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Abstract 

Objective. The objective of this project was to develop and test a methodology to periodically 

assess and optimize remediation and monitoring strategies at US Department of Defense (DoD) 

dense nonaqueous phase (DNAPL) contaminated sites with remedies in place (RIP). Methods were 

developed to model cost and performance of source zone and dissolved plume remediation 

technologies—including thermal treatment, chemical oxidation, enhanced bioremediation, and 

reactive barriers—and to optimize system operation and monitoring to meet user-defined cleanup 

criteria with minimum life-cycle cost, considering uncertainty in performance predictions using a 

stochastic optimization approach. Physical, chemical and biological processes expected to 

significantly affect performance are incorporated in the model, including effects of back-diffusion 

from low permeability zones, such as clay layers or matrix zones in fractured rock.  

Technical Approach. The capability of the Stochastic Cost Optimization Toolkit (SCOToolkit) 

developed under previous DoD funding was greatly extended in this project. The previous 2D 

contaminant transport model was rewritten simulate 3D transport with steady-state groundwater 

flow along linear or curvilinear streamlines with multiple DNAPL sources. A rigorous solution for 

resident and flux concentrations was derived and implemented that prevents physically-impossible 

counter-flow dispersion (which most solutions allow). In conjunction with an upscaled dispersion 

model, the solution enables efficient simulation of transport in dual-porosity media and associated 

back-diffusion phenomena.  

Performance and cost functions were developed and stringently tested for thermal source reduction 

(TSR), source zone in situ chemical oxidation (ISCO), enhanced source zone mass transfer, and 

enhanced dissolved plume bioremediation involving electron donor injection in multiple galleries. 

Multiple remediation technologies may be operated concurrently or serially.  

Site-wide no-further-action decisions are based on statistical criteria applied to compliance well 

data. For example, annual average concentrations must be less than a specified probability upper 

confidence limit of current concentration based on an N-year regression. Termination criteria for 

individual remediation system components are based on component-specific performance 

monitoring data. For example, individual injection galleries may be shut off when the contaminant 

concentration is less than a value that is optimized to meet compliance criteria with minimum cost. 

Source zone TSR termination decisions are commonly predicated on soil sampling data and ISCO 

on dissolved concentration data. We developed and tested a method for estimating average soil 

concentration during thermal treatment from mass recovery measurements, which was found to be 

more reliable and less costly than soil sampling. Incorporating soil sampling during ISCO was 

found to reduce errors associated with slow rebound of groundwater concentrations after treatment 

termination.  

These source zone performance monitoring options were incorporated into SCOToolkit, which 

also allows source regions to be divided into treatment zones (e.g., with different estimated levels 

of contamination) and subdivided further into monitoring zones (e.g., for soil or water sampling, 

cumulative mass recovery for thermal treatment). Statistical criteria were developed to allow 

termination of individual monitoring zones, treatment zones, or the entire system with equal 

decision reliability at all scales. SCOToolkit includes an inverse solution to obtain best estimates 

of model parameters and their uncertainty using available field and lab data as well as prior 

estimates of parameters and their uncertainty. A stochastic optimization technique is used to 
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determine optimum operational and monitoring variables to minimize the expected costs over 

multiple realizations of uncertain parameters and measurements.  

Protocols were developed and implemented to periodically refine model calibration taking into 

consideration new data from monitoring, to assess the probability of the current operations to meet 

cleanup objectives, and to reoptimize (or redesign if necessary) remediation and monitoring 

variables to minimize expected cost-to-complete taking into consideration performance and cost 

uncertainty. Because prediction uncertainty generally decreases as additional data is used for 

calibration, predictions become more accurate and less overdesign is required to compensate for 

uncertainty. The SCOToolkit package also includes a number of Excel-based tools to pre-process 

data for input into calibration and optimization modules, as well as to analyze performance 

monitoring data to make real-time termination decisions based on the multi-scale statistical 

decision protocol.  

Results. Case studies on hypothetical and field sites demonstrated that incremental re-optimization 

can greatly improve the likelihood of meeting remediation criteria within a target timeframe while 

reducing the expected cost by 10 to 20% or more over conventional approaches. Optimization of 

performance monitoring parameters (e.g., termination criteria, number of treatment zones and 

monitoring zones, type and number of samples per monitoring zone) was observed to reduce 

expected (probability-weighted average) cost-to-complete by 5 to 15% and to reduce 95% upper 

confidence limits of cost by up to 30% compared to conventional approaches. 

Dividing thermal treatment areas into multiple zones with different soil concentration ranges and 

allowing individual zones to terminate early when local statistical criteria were met achieved site-

wide criteria with 6% lower expected costs than a single zone. Optimizing confidence limit 

probability, local-scale cleanup level, and number of monitoring zones per treatment zone with 

three treatment zones, using mass recovery data instead of soil data, achieved an additional 10% 

cost reduction.  

If confirmation of mass recovery-based results with soil sample data is desired or required, 

delaying each local termination decision until confirmed by soil sampling will increase cost. 

Therefore, if confirmatory soil sampling is required, we recommend waiting until all heating units 

have been stopped based on mass recovery data before performing site-wide soil sampling.  

An optimized example problem using mass recovery data to make thermal termination decisions 

had a 16% lower expected cost than using soil concentration data following typical industry 

practice, while the 95% upper confidence limit of cost was 28% lower. Thus, the proposed 

methodology not only yields expected cost savings, but also sharply reduces worst case cost 

overruns. 

Using multiple zones that are allowed to terminate independently based on statistical criteria 

provided similar cost savings for ISCO. Optimization of injected oxidant concentrations, treatment 

zone-level cleanup criteria, reinjection criteria, and performance monitoring variables yielded a 

failure-adjusted expected cost for an example problem 11% lower than a non-optimized case 

approximating best engineering practice. Furthermore, the cost probability distribution for the 

optimized design eliminated positive skew evident in the “best practice” case such that the worst 

case cost for the optimized design was 14% lower than that for the non-optimized design. 

Following thermal treatment of three identified sources at Joint Base Lewis McChord in 

Washington State, SCOToolkit identified a fourth DNAPL source that had not been located during 
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site characterization studies. Stochastic optimization with interim calibration results did not favor 

undertaking thermal treatment of the fourth source. Final calibration results indicated that this 

decision resulted in an undiscounted cost savings equal to 46% of the total cost.  

At Dover AFB in Delaware, an incremental stochastic optimization protocol yielded an 

expected cost savings of 29% with an 18-20 year earlier expected time-to-complete. 

Optimization of an ISCO system at an Atlas missile site in Colorado indicated that increasing 

injected oxidant concentrations and the duration of annual oxidant injection periods predicted a 

decrease in the expected operating cost by 24% with a 90% probability of meeting the NFA date. 

Benefits. Although most DoD sites have or should soon have remedial action plans in progress, 

many will not achieve regulatory closure quickly. Some planned remedies will likely not perform 

as expected and will require modification or, in some cases, implementation of a different remedial 

action plan. This project provides tools to periodically assess remediation performance, identify 

and rectify problems, and optimize remediation operations and monitoring to minimize life cycle 

costs while meeting remediation objectives. By explicitly optimizing operations to minimize 

probability-weighted cost-to-complete taking into account uncertainty in site characterization, 

model predictions, and remediation technology performance, as well as measurement "noise," 

numerous nonlinear interactions and tradeoffs are taken into account that conventional approaches 

would never consider. Results indicate that average savings in cost-to-complete across all sites of 

10% to 30% can be readily achieved along with substantial decreases in remediation duration. 
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SCOToolkit Disclaimer and Terms of Use 

The program SCOToolkit, including various accessory Excel worksheets is provided the User “as 

is” without warranty, implied or otherwise on the following terms and conditions: 

1. The University of Tennessee, Cleveland State University, Stanford University, and the U.S.

Department of Defense (hereafter, the “Developers”) make no warranty of any kind, express

or implied, with respect to the subject software products, and specifically make no warranty

that said products shall be fit for any particular application. Furthermore, any description of

said products shall not be deemed to create an express warranty that such products shall

conform to the description.

2. The User assumes all risk and liability for loss, damage, claims or expense resulting from use,

possession or resale of any of software products delivered subject to this agreement.

3. The User agrees to indemnify, defend and hold harmless the Developers and their agents and

employees from and against any and all claims, liability, loss, damage or expense, including

reasonable attorney's fees, arising from or by reason of receiver's use, possession or resale with

respect to any of the software products furnished by the Developers pursuant to this agreement

and such obligation shall survive acceptance of said products therefore by receiver.

4. This agreement constitutes the complete and final agreement of the parties hereto.
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1.  Introduction 

1.1 Background 

There are more than 50,000 sites in the U.S. with contaminated groundwater, roughly half of which 

involve chlorinated solvents or other DNAPLs (Siegrist et al. 2006). Subsurface DNAPLs result 

in persistent long-term sources of groundwater contamination unless a very large fraction can be 

removed (Cohen and Mercer 1993, NRC 1994, Chapelle et al. 2003). Unfortunately, it is difficult 

and costly to reliably delineate the distribution of DNAPL in the subsurface prior to treatment, and 

source treatment costs per unit soil or aquifer volume are frequently high, resulting in a steep 

tradeoff between cost and probability of successful source remediation. Numerous other tradeoffs 

exist, such as between costs for aggressive source reduction strategies that (hopefully) decrease 

the time to reach regulatory compliance versus lower annual operating costs for less aggressive 

strategies that must be maintained for a much longer period. Most tradeoffs are neither binary nor 

linear, but rather involve nonlinear interactions of numerous natural and engineering variables. It 

is virtually impossible to optimize the cost performance of a system involving interactions of a 

complex engineered system with an even more complex, and imperfectly understood, natural 

system by conventional deterministic engineering methods.  

The first efforts to develop methods to rigorously optimize groundwater remediation systems were 

reported by Gorelick et al. (1984), who linked a simulation model with a nonlinear optimization 

method to achieve plume containment while minimizing pump and treat operating costs. 

McKinney and Lin (1996) argued for incorporating fixed as well as operating costs, leading to 

solutions with fewer wells and higher pumping rates. Regulatory compliance criteria have been 

variously treated as optimization constraints (Wagner and Gorelick 1989, McKinney and Lin 

1996), as a “penalty cost” for noncompliance (Rizzo and Dougherty 1996, Chan-Hilton and Culver 

2005), or as a component in multi-objective programming (Erickson et al. 2002). 

More recently, Teutsch et al. (2001) emphasized the need to combine physically based simulation 

models and economic models for quantitative decision-making. Minsker et al. (2003 and 2004) 

coupled global optimization methods (e.g., genetic algorithms) and groundwater transport models 

to evaluate cost-effective pumping strategies for existing pump and treat systems at DoD facilities. 

They demonstrated the proposed method could substantially reduce life cycle costs with range of 

uncertainty, compared to conventional trial and error methods. Becker et al. (2006) reported that 

simulation-optimization methods were able to identify solutions that cost 5% to 50% less than 

trial-and-error results, translating to cost savings of $600K to $10M for the sites studied. Abriola 

et al. (2008) developed an optimization tool to compare costs and benefits of several source zone 

treatment technologies in conjunction with post-treatment MNA. Liang et al. (2010) developed a 

probabilistic optimization framework to evaluate cost, source treatment performance, plume 

management, and risk, incorporating uncertainty in the decision process.  

The design and operation of remediation systems is to a great degree a problem of managing 

uncertainty. Due to large uncertainties in source mass, aquifer properties, and many other 

variables, conventional remediation designs based on best estimates of system properties are likely 

to exhibit a high probability of failure to meet compliance requirements (Parker et al. 2010a), or 

overshoot expected budget or schedule based on unanticipated site conditions. On the other hand, 

designing for "worst case" parameters will lead to excessive cost. Stochastic optimization is the 

only means capable of taking into consideration the complex nonlinear interactions among 

uncertain physical properties, design variables, and compliance criteria. 
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In a previous project (SERDP ER-1611), we developed an integrated methodology for DNAPL 

site remedial design optimization using source zone electrical resistance heating (ERH), enhanced 

bioremediation with ED injection, and/or MNA that considers uncertainty in measurements and 

model predictions (Cardiff et al. 2010, Liu et al. 2010, Parker et al. 2010a, Parker et al. 2012) 

implemented in the Stochastic Cost Optimization Toolkit referred to as SCOToolkit (Parker et al. 

2011). A forward model considers natural DNAPL source depletion, source reduction using ERH, 

and dissolved plume transport with enhanced bioremediation using ED injection. An inverse 

solution is used to estimate model parameters and their uncertainty as well as residual model error 

using all available site data. Monte Carlo (MC) simulations of remediation performance and cost 

are performed using equiprobable parameter realizations with residual error in simulated 

measurements based on model calibration results. A cost module computes NPV cost to meet 

specified objectives and constraints for each realization considering fixed and operating costs with 

a penalty cost for noncompliant realizations. A stochastic optimization algorithm identifies design 

variables that minimize "expected" cost (i.e., cost averaged over all MC realizations). Hypothetical 

and field applications of the methodology demonstrated its ability to reduce costs and improve the 

probability of successfully meeting remediation objectives (Lee et al. 2012, Kim et al. 2012). 

As of FY2010, 86% of DoD installation restoration program (IRP) sites were reported as RIP or 

response complete (Leeson and Stroo 2011). As DoD transitions from development and 

implementation of remedial action plans to managing RIP sites, the focus must shift to optimizing 

operational variables and assessing progress towards remediation goals to achieve compliance and 

to minimize cost. Little attention seems to have been focused on this problem. However, the 

stochastic cost optimization methodology described above can be adapted for this purpose. As 

additional monitoring and performance data are collected, periodic recalibration will enable future 

performance to be predicted with less uncertainty. If projected performance is significantly better 

or worse than expected, remediation operation and monitoring variables may be reoptimized to 

minimize the remaining CTC. If the updated probability of failure is unacceptable, more 

substantial modifications in the remediation strategy may be evaluated to meet performance 

criteria while minimizing the remaining CTC. The cost utility of additional characterization data, 

as discussed further below, may also be evaluated in consideration of the revised model calibration 

results. 

Considerable work has been performed on optimization of long-term monitoring (LTM) sampling 

locations and frequencies (Loaiciga et al. 1992, EPA 2000, Reed et al. 2000, Cameron and Hunter 

2002, Reed and Minsker 2004, EPA 2005, Parsons 2005, EPA 2007). User-friendly LTM 

optimization (LTMO) tools have been developed by Aziz et al. (2003) and Harre et al. (2009 - 

ESTCP project ER-0629) that utilize statistical methods to eliminate redundant well locations and 

to reduce sampling frequency.  

The handling of noisy data is a troublesome issue for compliance monitoring. Levine (2010) with 

the US EPA proposed to compute confidence limits on an N-year simple moving average (SMA) 

of measured concentrations to smooth noise. If the upper one-sided SMA confidence limit for a 

specified probability level (e.g., 95%) is less than the compliance concentration for each 

compliance well, regulatory closure criteria are deemed met. Parker et al. (2010b) reported 

stochastic simulation-optimization analyses using Levine's and other "noise management" 

approaches in SCOToolkit. The program provides broad flexibility in defining site specific 

performance objectives in terms of "compliance rules" and "operational rules," which are 

described in detail in Appendix B.  
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Results showed that increasing or decreasing monitoring frequency relative to an optimum value 

increased the expected CTC. Fewer samples lead to wider confidence limits, which increase the 

duration of LTM, and hence operating costs for the longer duration, more than the savings from 

reduced frequency. Effectively, more conservative operation is required to compensate for greater 

measurement uncertainty associated with fewer samples. Parker et al. demonstrate that the greatest 

net cost savings is achieved by simultaneously optimizing the moving average lookback period as 

well as monitoring frequency and remedial design variables. We infer from this study that while 

LTMO statistical methods may be useful for optimizing the number and location of monitoring 

wells, optimization of sampling frequency should be performed in the context of a more 

comprehensive stochastic optimization approach that considers cost tradeoffs. Furthermore, 

methods for handling measurement noise vis á vis compliance rules should be optimized to 

minimize CTC. 

