):		Control Box #: Duplicate Sample:	(Yes) N	No

Gallons Purged	Water Level	pН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C
50		يحيد ا				
53				· · ·		
56		3.2	9,9	53,9	10,9	19.3
			,			
			2			ц. Ц.
						,
irging Sampling F	Rates	Ren	noval ra	te 2	0.5 4/	ec
ell Condition:	60	ed .		. (°		
Iditional Informat	tion/Com	ments:	Collecte	da	duplicant ms/ms	le D

(L:\esd\Forms\Well Data_xls)

SITE

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SHWS

Well No.:	OC-IIB	Sampling Date: Purge Start Time:	3/18/08
Casing Diameter (inches):	2	Purge Stop Time:	
Bubbler Reading: Storting Water Level (feet)	37.7	Sampling Time: Ending Water Level (feet):	1800
Total Depth (feet):	77.51	Total Purged (gallons):	Ø
Water Column (feet):		Counter - Cycles to Fresh H ₂ U: Horiba Model S/N:	302030
3 Well Volumes (gallons):		Control Box #:	
		Duplicate Sample:	Yes (No)

Gallons Purged	Water Level	рН	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C
39					** •••••••	
42						-
68				· · · · · ·		
71		43	8.0	188	11.3	18.5
			·			
						1
171						<u> </u>
<u></u>		-	а. 			
		Rea		to L	DIS FH	1 .ec.

Purging Sampling Rates

Good

Well Condition:

Idrasleeve, while Additional Information/Comments: re rievin m. Sleeve tures the casina the e ah sam only enou and ć the VOA Viles water to 4 H 2

a,

.

(L:\esd\Forms\Well Data.ds)

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Well No .: Collected By: **Casing Diameter (inches) Bubbler Reading:** Starting Water Level (feet Total Depth (feet): Water Column (feet): Screen Length (feet): 3 Well Volumes (gallons):

Hydrasleeve

SITE:	SHWS
 	MW-9B
thes): _	<u></u>
(feet):	47.38
:, =	05:0
ons):	

Sampling Date: Purge Start Time: Purge Stop Time: Sampling Time: Ending Water Level (feet): Total Purged (gallons): Counter - Cycles to Fresh H₂0: Horiba Model S/N: Control Box #: Duplicate Sample:

Yes

Gallons Purged	Water Level	pH	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C
57						
65		5,6	0,62	38,6	9,9	18,2
73		5.4	0.63	11.7	10.4	18,0
81		4,4	0.77	87.5	10,6	18,1
i						
					4 Planets	<u> </u>
						· · · · · · · · · · · · · · · · · · ·
			· · · · ·			
rging Samplin	g Rates	Ren	noval r	ste u	xas 2	0,5 \$\$
ell Condition:	Ga	bd	······	· · · · · · · · · · · · · · · · · · ·	•	
ditional Inforr	nation/Con	nments:	Collecte	ed a o	Inplicant	e

(L:\esd\Forms\Well Data_xb)

÷.

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE:		- 1	
Well No.: Collected By: Casing Diameter (inches): Bubbler Reading: Starting Water Level (feet):	LEO - 11A JNB 2- 53.71	Sampling Date: Purge Start Time: Purge Stop Time: Sampling Time: Ending Water Level (feet): Total Purged (gallons):	3/17/08 1300 54.34
Water Column (feet): Screen Length (feet): Well Volumes (gallons):		Counter - Cycles to Fresh H ₂ 0: Horiba Model S/N: Control Box #:	302030
HydraeSleeve Depth		Duplicate Sample:	Yes (No

Gallons Purged	Water Level	pH	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C
55		Dr	·		2	
58		Insu	fficient	water	to Sam	ple -
61	7.+	ו רי	0.38	50.2		18,6
					÷	
						·
					1. A.	
				·		
Purging Samplin	g Rates	Rer	noval	væte	2 0.5	ft/sec
Well Condition:	600	d	к к			· · · · · ·
Additional Inform	mation/Comr	nents:	The 55	-56,5	interva	1 was
4	: 4:5					

(L:\esd\Forms\Well Data.xls)

(e)

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Well No .: Collected By: Casing Diameter (inches Bubbler Reading: Starting Water Level (fee Total Depth (feet): Water Column (feet): Screen Length (feet): 3 Well Volumes (gallons

HudraStevie

SITE:	SHWS		
-	CTS-0W3	Samp	
	JNB	Purge	
ches):	2-	Purge	
	24.24	Samp	
(feet):	26,05	Endin	
-	82.2	Total	
	Law	Coun	
		Horit	
ons):		Cont	

No

Yes

Seath Temperature Conductivity Turbidity D.O. Gallons Water pН ms/cm NTU mg/L °C Level **Purged** 55 9,3 19.2 37.3 0.58 6.2 58 75 920 9.9 18.2 7.0 0,57 78 Removal rate at 20,5 ft/sec Purging Sampling Rates

.

Good Well Condition:

Additional Information/Comments:

(L:\esd\Forms\Well Data.xis)

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

SITE

SHWS

Well No.: _____ Collected By: _____ Casing Diameter (inches): _____ Bubbler Reading: _____ Starting Water Level (feet): _____ Total Depth (feet): _____ Water Column (feet): _____ Screen Length (feet): _____ 3 Well Volumes (gallons): _____

Hydrasleeve

	FC-1020A
	4
-	12.31
	60.20

-Gallons- -Purged	Water Level	pH	Conductivity ms/cm	Turbidity NTU	D.O. mg/L	Temperature °C
35						
40		6.7	0.56	47.5	11.1	20
45	а	6.2	0,58	24.8	10.1	18.7
50		6.5	0.63	54.0	9.9	18,2
						×
				•		
		iř.				

Purging Sampling Rates

Removal rate 20,5 ft/sec

Well Condition:

Additional Information/Comments:

6000

(L:\esd\Forms\Well Data.xls)