Site characterization efforts and monitoring can serve to reduce uncertainty and hence reduce the 

cost premium associated with overdesigning to compensate for uncertainty and to reduce the 

failure probability. However, characterization and monitoring efforts also incur direct costs, so the 

pertinent question to ask is whether the savings due to reduced uncertainty achieved by a given 

characterization or monitoring measure exceeds the direct cost of the measure itself. The cost 

savings due to reduced uncertainty is referred to as the value of information (VOI), defined more 

specifically as the difference between the total expected cost when the information in question is 

not used and that in which the information is used. The VOI concept has been applied in many 

areas, including medicine (Yokota and Thomson 2004), economics (Hanemann 1989), operation 

research (Gavirneni et al. 1999), and earth science (Dawdy 1979). Applications to groundwater 

management have been described by Reichard and Evans (1989), Wagner et al. (1992), James and 

Gorelick (1994), Borisova et al. (2005), and Feyen and Gorelick (2005). Liu et al. (2012) 

investigated VOI while optimizing remediation design to minimize cost considering parameter 

uncertainty.  

EPA (2004) and Leeson and Stroo (2011) have noted that measurements are sometimes not 

performed in the belief that they will increase cost or delay completion, while in reality the 

additional information may enable a strategy to be implemented that decreases cleanup duration 

and life cycle cost. VOI is a powerful tool to evaluate whether a proposed measurement is 

warranted in terms of total CTC. The high computational cost of traditional VOI calculations has 

probably impeded their routine use, although more computationally efficient methods could 

ameliorate this obstacle. 

A final factor we will address that contributes to uncertainty in predicted performance, and hence 

to higher expected total remediation cost, is intrinsic uncertainty in the model used to make 

predictions. After we calibrate a model to field measurements, residual deviations remain that are 

attributable to a combination of sampling/measurement error and intrinsic model error. These 

cannot be practically distinguished, although model error will usually dominate. Intrinsic error can 

be reduced by refining the model to account for more details of the real system. However, to the 

extent that the "refined" model requires more parameters that are imperfectly known, the reduction 

in intrinsic error may be offset by an increase in parameter uncertainty when calibrated to the same 

data (Parker et al. 2010b). The optimum model to minimize prediction uncertainty is ultimately 

limited by the data available for calibration. 
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Many field, laboratory and theoretical studies have shown that back-diffusion from low-

permeability layers in heterogeneous aquifers can result in a long-term source of contamination at 

DNAPL sites (Sale et al. 2006, Wood et al. 2009, Leeson and Stroo 2011). Under conditions in 

which back-diffusion is a significant problem, large differences develop between “resident 

concentrations” and “flux concentrations,” where the former represent volume-averaged 

concentrations in pore fluid and the latter represent flow-weighted averages (Parker and van 

Genuchten 1984). Recent field studies by Britt (2011) indicate that samples from normally purged 

or pumped wells approximate flow-averaged concentrations. 

Models that explicitly treat the diffusion process between high and low permeability regions are 

readily available, but require additional parameters than conventional single-continuum models, 

and entail substantially greater computational effort. The latter issue is particularly problematic 

for incorporation within a calibration-stochastic optimization framework, which typically requires 

thousands of direct solution simulations. Explicit treatment of diffusion would thus render 

stochastic optimization analyses impractical without supercomputing capability. Unfortunately, 

these resources are generally not available to most environmental consultants. 

A practical alternative method, described by Parker and Valocchi (1986), uses an upscaled 

dispersion model with boundary conditions that strictly enforce mass balance conditions pertinent 

for resident or flux concentrations, as needed. Although the solution approach is approximate, a 

comparison of results for an explicit diffusion model and the upscaled dispersion model agree quite 

closely. The upscaled dispersion coefficient can be computed theoretically from known parameters 

in the diffusion model, or the lumped coefficient can simply be calibrated to field data directly, 

without increasing the parameter vector dimension compared to a conventional dispersion model. 

Furthermore, the same approach is applicable to fractured rock aquifers, provided the fracture 

network is sufficiently dense that porosity and permeability are relatively uniform on the scale of 

average monitoring well spacing.  

1.2 Project Objectives and Approach 

The goal of the present project was to extend the capability of SCOToolkit to enable periodic 

assessment and optimization of the performance at remediation in progress (RIP) sites to minimize 

expected total NPV cost considering failure probability and measurement and prediction 

uncertainty, and to facilitate early identification and correction of problems associated with 

remediation technologies and/or goals. Considered remediation technologies that may be operated 

concurrently and/or sequentially include: 

1.  Electric resistance heating (ERH) DNAPL source remediation 

2.  Thermal conduction heating (TCH) DNAPL source remediation  

3.  Steam enhanced extraction (SEE) DNAPL source remediation 

4.  DNAPL source excavation  

5.  In situ chemical oxidation (ISCO) with recirculation for DNAPL source remediation 

6.  ISCO with pulsed injection for DNAPL source remediation 

7.  Electron donor (ED) injection for enhanced DNAPL source remediation 

8.  Electron donor (ED) injection for enhanced dissolved plume remediation 

9.  Reactive barriers or groundwater extraction for dissolved plume control 
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Figure 1.1 Flow chart for SCOToolkit program.     

 

 

In addition to the expanded repertoire of remediation technologies and the capability to iteratively 

evaluate remediation progress and re-optimize operating parameters and/or strategies, 

enhancements to the transport model were undertaken to more accurately approximate complex 

site conditions. In particular, the solution was extended from a vertically-averaged two-

dimensional model to a three-dimensional representation of finite vertical thickness with multiple 

DNAPL sources at different areal locations and/or depths. Additionally, the solution was modified 

to approximate effects of mass transfer limitations associated with diffusion into and out of low 

permeability zones (aka, “back diffusion”). The solution leads to differences between volume-

averaged soil concentrations and flux-averaged monitoring well concentrations, both of which can 

be used in the revised program for model calibration. 

Stochastic cost optimization is a computationally intensive iterative process that requires hundreds 

of evaluations of expected cost for different design and operation variables. Furthermore, each 

expected cost evaluation requires multiple simulations (typically 100) to represent uncertainty in 
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model predictions and measurements. As a result, tens of thousands of individual forward model 

simulations over a multi-decade time period are commonly required to solve a single optimization 

problem. Our overall objective has been to develop a practical tool to meet remediation objectives 

with the least possible cost. Due to uncertainty in future performance, this objective involves 

tradeoffs between the probability of successfully meeting remediation goals within a certain 

timeframe and the aggressiveness of the remediation strategy. Performance uncertainty arises from 

three sources. First, for a given model formulation, uncertainties in model parameters and 

boundary conditions over time produce prediction uncertainty. Second, field and lab measurements 

are subject to sampling and measurement uncertainty. And finally, there are inherent accuracy 

limitations associated with assumptions and simplifications – even for the most sophisticated 

models. SCOToolkit explicitly addresses errors from the first source. The last two sources or 

uncertainty are lumped together in the treatment of residual calibration error.  

The foregoing considerations require a performance simulation model that is very robust and 

computationally efficient. This requires giving up some degree of model complexity to enable 

practical application with typically available computer hardware. Our experience indicates that the 

level of sophistication in the SCOToolkit performance models is adequate for most sites 

considering the magnitude of uncertainty from other sources.  

The general approach for SCOToolkit described in this report is depicted in flowchart form in 

Figure 1.1. The central component of the method is a semi-analytical mathematical model to 

simulate DNAPL source depletion and dissolved phase transport of a target chlorinated 

hydrocarbon over time in response to natural and engineered conditions.  

In the inverse modeling mode, historical site data is used to calibrate the simulation model and to 

estimate parameter covariances and residual prediction error. Forward predictions of remediation 

performance and cost are performed for defined remediation strategies, operating rules and 

remediation criteria. A Monte Carlo (MC) method is used to quantify uncertainty in performance 

and cost attributable considering uncertainty in model parameters, measurements employed for 

real-time decisions, and cost function variables.  

Design optimization is performed to determine values of design variables that minimize the 

expected value (average over MC realizations) of NPV, which may include “penalty costs” for 

failure to achieve defined remediation objectives within a specified time period.  

Chapter 2 of this report describes the basic 3-D transport model. Chapters 3 to 5 describe the 

enhanced bio, thermal and ISCO cost/performance models, respectively. Chapter 6 outlines 

calibration and uncertainty analysis methods. Chapter 7 presents the stochastic design optimization 

approach and Chapters 8 to 10 document applications of the program.  
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2. DNAPL Source and Dissolved Transport Model 

2.1 Background 

The aqueous plume model in SCOToolkit is driven by one or more DNAPL sources that deplete 

over time at rates controlled by natural and/or engineered processes. Mass transfer kinetics are 

treated as a power function of source mass remaining. The transport model itself distinguishes 

between resident and flux concentrations. The importance of this distinction when dealing with 

heterogeneous aquifers is well established (Kreft and Zuber 1978, Parker 1984, Parker and van 

Genuchten 1984, van Genuchten and Parker 1984, Batu and van Genuchten 1990, Roth and Jury 

1993, Toride et al. 1999, Zhang et al. 2006), although the practical implications are often not fully 

appreciated and the distinction is not considered in field modeling efforts.  

The physical distinction between resident and flux concentrations is illustrated in Figure 2.1 for a 

well screened across two zones with groundwater discharge rates Q1 and Q2, screened lengths L1 

and L2 and local concentrations C1 and C2. A water sample obtained from the well using usual field 

methods would approximate a flow-weighted average ("flux concentration" CF) along the length 

of the well screen. Alternatively, a water sample extracted from a composite soil sample over the 

same depth interval would yield a volume-weighted average ("resident concentration" CR). For the 

hypothetical example in Figure 2.1, which corresponds to aquifer flushing after the primary 

contaminant source has largely dissipated, the average resident concentration over the well bore 

length is 17 times greater than the flux concentration due slow back-diffusion from the low velocity 

zone.  

Resident and flux concentrations can be shown to follow equations that are identical in 

mathematical form but subject to different boundary conditions. Details regarding boundary 

conditions for correctly distinguishing between resident and flux concentrations using analytical 

as well as numerical solution methods, and practical implications of such distinctions, are 

discussed by Parker and Kim (2015).   

 

 

Figure 2.1. Illustration of flow-averaged concentration (CF) observed in well screened over high 

and low permeability zones and volume-averaged concentration (CR) that would be determined 

in fluid extracted from adjacent soil samples aggregated over the same length. 
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2.2 DNAPL Source Model 

Field-scale DNAPL source dissolution and mass depletion over time is described by a widely 

accepted power function model (Rao et al. 2001, Zhu and Sykes 2004, Parker and Park 2004, Park 

and Parker 2005Jawitz et al. 2005, Falta et al. 2005, Christ et al. 2006, Fure et al. 2006, Basu et al. 

2007, Saenton and Illangasekare 2007). Considering the possibility of engineered manipulation in 

mass transfer kinetics, we describe the contaminant mass dissolution rate, m [MT-1], in an 

individual source zone as a function of time, t, by  

 
( )

( )


 

=  
 

mt cal

cal

M t
m t F J

M
 (2.1) 

where Jcal = m (t=tcal) and Mcal = M(t=tcal) in which tcal denotes a reference time selected for 

model calibration, M(t) is the contaminant source mass remaining at time t,  is a depletion 

exponent that reflects the DNAPL source “architecture” (Parker and Park, 2004) [-], and Fmt is a 

dimensionless mass transfer enhancement factor, discussed further in Chapters 3 and 5.  

Integration of the source mass balance equation as described by Park and Parker (2005) yields 

source mass remaining versus time after an instantaneous release of mass Mo at time to  

 ( )
1/(1 )

1   ( ) max 0, (1 )( )ref mt refM t M F B t t
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−

− = − − −
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where /cal calB J M = . Note (2.2) is valid for   1. If  = 1, the value is internally set to 0.9999. 

The effects of  on source mass remaining and mass discharge rate versus time based on (2.1) and 

(2.2) are illustrated in Figure 2.2. Discharge rate decreases linearly with time when  = 0.5 and 

logarithmically for  = 1. For   1, the log discharge rate is concave downwards and discharge 

rate and mass remaining become zero at a finite time. For   1, log discharge rate is convex 

downward and the discharge rate and mass remaining approach zero asymptotically with time. For 

 < 1, mass remaining reaches zero at a finite time. Based on high resolution simulations, Parker 

and Park (2004) associated   1 with residual DNAPL and   1 with DNAPL pools and lenses.  

 

 

Figure 2.2. Effect of  on source mass remaining and discharge rate versus time                                         

for Mo = 100 kg and Jo = 10 kg/day. Note: with a log-scale y-axis,   = 1 curves are linear. 
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In some cases, it may be necessary to consider multiple DNAPL sources to be contributing to 

groundwater contamination at a site. Obvious cases include multiple known or inferred historical 

disposal areas at different locations. Large vertical variability in DNAPL saturations may be 

important to consider in some cases (e.g., thick aquifer, low vertical dispersivity, short plume). A 

more common, but overlooked, problem is the existence of subregions characterized by source 

architectures that exhibit different mass transfer characteristics. For example, DNAPL pools are 

characterized by  values <1, while residual DNAPL sources exhibit larger  values.  Since the 

composite behavior of multiple sources with different  values cannot be accurately described by 

a single function with a single average  value, two (or more) modeled sources may be necessary 

to capture the behavior of sources with significant DNAPL with both pools and residual 

architectures. Also, sources in saturated and unsaturated zones will likely have different 

parameters that cannot be accurately represented by single lumped parameterizations.  

However, it must be recognized that more source functions require more parameters to calibrate 

from available field data. If one attempts to calibrate more parameters than the quality and/or 

quantity of data can support, overall model reliability will suffer rather than improve (Parker et al. 

(2010). Optimum model parameterization may be identified by trial and error to obtain the smallest 

total prediction uncertainty (see Chapter 7).  

Considering remedial actions at dates trem 1, trem 2…trem n when partial source mass removal and/or 

step changes in Fmt occur and stipulating that to<tcal< trem 1, values of Mref, tref and Fmt in (2.2) are 

assumed to vary with time as described in Table 2.1.  

 

Table 2.1. Definitions of Fmt, tref and Mref as functions of time. 

Time Period Fmt tref Mref 

to < t  trem 1 Fmt 0 = 1 tref 0 = tcal Mref 0 = Mcal 

trem 1 < t  trem 2 Fmt 1 tref 1 = trem 1 Mref 1 

trem n-1 < t  trem n Fmt n-1 tref n-1 = trem n-1 Mref n-1 

t > trem n Fmt n tref n = trem n Mref n 

Values of Mref n in Table 2.1 for n > 0 are given by 
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where Mrem n is the mass removed from the source at time trem n regarded as instantaneous. The 

source mass at time to may be computed as 

 
1/(1 )

1( ) (1 )( )
 

−
−  = − − − o o cal o calM M t M B t t  (2.4) 

for an instantaneous release at to, M = 0 and J = 0 for t < to. For a finite duration DNAPL release 

event from start date ts to a release termination date to with a linear net increase in DNAPL source 

mass over time 
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The mass dissolution rate between ts and to may be computed from (2.1) and (2.5) and the total 

mass released, including mass dissolution prior to to, obtained by integrating (2.1) with (2.5) as 
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Note that dissolution of DNAPL mass will usually continue long after the final DNAPL release 

date to unless remedial action is undertaken to reduce or eliminate the remaining DNAPL mass. 

Discharge rate decreases linearly with time if  = 0.5 (Figure 2.2). For  0.5, discharge rate 

approaches zero asymptotically but (theoretically) never reaches zero, while for  < 0.5, discharge 

rate reaches zero abruptly after a definable period. Residual or “ganglia” type DNAPL exhibit low 

 values (< 0.5-1.0), while pools and lenses will exhibit higher values (Parker and Park 2004). 

Sorenson (2006) reported that enhanced source zone biodecay caused dissolution rate coefficients 

to increase by factors of 2 to 6 in laboratory studies and 3 to 8 in field studies. Parker and Park 

(2004) also have shown that field-scale dissolution rate coefficients will vary inversely with 

changes in source zone darcy flux (e.g., due to engineered or inadvertent permeability decreases 

due to amendment injection). Changes in Fmt due to ED injection upgradient of DNAPL sources 

are described in Chapter 3. Effects of in situ chemical oxidation are described in Chapter 5. 

 

2.3 Mapping the Groundwater Flow Field 

SCOToolkit considers multiple chlorinated hydrocarbon (CH) sources that may occur within an 

aquifer characterized by a Cartesian coordinate system in field mapping units (E, N) – i.e, easting 

and northing. Flow paths may be approximated as linear or nonlinear cubic polynomial functions. 

To apply the semi-analytical solution for contaminant transport in a planar flow field to mildly 

nonlinear flow fields, we define a coordinate transformation for each DNAPL source (and also for 

ED injection galleries that will be discussed later) to convert from field coordinates to linearized 

local coordinates (x, y) and back.  

For each source we define the origin of the local coordinate system to be at the center of the 

downgradient plane of the source: e.g., (E0, N0) in field coordinates. A streamline may be drawn 

through (E0, N0) using water level contours, dissolved plume data, and user discretion. Coordinates 

of selected points along the inferred streamline are used to fit a streamline function. Detailed 

procedures for fitting nonlinear streamline functions are described in Chapter 6 (section 6.2.3).  

For nonlinear streamlines, a polynomial function is used to define the (E, N)→(x, y) mapping, 

where x is the distance along the centerline and y is the transverse distance orthogonal to the 

centerline. Given the source origin in field coordinates (E*, N*), local coordinates oriented with 

the streamline can be found as follows (Figure 2.3): 

1) The orthogonal line that passes through (E*, N*) and intersects the streamline at E = Ecross 

may be described by N = A+BE where A = N* +BEcross and B = -(a+2b+3cx2)-1, 

2) Solve recursively for Ecross using Ecross = E* initially then solve the cubic equation for E 

where the orthogonal line intersects the streamline, 

3) Compute y’ as the distance from (E*, N*) to (Ecross, Ncross),  
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4) Compute x as the distance along the streamline from (E0, N0) to (Ecross, Ncross) by integrating 

[1 + N’(E)2]1/2dE from E0 to Ecross where N’(E)=dN/dE. Calculate numerically using dE = 

10 m. 

 

 

Figure 2.3. Curvilinear streamline in (E, N) field coordinates and mapping                                              

to local (x, y) coordinates for source j. 

 

To estimate streamline parameters a, b, and c, it is necessary first to manually sketch the streamline 

and digitize northing-easting coordinates for a number of points along the streamline. These 

coordinates can be input into the provided Excel program Streamline calculation.xlsx to fit model 

parameters (Appendix A).    

 

2.4 Dissolved Plume Transport 

2.4.1 Analytical solutions for resident and flux concentrations 

In the following, we present 3-D solutions for resident and flux concentrations in an aquifer of 

finite thickness Laq with a steady-state planar flow field with a contaminant source on a vertical 

plane centered at x = 0, y = 0, z = 0. The x-dimension is treated as infinite in the positive 

(downstream) direction, the y-direction is infinite, and the z-direction may be semi-infinite or finite 

as discussed later. Dissolved phase transport is commonly described by the advection-dispersion 

equation (ADE), which for a planar flow field takes the form    

 

2 2 2

2 2 2

 
 x y z

C C C C C
R A v A v A v v C

t x y z x


    
= + + − −

      (2.7) 

where Ax, Ay and Az are dispersivities [L] in longitudinal, transverse horizontal, and vertical 

directions, respectively; R is a retardation actor for linear sorption L0 v = q/ is the pore velocity 

with darcy velocity q [MT-1] and porosity  L0  is a first-order decay coefficient [T-1] x is 

distance from the source in the direction of flow [L]; y is lateral distance from the center of the 

source perpendicular to flow [L]; z is vertical distance [L]; t is time since the initial release [T]; 

and C [ML-3] may represent resident or flux concentration depending on the boundary conditions 

applied.  

(N*, E*)

(Njn, Ejn)Nj0

Ej0

x

y

N

E

(Ncross,  Ecross)
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An arbitrarily time-dependent contaminant source with mass discharge rate ( )m t [MT-1] distributed 

uniformly over a vertical plane perpendicular to flow of width Ly and height Lz with its center at x 

= 0 and y = 0. The location of z = 0 depends on various cases described later. Zero concentration 

gradients for resident and flux solutions are assumed in the z-direction to the top and bottom of the 

aquifer, in the y-direction at y = ±  , and in the x-direction at x = +  and at x = 0 other than 

vertical plane source area. Note that the boundary conditions at x=0 preclude upstream migration 

of contaminant. The boundary condition on the source plane area for the resident concentration 

solution of (2.4) is  

 

( )R
R L

x yx

C m t
q C A

L L

 
− = 

   (2.8a) 

and the boundary condition for the flux concentration solution is    

 

( )
 F

x y

m t
qC

L L
=

. (2.8b) 

The solution of (2.7) for resident or flux boundary conditions with an arbitrary contaminant mass 

discharge rate as a function of time can be obtained by convolution using  

 

 

0

1
( , , , ) ( ) ( , ) ( , ) ( , )

t

x y z

y z

C x y z t m f x t f y t f z t d
L L

    


= − − −
 (2.9) 

where  is a dummy time integration variable [T], fx(x,t) is the x-direction solution for a dirac pulse 

(i.e., instantaneous unit mass injection) subject to (2.8a) or (2.8b) as applicable [L-1], fy(y,t) is the 

dispersion solution in the y-direction [-], and fz(z,t) is the z-direction dispersion solution [-]. 

Equation (2.6) is integrated numerically.  

Toride et al. (1995, Table 2.2) present 1-D solutions for instantaneous unit mass injection in time 

for resident and flux concentrations for an unbounded solution domain in the positive x-direction, 

which yield the following solutions for fx(x,t)  

 
( )

( )
2

1/2
( , ) exp    

44




  

 −−
 = −
 
 

F

x

xx

Rx vRx
f x

R RA vv RA v
 (2.10a) 

 

( )

( )

2

1/2

1/2

1 ( )
exp

4

( , ) exp
1

exp erfc
2 4



 






  −
−  

  −   
=   

     + 
 −        

xx
R

x

x x x

Rx v

A vRA vR
f x

R x Rx v

A R A A vR
 (2.10b) 

where fx
R and fx

F are functions for resident and flux solutions, respectively. An alternative 

formulation in lieu of (2.6), which can be integrated more efficiently for locations near the source, 

is 

 

( )

0

1
( , , , ) ( , ) ( , ) ( , ) ( )

m t

x y z

y z

C x y z t g x t f y t f z t dm
L L q

   = − − −
 (2.11) 
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where gx(x,t) represents the solution for continuous injection at a constant unit rate. Note that since 

( )m t  is a function of time, numerical integration of (10) can be performed either by (i) integrating 

over a specified t and computing ( )m t  corresponding to each time-step using (2.9), or (ii) 

integrating over a specified ( )m t  and back-calculating t for each step for use in gx and other terms 

in (2.11). Resident and flux solutions for gx are 

                   

1/2

1/2

1 ( )
( , ) exp erfc

2 2 2( )

1 ( )
             + exp erfc

2 2 2( )










   − −
=    

   

   + +
   
   

F

x

x x

x x

v u x Rx u
g x

A v RA v

v u x Rx u

A v RA v

  (2.12a) 

 

1/2

1/2

1/2

1 ( )
( , ) exp erfc

2 2( )

1 ( )
             + exp erfc  

2 2( )

            + exp erfc              
2 2( )

R

x

x x

x x

x x x

v u x Rx u
g x

v u A v RA v

v u x Rx u

v u A v RA v

v vx Rx v

A v A v R RA v










 

 

   − −
=    

+    

   + +
   

−    

   +
−   

   
1/2

2 2

1/2

2

1/2

            for 0

1 ( )
( , ) erfc exp

2 2( ) 4

1
              1 exp erfc             for 0  

2 2( )

R

x

x x x

x x x x

Rx v v Rx v
g x

RA v RA v RA v

vx v vx Rx v

A v RA v A v RA v



  


  

 






     − −
= + −     

     

     +
− + + =     

     

 (2.12b) 

where gx
R and gx

F are functions for resident and flux concentrations [L0], respectively, and 

( )
1/2

2 4 xu v A v= + . It may be noted that (2.10a) and (2.10b) will yield nearly identical results 

(hence CR  CF) when Ax/x << 1. This is also the case for (2.12a) and (2.12b).  

The horizontal spreading terms in (2.9) and (2.11) for an aquifer unbounded laterally is given by 

 

1/2 1/2

/ 2 / 21
( , ) erf erf       

2 2( / ) 2( / )


 

    + −
= −    

   
     

y y

y

y y

y L y L
f y

A v R A v R
. (2.13) 

Note that symmetry about the center line yields the same function values for positive or negative 

y-values having the same absolute magnitude.  

To account for different vertical source configurations, three conditions are distinguished for 

vertical dispersion terms as described below. 

Condition 1. Fully penetrating source (2-D solution) 

If the source thickness, Lz, is equal to the aquifer thickness, Laq, then a 2-D solution strictly applies 

for which fz(z,t) = 1. A 2-D solution may also be applicable at distances sufficiently far downstream 

from the source that vertical dispersion yields essentially uniform mixing over the aquifer 

thickness.  
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Condition 2. Partially penetrating source adjacent to top or bottom aquifer boundary 

For this condition, the top of the source zone may coincide with the aquifer upper boundary defined 

at z = 0 (e.g., water table) and the bottom of the source is substantially above the aquifer lower 

boundary with z increasing downwards. Alternatively, the bottom of the source coincides with the 

aquifer lower boundary defined locally as z=0 with z increasing upwards.  

The Condition 2 vertical dispersion function for an aquifer of infinite thickness is given by 

 

1/2 1/2

1
( , ) erf erf

2 2( / ) 2( / )


 


    + −

= −    
    

z z
z

z z

z L z L
f z

A v R A v R
 (2.14a) 

An image boundary technique (e.g., Galya 1987) is employed to correct for effects of plume 

interaction with finite vertical boundaries as follows 

 

( , ) ( , ) (2 , ) (2 , )

                (4 , ) (4 , )

                (6 , ) (6 , ) ...

   

 

 

  

 

 

= + − + + +

− + + +

− + + +

z z z aq z aq

z aq z aq

z aq z aq

f z f z f L z f L z

f L z f L z

f L z f L z
 (2.14b) 

Three subsidiary conditions may be distinguished for computing the Condition 2 dispersion 

function: 

Condition 2a.  x < x = (Laq-Lz)2 F  /Az  

At distances closer than x from the source, the plume has not intercepted the opposite aquifer 

boundary opposite the source. Therefore, no correction terms need to be applied and (2.14a) 

alone can be used to compute ( , ) ( , )z zf z f z = . The factor F  = 0.001 was determined by 

comparing 3-D solution results with and without correction terms.  

Condition 2b. x > x2D = (Laq-Lz)2F2D /Az 

At distances greater than x2D from the source, vertical mixing yields negligible vertical 

concentration gradients and a 2-D approximation may be adopted as described above with 

fz(z,t) = 1. The factor F2D = 10 was determined by comparing 3-D and 2-D solution results.  

Condition 2c. x < x < x2D  

For this case, (2.14b) is employed using a sufficient number of correction terms to obtain 

desired accuracy. After computing the first two terms in (2.11b), the series is terminated when 

the last computed term is less than 0.1% of the sum of all terms computed to that point.  

Condition 3. Source NOT immediately adjacent to top or bottom of aquifer 

Finally, we consider the instance in which the source does not lie immediately adjacent to the top 

or bottom of the aquifer. The center of the source of thickness Lz is located at an elevation denoted 

locally as z = 0 with positive z above the source and negative below. The top of the source is at z 

= Lz/2 and the aquifer upper boundary is at z = Lu    Lz/2. The bottom of the source is at z = −Lz/2 

and the aquifer lower boundary is at z = Lb   Lz/2. Note that if the top of the source is designated 
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as Ltop below the water table, then Lu = Ltop−Lz/2 and Lb=Laq−Lu. The vertical dispersion function 

for an unbounded aquifer is 

 

1/2 1/2

/ 2 / 21
( , ) erf erf

2 2( / ) 2( / )


 


    + −

= −    
     

z z

z

z z

z L z L
f z

A v R A v R
 (2.15a) 

Note that although the function defined by (2.12a) is symmetric about z = 0, corrections for finite 

aquifer thickness will be asymmetric unless the source lies exactly midway between the upper 

and lower aquifer boundaries. If corrections for finite aquifer thickness are required and Lu − |z| 

< Lb − |z|, the series with terms in order of decreasing magnitude is   

 

( , ) ( , )  (2 , ) (2 , )

                 (2 2 , ) (2 2 , )

                 (4 2 , ) (4 2 , )

                 (4 4 , ) (4 4 , )

   

   

 

 

 

= + + + − +

+ − + + + +

+ + + + − +

+ − + + + +

z z z b z u

z b u z u b

z b u z u b

z b u z u b

f z f z f L z t f L z t

f L L z t f L L z t

f L L z t f L L z t

f L L z t f L L z t

              (6 4 , ) (6 4 , )

                 (6 6 , ) (6 6 , ) ...

 

 

+ + + + − +

+ − + + + +

z b u z u b

z b u z u b

f L L z t f L L z t

f L L z t f L L z t
 (2.15b) 

otherwise, the computational sequence is    

 

( , ) ( , ) (2 , ) (2 , )

 (2 2 , ) (2 2 , )

 (4 2 , ) (4 2 , )

(4 4 , ) (4 4 , )

(6 4 , ) (6 4 , )

 (6 6 , )

z z z u z b

z u b z b u

z u b z b u

z u b z b u

z u b z b u

z u b

f z t f z t f L z t f L z t

f L L z t f L L z t

f L L z t f L L z t

f L L z t f L L z t

f L L z t f L L z t

f L L z t f

  

 

 

 

 



= + − + + +

+ + + + − +

+ − + + + +

+ + + + − +

+ − + + + +

+ − + (6 6 , ) ...z b uL L z t + + +
 (2.15c) 

The series is truncated after the last computed term is less than 0.1% of the sum of all terms to that 

point. Sub-conditions analogous to those for Condition 2 may be distinguished as follows.  

Condition 3a.  If x < x = (Lmin – Lz/2)2 F /Az where Lmin = min(Lu, Lb) then (2.15a) with no 

corrections is used to compute ( , ) ( , )z zf z f z = .  

Condition 3b. If x > x2D = (Lmax – Lz/2)2F2D/Az where Lmax = max(Lu, Lb) then a 2-D 

approximation with fz(z,t) = 1 is employed.  

Condition3c. If x < x < x2D then (2.15b) or (2.15c) is used to compute correction terms until 

the truncation criteria is met.  
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2.4.2 Aqueous concentration upgradient of source plane 

Since the transport solution assumes no counterflow dispersion and the source is treated as a plane 

at the downgradient edge of the source zone, the solution predicts no contaminant for x<0. To 

compute reasonable concentrations within the source zone from −xsource < x < 0, we adopt the 

following approximation   

 
( , , , ) (0, , , ) 1              0

( , , , ) 0                                                     

source

source

source

x
C x y z t C y z t x x

x

C x y z t x x

 
= + −   

 

=  −

 (2.16) 

where xsource is the source length. 

2.4.3 Variable decay coefficients with distance from source 

Spatially-variable decay within an aquifer can be described with up to three “zones” at specified 

distances from a source characterized by different decay coefficients. Zone 1 represents the region 

x < L12 with a decay coefficient of 1; Zone 2 is from L12< x L23 with a decay coefficient of 2; 

and Zone 3 is located at x > L23 with a decay coefficient of 3. 

The solution for Zone 1 is computed as described in section 2.3.2 with  =1 and actual best 

estimates of the source parameters Jcal and Mcal. For Zone 2, 2 is used in the solution and ( )m t is 

computed from (2.1) using values for Jcal and Mcal multiplied by a scaling factor S2 defined as 

 

12
2

12

( , 0, ; , , )
( )

( , 0, ; , , )

1 cal cal

2 cal cal

C x L y t J M
S t

C x L y t J M





= =
=

= =
 (2.17a) 

For Zone 3  = 3 and Jcal and Mcal values are scaled by a factor S3 defined as 

 

23 2 2
3

23 3

( , 0, ; , ( ) , ( ) )
( )

( , 0, ; , , , )

2 cal cal

cal cal cal

C x L y t S t J S t M
S t

C x L y t J M





= =
=

= =
. (2.17b)  

Extension of the model to simulate ED-limited biodecay is discussed in Chapter 3. 

2.4.4 Modeling dissolved plumes from multiple DNAPL sources 

Contaminant concentrations resulting from multiple sources are computed by superposition of the 

individual source solutions after reverting back to field coordinates as 

 1

( , , ) ( , , )
sourceN

j

j

C E N t C E N t
=

= 
 (2.18) 

Note that function calls on the RHS of (2.18) require mapping of global (E, N) coordinates to local 

(x, y) coordinates for each source as illustrated in Figure 2.4. 
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Figure 2.4. Mapping of well location to linearized coordinates for two adjacent nonlinear 

streamlines in field coordinates for solution superposition. 

 

2.5 Diffusion-limited Mass Transfer 

2.5.1 Upscaled back-diffusion model 

Many mathematical models have been presented for transport in media characterized by "mobile" 

regions in which contaminants move primarily by advection and "immobile" regions where 

contaminants move primarily by diffusion. We consider here the interpretation of resident and flux 

concentrations obtained from the analytical model described in section 2.4 in terms of a mobile-

immobile model quantified by the following parameters: 

qm =  mobile zone darcy velocity  [LT-1] 

Fm  =  ratio of mobile zone volume to total aquifer volume [L3L-3] 

Am =  mobile zone longitudinal dispersivity [L] 

Lim  =  average immobile zone diffusion path length[L] 

Dim  =  immobile zone effective molecular diffusion coefficient [L2T-1] 

m  =  mobile zone water volume as fraction of total mobile zone volume [L3L-3] 

im  =  immobile zone water volume as fraction of total immobile zone volume [L3L-3] 

m  =  dry soil mass in mobile zone as fraction of total mobile zone volume [M L-3] 

im  =  dry soil mass in immobile zone as fraction of total immobile zone volume [M L-3] 

km =  mobile zone adsorption coefficient [L3M-1] 

kim =  immobile zone adsorption coefficient [L3M-1] 

m =  mobile zone first-order decay coefficient [T-1] 

im =  immobile zone first-order decay coefficient [T-1] 

     =  dimensionless factor reflecting mobile-immobile zone geometry  

A number of studies (Bolt 1979, Passioura 1971, Raats 1981, Parker and Valocchi 1986, van 

Genuchten 1985, van Genuchten and Dalton 1986) have shown that diffusion-limited mobile-

immobile model solutions can be approximated by the simple ADE solved subject to boundary 

conditions that distinguish between resident and flux concentrations using the following upscaling 

relationships between dispersion model parameters and mobile-immobile model parameters: 

N

E

x2

y2

N

E

x1 y1

j=2

j=1
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( ) 2 2

2

ˆ1ˆ m im im

x m m

im

f vL R
A f A

D R

−
= +


 (2.19a) 

 

ˆ
ˆ

ˆ (1 )

m m

m m m im

F qq
v

F F 
= =

+ −
 (2.19b) 

 
(1 )m m m imR f R f R= + −

 (2.19c) 

 
ˆ (1 )m m m imf f  = + −

 (2.19d) 

where 

 

1 m m
m

m m

k
R

F




= +

 (2.19e) 

 

1
(1 )

im im
im

m im

k
R

F




= +

−
 (2.19f) 

 
(1 )

m m
m

m m m im

F
f

F F



 
=

+ −
 (2.19g) 

 

In which variables depicted with a “hat” (e.g., ˆ
xA ) represent field-scale “effective” or “upscaled” 

model parameters. Values of the geometry factor  for various mobile-immobile zone 

configurations based on van Genuchten and Dalton (1986) are shown in Table 2.2.  

 

Table 2.2. Geometry factors for upscaled dispersion model. 

Geometry of media Geometry factor,  Lim 

Spherical aggregates in mobile matrix 15 Sphere radius 

Solid cylindrical aggregates in mobile matrix 8 Cylinder radius 

Planar sheets in mobile matrix 3 Sheet half-thickness 

Hollow cylinders with "wormhole" 1 
1

0.5ln 0.25
b

a

−

  
−  

  

 b − a 

1 a = outer radius and b = "wormhole" radius for hollow cylinder case 

 

Simulations using upscaled parameters given by (2.16) will yield first and second moments of flux 

concentration versus time for a Dirac injection equal to those for the bi-continuum model of 

specified fracture-matrix geometry (Parker and Valochchi 1986).  

To the extent mobile-immobile model parameters can be directly estimated from field and/or lab 

data, the foregoing relationships can be used to estimate upscaled model parameters, which can 

then be refined, if necessary, by calibration to field data. Potential types of field data and their 

interpretations include the following. 



2-13 

 

Monitoring well data 

Dissolved concentrations from well samples should be regarded as upscaled model flux 

concentrations, CF. This is true regardless of whether immobile zones occur or not, since immobile 

zones, by definition, do not contribute to flux concentration. 

Small-scale dissolved concentration samples 

If dissolved concentration samples are obtained using suction devices (e.g., in conjunction with 

geoprobe equipment) at a scale smaller than the spacing between mobile and immobile zones, the 

values can best be interpreted as local scale resident concentrations. To obtain average resident 

concentrations, CR, at a scale that encompasses mobile and immobile zones, local concentrations 

within an appropriate distance can be averaged and used for calibration. Alternatively, local values 

may be used directly for calibration using a least squares objective. However, residual deviations 

will be much larger due to the scale mismatch. 

Soil concentration data averaged over mobile and immobile zones 

If the spacing between mobile and immobile zones is small compared to the length over which soil 

samples are taken, measurements of total soil concentration (dissolved and sorbed contaminant 

mass per dry soil mass, Sall) can be interpreted as 

 




= R

all

R C
S

 (2.20a) 

where all variables represent upscaled model values.  

Soil concentrations from mobile zone samples 

If soil samples are taken from identifiable mobile zones within the aquifer, measured mobile zone 

soil concentrations, Sm, can be interpreted as 

 




= m m F

m

m

R C
S

 (2.20b) 

assuming that the mobile zone dissolved concentration is approximately equal to the upscaled 

model flux concentration since mobile zone dispersivity is generally small. The aqueous + sorbed 

mobile zone contaminant mass per total (mobile + immobile zone) soil mass, Sm/t, is 

 / =m t m m m FS f R C
 (2.20c) 

Soil concentrations from immobile zone samples 

If soil samples are taken from identifiable low permeability zones, the measured immobile zone 

contaminant mass per dry mass of immobile zone soil, Sim, can be interpreted as 

 
(1 )

 



−
=

−

all m m m
im

m im

S f S
S

f
 (2.20d) 

while the aqueous + sorbed immobile zone contaminant mass per total (mobile + immobile zone) 

soil mass, Sim/t, can be interpreted as 



2-14 

 

 /  = −im t all m m mS S f S
. (2.20e) 

Note that interpretation of mobile and immobile zone soil concentrations depends on both upscaled 

and bi-continuum model parameters. SCOToolkit includes the capability to employ any of the 

above types of data in input files used for model calibration.   

2.5.2 Verification of the upscaled back-diffusion model 

The upscaling relations given by (2.16) may be derived by equating certain characteristics of the 

mono- and bi-continuum models, such as their first- and second-moments, which will yield 

equality of the matched characteristic, but not equality at every point in time or space. In this 

section, we investigate applications of the upscaled dispersion model to previously published 

studies of media with significant mass transfer limitations that exhibit early breakthrough and 

extended tailing to assess the accuracy of the upscaling relationships.  

The first problem involves a laboratory study of 190 mm long columns with an outer diameter of 

52 mm consisting of a sand/clay/grout mixture with a 1.7 mm diameter hole in the center extending 

axially from the inlet of the column to the outlet of the column intended to simulate a root or worm 

channel (Parker, 1984). The porosity was 0.365. A 0.65 pore volume bromide solution was added 

to two essentially identical columns under positive pressure at a flow rate of 4.65x10-4 m/s. One 

column was sectioned immediately following tracer injection, cut into 19 mm long sections and 

extracted pore fluid was analyzed for bromide. Bromide-free solution was added to the second 

column for another 1.15 pore volumes and effluent samples were collected and analyzed. No 

measurement of the effective diffusion coefficient was available. However, Promentilla et al. 

(2006) report tortuosities for cement samples over a range of porosities, which in conjunction with 

a literature value for the bromide diffusion coefficient in bulk water yield an effective diffusion 

coefficient of 7.4x10-9 m2/s. Disregarding mobile zone dispersivity, an effective dispersivity of 

167 m was computed for the column from (2.16a) using the "hollow cylinder" geometry factor.  

The experimental data reveal breakthrough within a small fraction of one pore volume and 

extended "tailing" albeit at very low concentrations due slow back-diffusion from the matrix and 

high dilution in mobile region (Figure 2.5a). Except for the sample closest to the inlet, measured 

resident concentrations after the injection period and prior to flushing are less than 3% of the 

effluent concentration magnitude at the time of sampling (Figure 2.5b). The higher concentration 

in the sample close to the inlet is attributable to longitudinal diffusion from the upper surface of 

the column rather than radial diffusion from the "wormhole."  

Simulated flux concentrations using model parameters computed using (2.19) with no calibration 

agree closely with measured effluent data (Figure 2.5a) and simulated resident concentrations 

agree well with the sectioned column data (Figure 2.5b). Note that simulated and measured flux 

concentrations at the end of the injection period are much greater than measured and simulated 

resident concentrations. The importance of distinguishing between resident and flux 

concentrations and of employing the correct governing equation and boundary conditions for 

heterogeneous media should be self-evident. This example provides compelling evidence that the 

upscaled dispersion model solved for appropriate boundary conditions is capable of describing 

transport behavior in media characterized by highly preferential flow paths. 
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Figure 2.5. Observed and simulated transport for column experiment with "wormhole".                  

(a) Measured breakthrough curves and simulated flux concentrations, and (b) measured and 

simulated resident concentrations versus distance following 0.65 pore volume tracer injection. 

 

The second problem we consider involves a high resolution 2-D numerical simulation by Beth 

Parker and colleagues (2008) of chlorinated solvent in a permeable aquifer with discontinuous clay 

layers underlain by a clay aquitard. The model was used to simulate advection-dominated transport 

in the permeable material and diffusion in low permeability zones (Figure 2.5). Due to the large 

contrast between advective and diffusive time scales, a high-resolution grid and small time steps 

were required. Pools of TCE were assumed to occur on clay lenses as constant concentration 

sources for 30 years, after which sources were completely removed. Since mobile zone dispersivity 

is small, local scale resident and flux concentrations will be essentially identical and high-

resolution model results will be insensitive to the type of boundary condition employed. A multi-

level monitoring well was assumed near the downgradient boundary about 160 m from the sources. 

Numerically simulated TCE concentrations remained above 1 g/L at most depths 200 years after 

source removal as a result of back-diffusion from clay layers (Figure 2.6). 

Since contaminant sources are distributed more or less uniformly over the aquifer thickness, the 

2-D numerical simulation may be reasonably approximated as a vertically-averaged 1-D problem. 

If we approximate the model domain as a system consisting of horizontal mobile and immobile 

layers, a flux concentration solution of the upscaled dispersion model may be obtained using 

parameters given by (2.19) to simulate samples taken from the entire well length. The model 

domain is taken as the 15 m thickness that includes the aquifer and aquitard. The well is not 

screened below the top of the aquitard and the well bore does not intersect any clay lenses within 

the aquifer. Therefore, the arithmetic average of numerically computed concentrations over all 

well intervals within the 10 m thick aquifer represent a flow-weighted concentration over the 15 

m deep model domain. 
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Figure 2.6. Domain for high resolution numerical model and numerically simulated TCE 

concentrations at different depths plus depth-averaged concentration in downgradient well over 

time (Parker et al., 2008). 

 

Mobile and immobile zone porosities for this problem were assumed to be 0.4. Retardation factors 

were 1 in mobile zones, 5 in clay lenses within the aquifer and 3 in the aquitard. The mobile zone 

darcy velocity is 0.12 m/d and the effective TCE diffusion coefficient in all clay units was assumed 

to be 3.9x10-5 m2/d. If we consider only effects of mass transfer involving clay lenses within the 

aquifer, the mobile pore fraction, fm, over the 10 m thick aquifer is 0.85 and the average diffusion 

path length, Lim, is 0.25 m. Plugging the foregoing values into (2.19) gives an effective longitudinal 

dispersivity of 201 m. The retarded pore velocity (averaged over the full 15 m depth) is 58 m/yr. 

Average flux concentration at the monitoring well simulated with these model parameters dropped 

below 1 g/L about 85 years after source removal (results not shown). Since the high resolution 

numerical model showed average concentrations exceeding 100 g/L after 200 years, it is evident 

that the thin clay layers within the aquifer are relatively minor contributors to back-diffusion 

processes. 

If we include the 5 m thick aquitard in the tally of immobile zones, the average mobile pore fraction 

over the 15 m model thickness drops to 0.57 and the volume-weighted diffusion path length 

increases to 3.9 m. Note that the diffusion path length for the aquitard is equal to its thickness, not 

its half thickness, because it contacts the aquifer on only one side. Although the aquitard 

retardation factor is smaller than that for the thin clay lenses, the average aquitard is about 5 times 

more voluminous resulting in a lower average pore velocity of 31 m/yr. (2.19a) gives a longitudinal 

dispersivity of 27,000 m for this system. With this exceedingly high dispersivity, the upscaled 

model predicts earlier breakthrough than the high-resolution model and exhibits a faster drop in 
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concentration following source removal compared to the high resolution numerical model (Figure 

2.7). However, the late-time rate of concentration change for the upscaled model closely parallels 

the numerical model.  

The early time deviations in the upscaled model likely reflect shorter effective diffusion path 

lengths at times when contaminant has only penetrated a fraction of the low permeability zones. 

To account for this, we investigated the simple and widely-used approximation of diffusion path 

length time-dependence (Crank 1975) 

 

1/2
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( ) min ,
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   

max im
im im

im

D t
L t L

R
 (2.21) 

where 
max

imL is the maximum diffusion path length (5 m), t is time since the initial release, and other 

variables are as previously defined. Substitution of (2.21) into (2.19a) yields a linear increase in 

dispersivity with time to a maximum value of 6,800 m in 230 years. Simulated flux concentrations 

using the time-dependent diffusion length and dispersivity in the upscaled model follow the high 

resolution numerical results fairly well except for moderate under-prediction between 30 and 100 

years (Figure 2.7). The maximum error during this period is about 65%, which would likely be 

within the range of "noise" in field data and the limits of reliability that can be reasonably expected 

even with sophisticated models at such a complex site. In any case, the upscaled model appears to 

offer a practical and efficient approach to evaluating the effects of back-diffusion that arise at 

heterogeneous sites, especially considering the demonstrated feasibility of quantifying dispersivity 

from physically meaningful site parameters with little or no calibration. 

Comparisons between upscaled model CR solutions and numerical model results were not possible 

since simulated aquitard concentrations were not given by Parker et al. (2008). However, a few 

observations may be made. The analytical model indicates that resident concentrations are less 

than flux concentrations prior to source removal and greater after source removal. Further, the 

magnitude of the difference between CR and CF is found to increase with dispersivity.  

 

Figure 2.7. Vertically-averaged flux concentrations in aquifer with clay layers at well location 

based on Parker et al. high resolution numerical simulation and results for upscaled dispersion 

model with a constant diffusion path length, Lim, of 3.9m, or with a time-varying Lim(t).  
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These observations are readily explained in the context of the mobile-immobile model. When the 

source is active, concentrations are higher in mobile zones than adjacent immobile zones, resulting 

in higher volume-averaged than flow-averaged concentrations, while the reverse is true after 

source removal as back-diffusion occurs. Also, the magnitude of concentration differences 

between mobile and immobile zones will increase as diffusive mass transfer resistance increases, 

which corresponds to increasing dispersivity according to (2.19a).  

As a final point of interest, consider the fact that the well in the numerical model is located within 

a "window" in the aquifer where no clay layers intersect the well bore over the 10 m aquifer 

thickness. As a result, volume- and flow-averaged concentrations over the 10 m aquifer thickness 

(i.e., excluding the aquitard) are essentially equal at this location. In spite of the absence of clay 

lenses at the monitoring location, the flux concentration solution for the upscaled model with time-

dependent dispersion provides a reasonable approximation of the high resolution numerical results. 

This reflects the relative insensitivity of flux concentrations to local variations in the immobile 

fraction, since the later have zero contribution to flux concentration. This reflects the fact that flux 

concentrations are controlled by cumulative upgradient transport processes (Figure 2.8). 

 

 

Figure 2.8. Illustration of the dependence of flux concentration at a control plane on integral of 

upgradient transport processes. 

 

In contrast, local resident concentrations will exhibit large variance in response to local spatial 

variability in the distribution of low permeability material. For these reasons, well measurements, 

if properly interpreted as flux concentrations, are expected to exhibit less variance and hence be 

more valuable, in general, for model calibration than resident or soil concentration data. 

Nevertheless, a limited number of soil samples may provide valuable additional information for 

model calibration.  
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2.6 Summary 

Depending on how samples are taken, fluid may be obtained equally from all pores (volume-

averaged resident concentrations) or in proportion to local permeability (flow-averaged flux 

concentrations). Water samples from wells or suction sampling devices should generally be 

regarded as flux concentrations, while soil samples that are mixed and extracted in their entirety 

may be regarded as resident concentrations after correcting for dilution and sorption. The scale of 

measurements versus that of significant heterogeneities must be carefully considered for upscaled 

models in order to properly interpret field data.  

Heterogeneous aquifers frequently exhibit much earlier breakthrough downgradient of a source 

than expected for purely advective transport and show extended tailing to long travel times. It is 

commonly assumed that simple advection dispersion models are not capable of describing such 

systems. We have shown this to be a misconception. While the ADE may not describe every detail 

of such systems exactly, when distinctions between resident and flux concentration solutions, 

dispersion upgradient of sources, and time-dependence of diffusion path length are addressed, the 

ADE is capable of representing rapid breakthrough and extended tailing with reasonable accuracy 

even in quite extreme cases.  
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3. Enhanced Bioremediation and Dissolved  
Plume Control 

3.1 Overview 

In this chapter, we address technologies for the control or attenuation of aqueous phase 

contamination. Three such technologies are considered in SCOToolkit. They are electron donor 

(ED) enhanced bioremediation, pump-and-treat, and reactive barriers. The last two methods are 

treated by SCOToolkit as contingency measures that can be implemented to prevent or limit plume 

migration beyond a designated location if the primary remediation methods fail to perform as 

expected. ED enhanced bioremediation is treated as a primary remediation method with 

optimizable design variables. In this chapter, we discuss the ED model first, followed by 

contingency control methods.  

Streamlines that pass through the center of each electron donor injection gallery or reactive barrier 

are characterized using a linear or polynomial model in the same manner discussed for contaminant 

transport in Chapter 2. 

3.2 Electron donor enhanced bioremediation 

3.2.1 Electron donor transport 

SCOToolkit simulates effects of ED injection in one or more injection well galleries of width ED

iY  

for gallery i perpendicular to the groundwater flow direction, with the top of the injection zone a 

depth z = ED

iZ below the water table for gallery i and with the bottom at z = ED

iZ  +
ED

iH below the 

water table. The flow field for each ED gallery is characterized in the same manner as for 

contaminant transport – i.e., linear or linearized by mapping a nonlinear field to local coordinates 

for each ED gallery as described in Chapter 2. Needless to say, streamlines for all ED galleries and 

DNAPL sources should be consistent with each other – i.e. parallel or with mild 

convergence/divergence. 

The ED injection rate, EDim [MT-1], for injection gallery i is approximated by a step function  
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where tEDio is the ED injection start date and tEDif is the stop date for gallery i. Actual aqueous 

phase ED injection will commonly be pulsed to reduce well fouling problems and injection of 

nonaqueous phase ED will be performed with a frequency that depends on the dissolution rate of 

ED material. As a result, temporal variations in ED concentrations will occur near injection 

galleries. However, since these variations will diminish markedly with distance from the galleries, 

modeling ED injection with a time-averaged rate will generally not greatly affect ED available to 

drive biodecay through most of the aquifer.  

ED concentrations attributable to injection gallery i before reactions with contaminants, denoted 

( , , , )norx

EDiC x y z t , are computed using the transport model described in Chapter 2 but with the step 

function ED injection rate used in lieu of the DNAPL source function. Aquifer porosity, velocity 
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and dispersivity values will be the same for ED and contaminants. Sorption coefficients for ED 

transport will be specific to the ED and first order decay for ED is assumed to be zero, as ED 

reactions will be modeled explicitly.  

Resident or flux concentration solutions for ED transport are employed corresponding to the 

solution type specified for the contaminant model at a given location and time, depending on the 

applicable type of measurement, as specified by the user. 

Kinetics of ED reactions with dissolved contaminant is approximated assuming the fraction of 

injected ED concentration that is reactive varies exponentially with travel time as  

 ( , , , ) 1 exp ( , , , )
− 

= − 
 

avail norxED ED
EDi EDi

xR
C x y z t C x y z t

v
 (3.2) 

where (x, y, z) are local coordinates of the computational point downgradient of ED gallery i, ED 

is a reaction rate coefficient [T-1], v is groundwater pore velocity [L T-1], and RED is the ED 

retardation factor [-].  

For multiple ED galleries, the total ED concentration prior to reactions
norx

EDC at a given field 

location and time is computed by superposition in field coordinates as  

 ( , , , ) ( , , , )=norx norx

ED EDi

i

C E N z t C E N z t  (3.3) 

and the total ED concentration available for reactions is computed similarly as 

 ( , , , ) ( , , , )=avail avail

ED EDi

i

C E N z t C E N z t  (3.4) 

where i denotes solutions for individual ED injection galleries.  

The foregoing implicitly treats introduced ED as an aqueous phase material. However, nonaqueous 

or emulsified ED (e.g., various vegetable oil formulations) can be approximated by suitable 

adjustment of ED and RED – e.g. by calibration to pilot test data. 

3.2.2 Electron donor reactions with electron acceptors and contaminants 

Biodecay of CH species is assumed to be limited by the quantity of ED species relative to electron 

acceptor (EA) species (Kamanth et al., 2006). To estimate the attenuation of CH due to ED 

addition, a superposition method is used that is analogous to that described by Borden and Bedient 

(1986). If redox reactions occur serially in order of decreasing reaction free energy (e.g., O2 > NO3 

> SO4 > Fe(III) > CH), then an electron balance yields 

 

'  
'

(serial) ( ) '
max 0, max 0,

  + −
= −  

   

avail H nat H

ED ED ED ED ED EA
CH CH norx

CH CH

R f C R C C
C C

R f
 (3.5) 

where C’CH(serial) is the aqueous CH concentration after serial ED reactions, CCH(norx) is the 

computed CH concentration before ED reactions as described in Chapter 2, 
avail

EDC is the aqueous 

concentration of injected ED available for reactions, 
 H nat

EDC is the background H-equivalent ED 

concentration in the aquifer,
H

EAC is the background H-equivalent concentration of each EA species 

in the aquifer, f’CH is the ratio of H-equivalent to actual contaminant concentration, f’ED is the ratio 
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of H-equivalent to actual injected ED concentration, RCH is the CH retardation factor, and RED is 

the ED retardation factor (note that R=1 is assumed for EA species).  

H-equivalent ratios (Hstoch) for common groundwater ED, EA, and solvent species are summarized 

in Table 3.1. H-equivalent ratios for EAs are estimated as f’EA = fEA/Eeff where fEA is the 

stoichiometric ratio for complete EA reduction and Eeff is fractional energy yield for the 

biologically-mediated reaction after deducting energy consumed for cell synthesis. The H-

equivalent ratio for CH is similarly computed as f’CH = fCH/Eeff, while H-equivalent ratios for ED 

species are computed as f’ED = fEDEeff, since ED occurs on the opposite side of the EA-ED balance 

ledger. 

If reductive dechlorination of CH is assumed to occur under anaerobic conditions with competition 

among microbial populations responsible for reduction of NO3, SO4, etc., an electron balance 

yields 

 

' '  

( )'

( ) ( )'

( ) 2

min 1, max 0,

H avail H nat

CH CH CH norx EA ED ED ED ED ED

CH parallel CH norxH H

CH CH CH norx EA O

R f C C R f C R C
C C

R f C C C

  + − −
=   

 + −   

        (3.6) 

where no retardation is assumed for O2. Assuming that actual biodecay can be approximated as a  

linear combination of the foregoing pathways, then 

 
' ' '

( ) ( ) ( )(1 )= + −CH mixed serial CH serial serial CH parallelC F C F C  (3.7) 

where Fserial is the fraction of reductive dechlorination that follows the serial pathway. The ED 

concentration remaining in solution after reactions with EA and CH may be computed by 

 
( )( )'  ' '

(mixed)

'

min ,+ + −
= −

avail H nat H

ED ED ED ED ED EA CH CH CH CHnet norx

ED ED

CH CH

R f C R C C R f C C
C C

R f
 (3.8) 

which is used to determine effects of ED injection on mass transfer enhancement. 

3.2.3 DNAPL source mass transfer enhancement by ED injection 

SCOToolkit considers changes in DNAPL mass transfer rate by a factor Fmt due to ED injection 

upgradient of DNAPL sources as described in Chapter 2. Whey injection studies at the Fort Lewis, 

Washington East Gate Disposal Yard (EGDY) DNAPL site by Macbeth and Sorenson (2008) 

indicate an approximately linear mass transfer enhancement with ED concentration in the source 

zone (measured as COD). This observation is consistent with a theoretical analysis of NAPL 

dissolution rate enhancement associated with reactions between the NAPL constituents and other 

aqueous phase species by Reitsma and Dai (2001). For mass transfer with an instantaneous 

irreversible reaction described by eqs. (1), (4) and (5) of Reitsma and Dai and assuming a bulk 

aqueous phase contaminant concentration much less than its solubility, we obtain 

 
     

1= + rx

CH

mt mt

sol

C
F

C
f  (3.9a) 

 
     

=
rx H

m

C

rx
t

n D

D
f  (3.9b) 

where Fmt is the ratio of mass transfer rate with reaction to that without reaction defined by (2.1) 

[-], fmt is an enhancement coefficient [-], CCHsol is the molar aqueous solubility of contaminant [mol 
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L-3], Crx is the bulk aqueous phase molar concentration of reactant [mol L-3], DCH is the 

contaminant aqueous diffusion coefficient [L2T-1], Drx is the reactant aqueous diffusion coefficient 

[L2T-1], and nrx is the stoichiometric ratio of reactant to contaminant for the reaction. While the 

value of fmt may be calculated from (3.9b) as a first approximation, given the simplistic nature of 

the rate enhancement model, calibration to field data is desirable if feasible. 

For the case of mass transfer enhancement by aqueous phase ED, Crx = 
net

EDC , which we compute 

at coordinates corresponding to the center of the DNAPL source zone at the injection start date 

plus a lag time to allow the ED concentration to approach a steady-state value estimated as tlag = 

xR/v + 3(2RxAx)1/2/v where x is the travel distance from the ED injection gallery to the center of 

the DNAPL source, R is the ED retardation factor, v is the mean groundwater pore velocity, and 

Ax is the aquifer longitudinal dispersivity. 

 

Table 3.1. H-equivalent conversion factors for selected ED, EA and CH. 

Species Hstoch 
1 Eeff 

2  f’ 3 

Chlorinated solvents4    

    PCE (tetrachloroethene) 0.058 0.9 0.064 

    TCE (trichloroethene) 0.046 0.9 0.051 

    DCE (cis-1,2-dichloroethene) 0.042 0.9 0.038 

    VC (vinyl chloride) 0.032 0.9 0.024 

Electron donors    

    Acetate 0.13 0.6 0.078 

    Butyrate 0.21 0.6 0.126 

    Ethanol 0.26 0.6 0.156 

    HRC 0.12 0.6 0.072 

    Lactate 0.13 0.6 0.078 

    Methanol 0.19 0.6 0.114 

    Molasses 0.14 0.6 0.084 

    Propionate 0.18 0.6 0.108 

    Vegetable oil 0.39 0.6 0.234 

    Whey 0.13 0.6 0.078 

Electron acceptors    

    Oxygen 0.125 0.51 0.245 

    Sulfate 0.081 0.43 0.188 

    Nitrate 0.083 0.92 0.091 

    Iron (II) 0.018 0.9 0.020 
1 Hstoch is the H-equivalent ratio computed for the simple chemical redox reactions (Kamanth et 

al., 2006) 
2 Eeff is the energy conversion efficiency to adjust yield for cell synthesis for relevant microbial 

populations (Rittman and McCarty, 2001) 
3 f’ is the net H-equivalent mass ratio = HstochEeff for electron donors and Hstoch/Eeff for electron 

acceptors. 
4 Stoichiometry based on conversion to ethene. 
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3.2.4 Electron donor gallery termination criteria and design variables 

SCOToolkit can model multiple ED injection galleries. Each gallery can have different gallery 

coordinates (northing and easting at center of gallery), width, depth, start and stop dates, and ED 

injection rates. Termination of injection galleries may be specified at fixed dates or (more 

realistically) the end date may be defined conditionally based on performance monitoring of 

contaminant concentrations in a specified well or wells as described below.  

For ED galleries placed downgradient of a DNAPL source, intended to enhance dissolved plume 

remediation (“dissolved plume ED galleries”), ED injection may be terminated when  

a. the annual average of contaminant concentration measurements in a designated ED 

performance monitoring well or wells upgradient of the gallery is less than a specified 

value CEDstop, and 

b. optionally, when the annual average concentration in a designated site-wide compliance 

monitoring well downgradient of the gallery is also less than the site-wide compliance 

concentration Cnfa (see Chapter 7), and  

c. optionally, if there are no ED injection galleries currently operating upgradient of the 

gallery in question (i.e., multiple galleries can only terminate sequentially form up- to 

downgradient).  

For ED galleries placed immediately upgradient of a DNAPL source to enhance source zone 

remediation (“source zone ED galleries”), ED performance monitoring wells are located 

immediately downgradient of the source to monitor total solvent species and decay products (“total 

contaminant concentration”). In this case, injection is terminated when the annual average total 

contaminant concentration is less than CEDstop.  

SCOToolkit generates “measurements” for ED performance monitoring wells by applying 

lognormal noise to simulated average annual contaminant concentrations. For dissolved plume ED 

galleries, simulated values of
'

( )CH mixedC are used to represent noise-free contaminant concentrations 

after ED-enhanced biodecay. For source zone ED galleries, simulated ( )CH norxC are used to 

represent contaminant concentrations prior to ED reactions, corresponding to field measurements 

of total contaminants and daughter products. Measurement “noise” applied to simulated values has 

a ln-standard error equal to SlnCED
ED

sampf 1/2
 where SlnCED is the user specified ln-error for single 

measurements from ED performance monitoring wells and 
ED

sampf  is the number of measurements 

per year (number of ED monitoring wells per decision gallery times annual sampling frequency). 

Design variables that may warrant optimization for ED injection include the following: 

MEDi is the ED mass injection rate for gallery i (kg/d), 
ED

iY  is the width of gallery i (m), 

ED

iH is the vertical thickness of the injection zone i (m), 

ED

oit is the start date for ED injection in gallery i (days),  

CEDstop i is the target annual average contaminant concentration in ED performance monitoring 

wells below which ED injection will be terminated, and 
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ED

sampf
 
is the number of measurements per gallery per year for ED monitoring. 

When optimizing multiple potential ED injection galleries, if the optimized value of MEDi is below 

a specified lower cutoff, the gallery is treated as inoperative and no capital or operating costs are 

applied to it, thus allowing the number (and locations) of injection galleries may be optimized. 

3.2.5 Electron donor injection cost function  

Capital and operating costs for implementation of enhanced bioremediation by injection of ED and 

other amendments in injection well galleries are described as follows: 
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 (3.10) 

where the time summation is over integer values of time in years and 

EDtot

NPVC  is the total NPV cost for ED injection ($K), 
EDcap

NPVC  is the total NPV fixed ED cost ($K), 

EDcap

widthC  is the fixed cost per ED gallery width ($K/m), 
EDcap

mwC  is the construction cost per operational ED monitoring well ($K/well), 
EDcap

otherC is any other fixed ED costs, 

EDop

NPVC  is the total NPV operating cost for ED injection ($K), 

EDop

widthC  is the operating cost per ED gallery width for maintenance etc. ($K/m), 

EDop

massC  is the operating cost per unit ED mass injection ($K/kg), 

EDop

sampC  is the collection and analysis cost per ED monitoring sample ($K/sample), 

EDop

otherC  is other ED operating costs per gallery per year for reporting etc. ($K/gallery/yr), 

EDop

allC  is other ED operating costs regardless of the number of galleries ($K/yr), 

 d is the annual discount rate (fraction), 
ED

sampf  is the number of samples per well per year for ED operational monitoring, 

ED

iI is an indicator that is 1 if gallery i is actually implemented else 0, 
ED

iY is the width of ED gallery i perpendicular to the flow direction (m), 

MEDi is the mass injection rate of ED for gallery i (kg/yr), 
ED

mwN is the number of operational monitoring wells (not injection wells) per ED gallery, 
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ED

galN  is the number of potential ED galleries, 

ED

tiO is an indicator that is 1 if gallery i is operating in year t else 0,  

ED

oit is the start date for ED gallery i (yr), 

 tref  is the reference date for NPV adjustment (yr), and 

 tmax is the maximum simulation date (yr). 

 

3.3 Hydraulic control and reactive barriers 

3.3.1 Pump-and-treat for plume control 

Pump-and-treat (PT) systems have a long history. They were once the sole means for treatment of 

groundwater contamination until it was recognized in the 1970s that slow dissolution of DNAPL 

sources may require hundreds or thousands of pore volumes before the source was fully dissipated. 

This led to the realization that pump-and-treat for DNAPL plumes is often more reasonably 

regarded as a plume control measure rather than as a remediation technology per se.   

SCOToolkit treats pump-and-treat as a means of limiting dissolved plume migration beyond a 

certain distance downgradient, which may be used in conjunction with natural attenuation, source 

reduction methods, and/or other dissolved plume technologies. If SCOToolkit implements a pump-

and-treat system at a given location, any monitoring wells downgradient of the pump-and-treat 

system are assumed to be “clean.” In other words, the pump-and-treat system is assumed to be 

implemented at or near the distal edge of the dissolved plume. The steady state flow field 

upgradient of the pump-and-treat system is assumed to be unaffected and the analytical transport 

model is used to compute upgradient concentrations.  

SCOToolkit does not assess pumping rates or well locations needed to ensure plume capture, nor 

does it determine construction or unit operating costs. Many other tools are available to perform 

such calculations. If pump-and-treat is considered as an option at a given site, design personnel 

must independently perform calculations to estimate PT capital costs and annual operating costs. 

SCOToolkit can treat implementation of pump-and-treat technology as a conditional decision 

contingent on the magnitude of contaminant concentration in a designated “PT trigger well.” 

If simulated concentrations at the trigger well exceed a value CPT based on specified statistical 

criteria over time, capital costs for implementation are triggered and annual operating costs are 

accrued until site-wide remediation requirements are met. Statistical criteria to initiate PT and to 

achieve site wide “no further action” (NFA) status are discussed in Chapter 7.  

The total net present value (NPV) pump-and-treat system cost for a given simulation of 

remediation performance is computed as 

 (1 ) (1 )
− −

=

= − + −
nfa

PT ref ref

PT

t
t t t tPT PTcap PTop

NPV PT total PT total

t t

C I C d I C d  (3.11) 

where IPT is a value equal to 1 if PT is implemented and 0 if not, t is time (yrs), tPT is the time PT 

is implemented (yrs), tref  is the reference date for NPV adjustment (yrs), d is the annual discount 

rate, 
PTcap

totalC is the undiscounted PT fixed cost ($K), and 
PTop

totalC is the undiscounted PT operating cost 

per year ($K/yr). 
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3.3.2 Reactive barrier model 

Consider a reactive barrier (RB) of width Yrb perpendicular to the flow direction extending from 

the water table to depth HRB below the water table. The contaminant mass flux versus time entering 

the barrier area (=YRBHRB) is ( )RB

inJ t and that leaving the area is ( )RB

outJ t . We assume the removal 

efficiency of the barrier is ERB over the operating period from to to tf, such that the contaminant 

flux leaving the barrier is ( ) (1 ) ( )RB RB RB

out inJ t E J t= − and the mass removal rate within the barrier is 

( ) ( )RB RB RB

loss inJ t E J t= . Note that even if ERB=1, upstream contamination can still move downgradient 

around the sides and beneath the barrier.  

To model the dissolved plume at a location downgradient of a reactive barrier, we first compute

( )RB

lossJ t for the barrier. Assuming ERB is known, ( )RB

lossJ t can be computed using the flux 

concentration solution for contaminant transport for all sources upgradient of a given barrier at 

discretized locations on the barrier face in the Y and Z directions (e.g., red dots in Figure 3.1). The 

average of the latter values as a function of time is denoted ( )CH

avgC t . The loss rate is computed as  

 ( ) ( )=RB RB RB RB CH

loss avgJ t E qY H C t . (3.12) 

 

 

Figure 3.1. Schematic of reactive barrier face in flow direction for computing ( )CH

avgC t . 

 

To compute contaminant concentrations at a given location downgradient of the barrier, we first 

compute a pseudo contaminant concentration,  i ( )CH

lossC t at the location of interest using the 

contaminant transport model with a source mass function equal to ( )RB

lossJ t  and source coordinates 

and dimensions corresponding to the RB. Now, we can compute the contaminant concentration at 

the downgradient location of interest corrected for mass lost in the reactive barrier, ( )CH

RBC t , as  

 ( ) ( ) ( )= −CH CH CH

RB noRB lossC t C t C t  (3.13) 

where ( )CH

noRBC t is the contaminant concentration at the location downgradient of the RB computed 

with the transport solution disregarding effects of the reactive barrier, and ( )CH

RBC t is the solution 

corrected for mass removed by the RB. Note that the solution type (i.e., resident or flux) for

( )CH

noRBC t and ( )CH

lossC t  must be consistent with each other and with the desired type for ( )CH

RBC t . 
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3.4 Summary 

Dissolved plume control and attenuation are important components of DNAPL remediation 

strategies. While monitored natural attenuation (MNA) can be an effective strategy in some cases, 

engineered systems to enhance natural attenuation mechanisms and/or to limit further migration 

to buy time for other system components to work are often necessary. Enhanced reductive 

dechlorination of common chlorinated solvents is the most commonly used and cost-effective 

strategy for accelerating dissolved plume remediation. The modeling approach presented here is 

physically based yet computationally efficient and requires minimal empirical parameters that 

must be calibrated using pilot tests or field scale data. 
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4. DNAPL Source Remediation by Thermal Treatment 

4.1 Overview  

In situ thermal technologies for DNAPL source remediation have largely evolved from methods 

developed for enhanced oil recovery applications (Schumacher 1980, U.S. EPA 2004, Kingston et 

al.  2010). These technologies have been used to treat a wide range of volatile organic chemicals 

(VOCs) including chlorinated solvents, non-chlorinated volatile organic compounds, petroleum 

hydrocarbons, and semi-volatile organic compounds (Vinegar et al. 1999, Beyke and Fleming 

2005, Truex et al. 2007). Thermal methods are often used to treat contaminant source regions 

containing low solubility non-aqueous phase liquids (NAPLs), which are recalcitrant to many other 

methods. Thermal technologies utilize heat to enhance the removal of contaminants from the 

subsurface primarily by increasing the contaminant vapor pressure for VOCs and by decreasing 

the viscosity of low volatility NAPL. Heating may also enhance contaminant removal by 

increasing aqueous solubility, aqueous and vapor phase diffusion coefficients, and/or biotic and 

abiotic decay rates. Depending on the operating temperature and contaminant properties, heating 

may also decrease soil-water sorption coefficients and/or NAPL interfacial tension and liquid 

viscosities.  

In situ thermal technologies in common commercial use include thermal conductive heating (TCH) 

that employs heating elements in wells to heat soil primarily by thermal conduction (Fan and Udell 

1995, Hansen et al. 1998), electrical resistive heating (ERH) involving application of electrical 

current to an electrode network to heat soil by resistive energy dissipation (Heron et al. 1998a and 

1998b, Beyke and Fleming 2005, Powell et al. 2007), and steam enhanced extraction (SEE) which 

heats the aquifer by steam injected into a network of injection wells with vapor and liquid phase 

recovery from multiphase extraction wells (Wu 1977, Itamura and Udell 1993, Davis 1997, Davis 

1998). Mass recovery rates during thermal treatment can be measured by monitoring mass 

recovery rates in extracted vapor and liquid phases as applicable to the various technologies.  

The total energy input required to achieve a specified cleanup objective is strongly dependent on 

the boiling point of the contaminant(s) of concern, which depends on the chemical composition of 

NAPL (if present) and boiling point(s) of the pure contaminant(s). Chlorinated solvents and other 

chemicals can exhibit heterogeneous azeotropic behavior in which the boiling point of a NAPL-

water mixture is less than the boiling point of solvent or water alone (Gmehling and Onken 1997, 

U.S. EPA 2004, Ponton 2009). The heterogeneous mixture boiling point may be estimated from 

Dalton’s law of partial pressures as the temperature when solvent vapor pressure plus water vapor 

pressure equals the ambient (atmospheric plus hydrostatic) pressure. After the co-boiling point is 

reached, mole fractions of water and solvent in liquid and vapor phases will remain constant (in 

the absence of mass transfer limitations) until the NAPL phase is depleted. Azeotropic boiling 

points and mole fractions for several chlorinated solvents are shown in Table 4.1. For azeotropic 

systems with a boiling point less than 100°C, the water-NAPL system boils first when the co-

boiling point is reached. After NAPL is boiled off, dissolved and adsorbed solvent will continue 

to volatilize as the temperature gradually increases to the aqueous phase boiling point. Thus, most 

solvent may be volatilized well before water reaches a full boil (contingent on spatial variability 

in temperature and contaminant distribution), which may substantially reduce the energy 

requirements in the absence of co-boiling behavior. However, if very low residual soil 

concentrations are targeted, heating above the co-boiling point to the free water boiling point, 

and/or holding the system at the target temperature longer may be necessary. 
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Table 4.1. Azeotropic properties of selected chemicals in water (Ponton 2009). 

  Heterogeneous Azeotrope with Water 

Solvent Pure substance  

Boiling Point, oC 

Azeotropic  

Boiling Point, oC 

Mass fraction of  

solvent in water 

Tetrachloroethene 121 86 0.83 

Trichloroethene 87 73 0.94 

1,1,2-Trichlorethane 114 86 0.84 

Carbon tetrachloride 77 67 0.96 

Methylene chloride 40 39 0.99 

Benzene 80 69 0.91 

Ethylbenzene 136 92 0.67 

Toluene 111 85 0.80 

m-Xylene 140 94 0.60 

 

After a specific technology suited to site conditions is selected, heat balance calculations are 

typically performed considering treatment zone geometry, well configurations, subsurface heat 

transfer characteristics (heat capacity, thermal conductivity, advection rates), and cost and 

remediation time tradeoffs associated with well spacing, heating rates and energy required to reach 

the target temperature. Operational monitoring is employed to determine when remediation 

objectives have been met and operation can be terminated. The most common criteria for thermal 

system termination are maintaining a specified aquifer temperature for a defined period or reducing 

the average contaminant soil concentration below a target level. We will focus on the latter because 

knowledge of contaminant mass remaining after thermal treatment is an important variable to 

predict effects of thermal treatment on downgradient dissolved plume attenuation (Rao et al. 2001). 

Thermal system monitoring also commonly utilizes measurements of contaminant mass recovery 

rates based on fluid flow rates and concentrations from recovery wells. 

The design and operation of all in situ remediation systems is complicated by the high degree of 

spatial and temporal variability inherent to geologic systems and by the hard reality that 

characterization of this variability is difficult and costly. It is imperative to come to terms with 

uncertainty and to design and operate systems with due consideration of uncertainty so that desired 

outcomes can be achieved with acceptable probability. To manage noisy data, Levine (2010) 

proposed comparing the upper confidence limit of a moving aquifer average of aquifer 

concentration at a specified probability level with the compliance concentration as a criterion for 

regulatory closure. 

Remediation system design is to a great degree a problem of managing uncertainty. Conventional 

approaches based on best estimates of system properties have a potential likelihood of failure to 

meet remediation targets, to overshoot budgets or both. Considerable work has been performed on 

optimization of long-term monitoring to trade off costs against the value of information (Loaiciga 

et al. 1992, U.S. EPA 2000, Reed et al. 2000, U.S. EPA 2007). Stochastic optimization methods 

employ Monte Carlo models to define probability distributions of remediation performance and 

cost for a given design and use optimization algorithms to determine design variables that 

minimize probability-weighted cost subject to performance constraints (Cardiff et al. 2010, Parker 

et al. 2011).   
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4.2 Thermal treatment model  

4.2.1 Model formulation  

In this section, we will describe a simple and computationally efficient model to estimate average 

soil concentration of contaminant within a defined thermal treatment volume from field 

measurements of cumulative mass recovery over time. The approach is applicable to most thermal 

systems, with the exception of those involving high temperature thermal decomposition or 

chemical destruction by oxidation, hydrolysis or other mechanisms. For SEE, estimation of 

contaminant mass recovery rates over time requires monitoring and analysis of total fluids 

recovered from multiphase extraction wells. For TCH and ERH, periodic measurements of gas 

concentrations and flow rates from vapor extraction wells are required, although mass recovery in 

extracted liquids may be necessary if groundwater extraction is performed to control advective 

heat losses or to maintain hydraulic control. Total volatiles in extracted gas can be monitored 

economically using photoionization detector and flame ionization detector sensors with occasional 

sample analyses using more accurate gas chromatography units to provide speciation information 

to calibrate sensor data. Time integration of mass recovery rates provides an accurate and cost-

effective means of determining cumulative mass recovery. Although commonly used to monitor 

integrated recovery rates over entire thermal systems, subsets of recovery wells or even individual 

recovery wells may be monitored separately to measure mass recovery from different areas within 

a site at relatively low cost compared to soil sampling.  

Thermal mass recovery versus time is often approximated using a normal probability distribution 

model with a mean equal to the time when recovery rate is at a maximum (tpeak), which 

corresponds closely to the mixture boiling point. However, since the normal distribution model is 

symmetrical about the mean while elapsed time cannot be negative, a normal distribution that fits 

data prior to tpeak must predict essentially 100% recovery within 2 x tpeak. For many sites, this 

will significantly underestimate treatment duration. To describe recovery curves more accurately, 

we propose to use a lognormal cumulative distribution function (CDF) in the form 

 '( ) N ln( );ln( ),o peak therm extM t M t t S M t =  +   (4.1) 

where M(t) is the cumulative mass recovered from the treated region after operating duration t, Mo 

is the initial mass in the monitored volume, tpeak is the time to reach maximum recovery rate, 

N[x;m, S] is the normal CDF of x with mean m and standard deviation S, Stherm is the standard 

deviation of the lognormal distribution, and 
'

extM is a steady-state mass inflow rate to the monitored 

zone from adjacent soil, e.g., due to groundwater flow. For small Stherm values (<0.2), the lognormal 

model closely approximates a normal distribution, but exhibits increasingly positive skewness as 

Stherm increases. Mass recovery rate,
' ( )M t , can be computed by differentiating eq. (4.1). Making 

use of the normal probability density function (PDF),
'N [ ; , ]x m S = dN[x;m, S]/dx, yields  

 ' ' '( )
( ) N ln( );ln( ),o

peak therm ext

dM t M
M t t t S M

dt t
 = =  +  . (4.2) 

Normalized cumulative mass recovery and recovery rate versus time curves for the above model 

with 
'

extM = 0 are illustrated in Figure 4.1 for a range of Stherm values. As Stherm increases, the curves 

become increasingly skewed to larger times. 
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Figure 4.1. Normalized cumulative mass recovery (top) and recovery rate (bottom) curves                   

for proposed model with a range of Stherm values. 

 

The cumulative mass recovered and average soil concentration at a given time may be computed 

from eq. (4.1) assuming no net accumulation due to  
'

extM  (i.e., 
'

extM is truly steady-state) as 

 

( ) ( )

( )
( )

rem o

soil rem
avg

soil soil

M t M M t

M t
C t

V

= −

=
 (4.3) 

where Mrem(t) is mass remaining at time t, soil is soil bulk density, and Vsoil is the treated soil 

volume. The rate of change of average soil concentration may be derived from eq. (4.3) as  

 
'( ) ( )

soil

avg

soil soil

dC t M t

dt V

−
= . (4.4) 

An alternative method of estimating soil concentration from recovery data, independent of the 

lognormal model, is to extrapolate the current recovery rate forward in time assuming a constant 

rate reduction factor (i.e., second derivative of ln recovery curve) as 

 
( )

( )

' " '
ln

"0
ln

( ) 1 ( )
( )   

ln 1

soil

avg

soil soil soil soil

M t M M t
C t d

V V M




 

 + −
= − =

+
  (4.5) 
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where
' ( )M t is the current observed mass recovery rate, 

"

lnM =
'(ln ) /d M dt  is the rate reduction 

factor, an  is a dummy integration variable. We will address the magnitude and variability of 
"

lnM

later. 

4.2.2 Calibration of thermal mass recovery model 

To apply the lognormal mass recovery model, values for Mo, Δtpeak, Stherm and '

extM must be 

determined. A preliminary estimate of Mo may be taken as the product of the treatment zone 

volume and average measured soil concentration or by more sophisticated geostatistical integration 

methods. An estimate of Δtpeak may be obtained from heat balance calculations during the design 

process as the time to reach the contaminant co-boiling point. Refined estimates of Δtpeak and Mo 

as well as Stherm may be made by nonlinear regression of measured and model predicted cumulative 

recovery and recovery rate versus time. We do not recommend attempting to estimate '

extM by 

nonlinear regression, due to the high likelihood of solution non-uniqueness, and suggest that a non-

zero '

extM  be considered only if the recovery curve clearly exhibits a non-zero asymptotic rate.  

Since we are interested in behavior as soil concentration approaches the cleanup target, we 

disregard data prior to reaching the peak recovery rate. Mass recovery data is analyzed as follows:  

(1) Tabulate cumulative mass recovered and recovery rate versus operating time up to the most 

recent measurement date. If operation is intermittent due to maintenance etc., deduct 

downtime from calendar time to obtain operating time. 

(2) Compute squared deviations between natural logarithms of measured and model-computed 

cumulative recovery M(t) and of measured and model-computed recovery rates M’(t) for 

each measurement date used for calibration. 

(3) Sum squared cumulative mass recovery deviations multiplied by a weighting factor wmass 

and squared rate deviations multiplied by (1-wmass) to obtain an objective function. 

(4) Apply a nonlinear regression algorithm (e.g., Excel Solver) to estimate Mo, Stherm and Δtpeak 

values that minimize the objective function. If multiple inflections in the recovery curve 

are observed, fit parameters for each curve segment. 

(5) Compute average soil concentrations from eqs. (4.3) and (4.5) using calibrated parameter 

values. Stop if termination criteria are met. Otherwise repeat steps 1-5 for the next 

measurement date. 

For real-time performance monitoring, regression analyses need not be commenced until the rate 

of change of average soil concentration per day from eq. (4.4) is less than the target concentration. 

Theoretically, optimal regression weights for cumulative mass recovery and recovery rate data 

should be inversely proportional to their variances (Kool et al. 1987) as 

 

2

ln

2 2

ln ln

−

− −
=

+

mass
mass

mass rate

S
w

S S
 (4.6) 

with a weight of 1− wmass for rate data where Sln mass is the computed standard deviation between 

ln measured and ln model-predicted cumulative mass recovery, and Sln rate is the value for measured 

and predicted recovery rates. If subcategories of soil data were identifiable with different variances 

(e.g., certain geologic facies), eq. (4.6) may be generalized as wi=Slni
-2/jSlnj

-2. 
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Due to the large “noise” in rate measurements, model calibration is best performed using a two-

step procedure. For the step (or the first monitoring date that regression is performed), we advise 

fitting only to cumulative recovery data using wmass=1. For the second step (or for regressions at 

subsequent ending dates), we recommend fitting Mo and Stherm values with Δtpeak fixed at its initial 

calibrated value using only the most recent 20-30 days of cumulative recovery with wmass=0.5. 

An Excel spreadsheet Thermal treatment model calibration.xlsx is available for calibrating 

lognormal mass recovery model parameters (Appendix A). 

4.2.3 Field verification of model 

Data from eight thermal treatment sites (Table 4.2) were used to evaluate the lognormal recovery 

model. PCE was the primary contaminant at all sites except Site 6 for which TCE was the main 

contaminant. Nonlinear weighted regressions were performed to fit lognormal model parameters 

to cumulative mass recovery and recovery rate data for each field site. Weights for mass recovery 

and recovery rate data were taken as inversely proportional to data “noise.”  

Due to much greater “noise” in rate measurements, relative weights for cumulative recovery data 

(wmass) were generally greater than 0.99. Given the low weight applicable to rate data and the 

observation that rate data, even with low weights, tended to make convergence of the nonlinear 

regression more difficult, we used wmass=1 for initial calibrations.  

Initial calibrations were performed by fitting Mo, Δtpeak and Stherm to a single mass recovery function 

for the entire treatment duration for each field site. Fitted parameter values are summarized in 

Table 2 along with Sln mass and Sln rate values computed using the calibrated parameters.  The results 

(Table 4.2, Figure 4.2) show reasonably good agreement. Estimated Stherm values range from 0.2 

to 0.8 for the various sites and appear to be uniformly distributed with an equal number of sites 

having Stherm values above and below 0.5.  

The lognormal model predicts thermal treatment duration (Δtrem) to be a function of Stherm, Δtpeak, 

Mo and target mass remaining Mrem. Figure 4.3 illustrates this relationship normalized as 

Δtrem/tpeak versus Mrem/Mo for Stherm values from 0.2 to 0.8. To obtain a mass reduction of 99% to 

99.99% (i.e., Mrem/Mo from 0.01 to 0.0001), Δtrem/Δtpeak ranges from approximately 1.6 to 2.1 for 

Stherm = 0.2, from 2.5 to 4.4 for Stherm = 0.4, from 4.0 to 9.3 for Stherm = 0.6, and from 6.4 to 19.6 for 

Stherm = 0.8. Note that Mrem/Mo is equivalent to the ratio of target average soil concentration to 

initial average soil concentration. The results emphasize the strong dependence of thermal 

treatment duration on Stherm as well as initial and target soil concentrations.    

Of the sites studied, half had Stherm values less than 0.5 with actual treatment termination between 

2 to 3 times Δtpeak at model-estimated mass recovery ratios averaging 99.8%. The other half of the 

sites, with Stherm values greater than 0.5, exhibited marked positive skew in the recovery curves 

and terminated at model-estimated mass recovery ratios averaging only 95% after operating for 2 

to 4.5 times Δtpeak. The results demonstrate the relative difficulty of achieving high recovery ratios 

at sites with high Stherm values. 

Closer inspection of observed and simulated mass recovery curves indicates multiple inflection 

points for many sites, reflecting multiple recovery rate peaks. This may be attributed to operations 

initiated on different treatment zones at various times, e.g., incremental startup of component 

systems including pilot tests, to variations in well spacings or geologic properties that affect heat 

or mass transfer rates, or to spatial variability in co-contaminants that affect boiling point. The 
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behavior of multi-inflection sites may be modeled by superposition of multiple lognormal recovery 

events – that is, by modeling each “event” by a different parameterization of eq. (4.1) and then 

summing results for all events at each date (after converting from operating time to calendar time) 

to obtain site-wide mass recovery curves, recovery rate curves, and average soil concentrations.  

 

Table 4.2. Summary of M(t) model results for eight field sites. 

Site       

ID 
Thermal 
Method 

Treatment 
zone 

volume 
(m3) 

Actual 
mass 

recovery 
(kg) 

tstart 

(d) 
tstop 

(d) 

Initial calibration   Final calibration 

Mo 

(kg) 
Δtpeak 

(d) Stherm Sln mass Sln rate   
Mo 

(kg) 
Δtpeak 

(d) Stherm Sln mass Sln rate 

1 TCH 11,100  2,353  0  210  2,353  73 0.25 0.011 1.692  2,353  73 0.34 0.053 0.870 

2 TCH 6,039  5,248  0  147  5,248  55 0.40 0.024 0.710  5,390  55 0.52 0.048 0.604 

3 TCH 78,000  75,331  0  244  75,332  118 0.20 0.039 1.079  75,332  118 0.24 0.030 0.832 

4 TCH 2,523  3,400  0  100  3,408  42 0.25 0.023 0.909  3,401  42 0.26 0.024 0.888 

4a  a  0  100  739  16 0.40 0.012 0.645  800  18 1.00 0.039 0.396 

4b  a  10  100  1,183  26 0.20 b b  1,209  24 0.26 b b 

4c  a  24  100  1,478  27 0.22 b b  1,400  25 0.20 b b 

5 TCH 1,180  349  0  76  356  21 0.63 0.019 0.412  356  21 0.68 0.023 0.391 

5a  a  0  76  95  8 0.90 0.023 0.356  95  8 0.90 0.023 0.356 

5b  a  17  76  270  8 0.70 b b  205  7 0.70 b b 

5c  a  33  76  205  25 0.99 b b  71  25 0.99 b b 

6 ERH 13,340  528  0  200  570  78 0.65 0.035 0.504  568  76 0.74 0.043 0.495 

6a  a  0  200  100  23 0.80 0.021 0.505  95  23 0.60 0.021 0.504 

6b  a  23  200  280  40 0.63 b b  280  40 0.63 b b 

6c  a  83  200  155  40 0.70 b b  160  40 0.70 b b 

7 TCH 10,703  1,250  0  108  1,270  23 0.80 0.083 0.813  1,341  19 0.93 0.079 0.793 

7a  a  0  20  250  4 0.61 0.014 0.566  250  4 0.50 0.031 0.515 

7b  a  7  60  835  17 0.37 b b  835  17 0.44 b b 

7c  a  54  108  201  22 1.02 b b  195  22 0.87 b b 

8 SEE 5,248  10,959  0  450  12,300  155 0.60 0.068 0.529  12,500  155 0.56 0.085 0.530 

8a  a  0  305  7,100  105 0.45 0.021 0.386  7,100  100 0.40 0.021 0.368 

8b  a  110  305  2,800  100 0.30 b b  2,700  105 0.25 b b 

8c   a   190  305  1,600  81 0.20 b b   1,600  100 0.25 b b 

a Total treatment zone volume for multiple "event" model is the same as that shown for single "event" model. 

b Sln mass and Sln rate values for multiple "event" model are aggregate values for the combined event model. 
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Figure 4.2. Observed normalized cumulative mass recovery versus normalized time for eight 

thermal treatment sites (data points) and model predictions (smooth curves) for single lognormal 

distribution function. 

 

 

Figure 4.3. Normalized duration of thermal remediation 

vs. mass remaining for various Stherm values. 

 

For each added event, two additional model parameters are introduced to align calendar and 

operating times, namely the stop time for the prior event tstop and the start time for the following 

event tstart.  We take tstop and tstart values relative to the first start time (designated as zero), while 

Δtpeak values are given relative to tstart for each separate event. Values for these parameters may be 

operationally known. If not, they may be estimated during the calibration process.  

Initial calibrations with wmass=1 were repeated using multi-lognormal models for five sites that 

exhibited multiple inflections. Results for these calibrations are given in Table 4.2 with letters 

following the site number to identify each lognormal event (e.g., 4a, 4b, 4c). A graphical 
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illustration of cumulative mass recovery and recovery rate curves versus time for single- and multi-

inflection calibrations is given for Site 7 (Figure 4.4).  

Initial calibration results reveal a tendency for calibrated parameters to under-predict recovery 

rates at late times. Because small deviations in recovery curve tails may result in significant errors 

in inferred final average soil concentrations, a final round of calibrations was performed to refine 

asymptotic tail behavior. Only data from the last 20–30 days of recovery operations were used in 

these regressions and more weight was given to recovery rate data using wmass = 0.5. This procedure 

resulted in small increases in Stherm values (Table 4.2). For single-event calibrations, Stherm values 

ranged from 0.2 – 0.8 for initial calibrations and 0.24 – 0.93 for final calibrations across all sites. 

For multi-event calibrations, the range in average Stherm values between sites was from 0.27 to 0.86 

for initial calibrations and from 0.30 to 0.86 for final calibrations. Within multi-event sites, the 

difference between maximum and minimum Stherm values for the same site varied from a relatively 

narrow 0.30 to a high of 0.86, indicating that while Stherm values for different areas within a site 

are likely to be less variable than differences between sites, differences within sites may sometimes 

be as great as differences between sites.  

Uncertainty in estimated mass remaining using the recovery model depends on uncertainty in the 

computed mass recovered as well as the asymptotic recovery, Mo.  Standard deviations in ln model-

predicted mass, Sln mass, and ln recovery rate, Sln rate, were computed from deviations between ln 

predicted and ln measured quantities and are tabulated for each calibration in Table 4.2. As an 

overall measure of model uncertainty, the root mean square error (RMSE) in ln cumulative mass 

recovery and ln recovery rate was computed as 

 

1/2
2 2

ln ln

ln
2

mass rate

rmse

S S
S

 +
=   

 

. (4.7) 

Average values of Sln mass, Sln rate, and Slnrmse are summarized in Table 4.3 for initial and final 

calibrations of sites with single inflection points, for multi-inflection sites modeled with a single 

inflection model and for multi-inflection sites modeled with a multi-inflection model. Not 

surprisingly, the multi-inflection sites exhibited lower uncertainty when a multi-inflection model 

was used. Final calibrations that used rate as well as mass recovery data to refine the initial 

calibrations reduced uncertainty for all cases. We recommend using the two-step calibration 

method as it is more robust than attempting to calibrate in a single step with rate and mass data. 

The second calibration using mass and rate data produced a small increase in Sln mass and a larger 

decrease in Sln rate yielding a net decrease in Sln rmse. Curiously, single inflection sites had 

significantly higher error than multi-inflection sites calibrated with a single inflection model. We 

attribute this to the small sample size and unique features of the individual sites. Across all 

formulations, average Sln rmse is about 0.50 with mass data only and 0.41 after calibration 

refinement using rate and mass data. 
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Figure 4.4. Cumulative mass recovery (top) and recovery rate (bottom) curves                                 

for Site 7 for single- and multi-function calibrations. 

 

 

 

 

Table 4.3. Mass recovery model calibration error for various cases. 

 

  Initial calibration   Final calibration 

Calibration case Sln mass Sln rate Sln rmse  Sln mass Sln rate Sln rmse 

a. Single inflection sites 0.025 1.160 0.821  0.044 0.769 0.544 

b. Multi-inflection site treated as single 0.046 0.633 0.449  0.051 0.619 0.440 

c. Multi-inflection site treated as multi 0.018 0.492 0.348  0.027 0.428 0.303 

d. Best site model (cases a and c) 0.021 0.742 0.525   0.033 0.556 0.394 
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4.3 Performance monitoring   

4.3.1 Soil monitoring data accuracy and uncertainty  

Three of the study sites (1, 4, and 5) had soil concentration measurements before and after thermal 

treatment that can be used to estimate initial and final contaminant mass and its uncertainty for 

comparison with estimates from mass recovery data. Prior to undertaking this comparison, we wish 

to consider the estimation of mean concentration and its confidence limits from soil concentration 

data, as there are many factors that must be considered to avoid, or at least limit, errors.  

The following methods were used to compute two-sided 95% confidence limits for initial (pre-

remediation) and final (post-remediation) average soil concentration. 

Method 1 – Normal distribution model. This approach is well known and is often used by 

remediation contractors. Confidence limits are computed as  

  ( , )CL smp

smp

S
m m t n

n
  =   (4.8) 

where m = average(x1,...,xnsmp) and S= stdev(x1...,xnsmp)  are the arithmetic average and standard 

deviation of soil concentration measurements on nsmp soil samples,  LCLm =  CLm  is the lower 

confidence limit of the mean value computed with a negative sign on the right hand side, 

 UCLm  =  CLm  is the upper confidence limit computed with a positive sign, and t(α, n) is the 

two-sided t-value for probability level      

Method 2 – Lognormal distribution model. This approach accommodates the asymmetric 

nature of positively skewed high variance populations. Confidence limits of the arithmetic 

mean concentration are computed from the lognormal model as 

 ln
 exp ln ( , )CL smp

smp

S
m m t n

n
 

 
 = 
 
 

 (4.9) 

where m is the arithmetic average concentration computed as m = exp(mln + 0.5Sln) where mln 

= average(lnx1,...,lnxnsmp) and Sln = stdev(lnx1,..., lnxnsmp). 

Method 3 – Alternate lognormal model. Although the lognormal model is a more realistic 

approximation of high variance populations, estimates of the arithmetic mean from lognormal 

model parameters can be sensitive to deviations from the lognormal model especially in the 

tail (Reiman and Filzmoser 2000) or to truncation of non-detects (Helsel 2010). Method 3 uses 

eq. (4.8), but instead of computing the arithmetic mean m from lognormal parameters, it is 

computed as in Method 1. 

Omitting non-detect values from statistical calculations can result in overestimation of the sample 

mean and underestimation of variance (Helsel 2010). Including non-detects for statistical 

calculations with values set at the detect limits will somewhat attenuate errors in sample means, 

but may do little to attenuate underestimation of variance. Setting non-detects below the detection 

limit will reduce lognormal statistics errors for analyses involving single contaminants as in the 

present case. Normal distribution means (arithmetic averages) and standard deviations are less 

sensitive to the treatment of non-detects than lognormal statistics.  
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Analyses of synthetic lognormal datasets with an Sln of about 2.5 (typical for field sites) were 

performed to evaluate handling of samples below detection limits by assigning nondetects a 

numerical value equal to the detection limit times a factor F. For datasets with about 20% 

nondetects, arithmetic averages were insensitive to F, while Sln values were most accurately 

estimated using F values between 0.1 and 0.5 (0.2 was optimal). With 40% nondetects, average 

values remained insensitive, while the sensitivity of Sln values to F increased. The most accurate 

results were obtained using F=0.1 (Sln was underestimated by 25% using F=0.5). For greater than 

50% nondetects, it was not possible to obtain accurate averages and Sln values using a single F 

value. With 80% nondetects, the best compromise was obtained using F=0.001, which 

underestimated the average value and overestimated Sln, but yielded similar 95% confidence limits. 

For the present study, F=0.1 was used to assign numerical values to all reported nondetects.   

Average soil concentrations from soil sampling rounds prior to thermal treatment for the three sites 

were computed by each of the above methods and multiplied by estimates of dry soil mass within 

the treatment volumes to determine total pre-remediation contaminant mass (Mo) and their 

confidence limits. Confidence limits of pre-remediation mass estimates were also computed from 

the M(t) model for comparison with soil-sample–based values by 

 ( ) lnexp ln ( , )CL o rmseM M t S  =    (4.10) 

where  LCLM  =  CLM  is the lower confidence limit of the mean value computed with a negative 

sign on the right hand side,  UCLM  =  CLM  is the upper confidence limit computed with a positive 

sign, Mo is the calibrated pre-remediation mass summed across all treatment zones, and Sln rmse is 

the RMSE for the final single inflection model calibration for Site 1 and the final multi-inflection 

model calibrations for Sites 4 and 5. 

Estimates of Mo and its confidence limits for the above methods are tabulated in Table 4.4 along 

with measured total mass recovered during thermal treatment. Not surprisingly, the M(t) model 

yields estimates of pre-remediation mass with narrow confidence limits consistent with actual 

recovery data from which model results are derived. Best estimates of contaminant mass using soil 

concentration data with Method 1 consistently underestimate actual recovery. Upper and lower 

confidence limits appear to have a downward bias compared to actual recovery, as expected for 

data with positive skew. Method 2 best estimates consistently over-predict actual recovery by 6 to 

450%. Lower and upper confidence limits appear to be biased high. The lower confidence limit 

for Site 1 using Method 2 exceeds actual recovery by a factor of nearly 3. Method 3 shows the 

least erratic behavior with confidence limits that bracket actual recovery.  

The results suggest that the soil data exhibit greater positive skew than the lognormal model 

accommodates, resulting in an inconsistency between the actual arithmetic mean soil concentration 

and the mean inferred from lognormal model parameters. Method 3 largely avoids this discrepancy 

by using the actual arithmetic mean. Some of the observed differences in mass estimates may be 

due to averaging data with equal weights for all data points. Geostatistical methods might reduce 

such errors, although it was not possible for the data sets considered, since sample coordinate 

information was not available. It is also possible that the selection of sampling locations itself was 

biased. 
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Table 4.4. Comparison of pre-remediation contaminant mass estimated using various methods of 

averaging soil concentration data versus estimates from cumulative mass recovery. 

      Estimated mass in treatment zone prior to remediation (kg) 

Site 

No. 

samples Parameter 

Soil data Final 

Actual 

recovery Method 1 Method 2 Method 3 

Calibration     

Eq. (4.3) 

1 78 Mean value or 

best estimate 

1,645 13,122 1,645 2,353.5 2,353.4 

    95% LCL of mean 1,004 6,877 862 2,353.4  - 

    95% UCL of mean 2,286 25,038 3,139 2,353.7  - 

                

4 124 Mean value or 

best estimate 

1,616 3,617 2,417 3,401.6 3,400.6 

    95% LCL of mean 463 2,113 1,412 3,401.2  - 

    95% UCL of mean 2,769 6,189 4,137 3,402.4  - 

                

5 46 Mean value or 

best estimate 

282 445 354 349.2 349.2 

    95% LCL of mean 2 226 180 351.9  - 

    95% UCL of mean 561 876 697 356.3 - 

 

 

 

Table 4.5. Estimates of post-remediation average soil contaminant                                                  

concentrations based on various methods. 

      Average soil concentration (mg/kg) 

Site 

No. 

samples 

                   Soil data                  .               M(t) model        .  

Recovery rate 

extrapolation Parameter Method 1 Method 2 Method 3 

Initial 

Calibration 

Final 

Calibration 

1 58 Mean value or 

best estimate 

2.407 0.256 2.407 0.009 0.093 0.123 

   95% LCL of mean -1.398 0.147 1.383 0.002 0.028 0.023 

   95% UCL of mean 6.212 0.446 4.191 0.045 0.307 0.654 

                 

4 14 Mean value or 

best estimate 

2.600 110.071 2.600 0.044 1.042 0.978 

   95% LCL of mean -0.657 12.038 0.284 0.004 0.603 0.250 

   95% UCL of mean 5.857 120.694 13.223 0.476 1.800 3.824 

                 

5 85 Mean value or 

best estimate 

0.286 0.077 0.286 9.707 4.383 2.102 

   95% LCL of mean -0.013 0.046 0.171 5.921 2.718 0.542 

   95% UCL of mean 0.584 1.211 1.420 15.915 7.067 8.150 



4-14 

 

For example, if sampling focused on identification of “hot spots” upward bias would likely occur. 

Unintended bias may be avoided using pseudo-random sampling algorithms (ITRC 2012).  

Post-remediation average soil concentrations and confidence limits are tabulated in Table 4.5 for 

the same sites based on the three soil data analysis methods, the M(t) model (eq. 4.3), and the rate 

extrapolation method (eq. 4.5) Calculations for the rate extrapolation method were performed 

using moving averages of measured recovery rates to attenuate noise. Values of "

lnM in eq. (4.5) at 

termination dates ranged from about -0.5 to -0.01, which were used to estimate a range of soil

avgC

roughly interpreted as 95% confidence limits at the time thermal treatment ceased.  

Although the M(t) model and recovery rate extrapolation method are based on the same underlying 

data, the assumptions and computational approaches are very different. Reasonable agreement 

between the M(t) model and the recovery rate extrapolation method support the validity and 

accuracy of both methods. The difference between the initial and final calibration results indicates 

that model refinement to weight late time mass and recovery rates is important to obtain accurate 

estimates of mass remaining.  

Method 1 confidence limits are clearly unreliable as all three cases show physically impossible 

negative lower confidence limits. Method 2 results are erratic. The Method 2 lower confidence 

limit for Site 1 exceeds the value based on mass recovery, while the Site 5 upper confidence limit 

is less than the concentration estimated from mass recovery methods. Site 4 confidence limits 

using Method 2 are far above the value inferred from mass recovery data. Method 3 results do not 

appear to be much better.  

All three methods of analyzing soil concentration data yield final average soil concentrations that 

are at least an order of magnitude lower than those obtained from mass recovery data for Site 5. It 

is tempting to conjecture that the mass recovery methods are overestimating the final average 

concentration for Site 5 rather than the converse. However, a quick look at the mass recovery curve 

for Site 5 (Figure 4.2) reveals that the curve was still climbing rather steeply at the time treatment 

was terminated and would likely have taken another several weeks to flatline. The measured 

recovery rate on the last day of operation for Site 5 was just under 0.5 kg PCE per day, suggesting 

on the order of 5 kg of PCE was remaining in the system at termination. Dividing this by the 

estimated soil mass in the treatment zone (9.5×105 kg) indicates the average soil concentration was 

about 5 mg/kg when terminated, which is far greater than the average concentration of 0.067 mg/kg 

estimated from soil data by Method 3.  

Surprisingly, the reliability of average soil concentration results shows no evident relationship with 

the number of soil samples. While confidence interval widths increase substantially from Site 5, 

which had 85 samples, to Site 4 with only 14 samples, the most egregiously erroneous best estimate 

occurred for Site 5, which had the most samples. Results based on soil concentration data indicate 

that while numerical precision improves with more samples, the accuracy does not necessarily 

converge to full-scale reality. For confidence limits of Site 5 to bracket the average soil 

concentration estimated from mass recovery data, a residual ln error of about 2 would need to be 

added to Sln/nsmp
1/2 in eq. (4.9). In most cases, a term of this magnitude would be greater than 

Sln/nsmp
1/2 even with a small number of samples. Perhaps Site 5 is an anomaly, but the large number 

of eccentric results for the three sites (Sites 1, 4, and 5) do not engender confidence in the reliability 

of contaminant mass estimates based on soil sample data. 
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The foregoing indicates that estimates of average soil concentration from soil sample data exhibit 

large uncertainty. Uncertainty associated with estimates based on mass recovery data is generally 

lower, but still significant. Furthermore, Stherm values exhibit significant a priori uncertainty which 

has a large effect on treatment duration to reach a given cleanup objective. While Stherm values can 

be progressively refined by regression analyses as treatment progresses, uncertainty in treatment 

duration, and hence cost, associated with both measurement and model uncertainties should be 

factored into treatment design, as discussed in the following sections. 

4.3.2 Monitoring strategies and termination criteria  

As stated previously, the objective we adopt for thermal treatment is the commonly used criteria 

that contaminant mass in the source zone should be reduced below a value corresponding to a 

specified average soil concentration, which may be stated as 

 soil soil

avg stopC C  (4.11) 

where soil

avgC is the arithmetic average soil concentration in the source zone and soil

stopC is a stipulated 

cleanup target. In practice, difficulties arise in the application of eq. (4.11) because the true value 

of soil

avgC is never known exactly. If we compute the average value of soil concentration from a 

number of soil samples, soil

avg  smpC , and substitute this value for the true soil

avgC in eq. (4.11), there will 

be a substantial likelihood of erroneously terminating treatment before the target criterion is met 

owing to deviations between soil

avg  smpC and soil

avgC .  

A practical way to contend with this uncertainty is to employ the statistical termination criteria 

  soil soil

UCL stopC C  (4.12) 

where 

soil

UCL C is the upper confidence limit of estimated average soil concentration at exceedance 

probability α (i.e., significance level). Since 

soil

UCL C > soil

avg  smpC for any α>0.5, eq. (4.12) is a more 

stringent stop criterion than eq. (4.11) when soil

avg  smpC is implicitly substituted for soil

avgC . The 

difference between 

soil

UCL C and soil

avg  smpC is a safety factor to reduce the likelihood of an erroneous 

decision to terminate early.  

High variance properties of quantities that are physically constrained to be non-negative, such as 

contaminant concentration, necessarily exhibit positively skewed distributions. Normal probability 

distributions cannot describe such behavior. Lognormal distributions capture the major features of 

such data and are commonly used as a mathematically expedient approximation. If the average 

concentration is estimated from nsmp soil samples, then  

 ( ) ( )( )1 lnexp ln ,soil soil soil soil

UCL avg  smp smp smp stopC C t N S n C = +   (4.13a) 

which may be rearranged to yield a termination criterion in terms of 
soil

avg  smpC for nsmp soil samples 

 ( ) ( )( )1 lnexp ln ,soil soil soil

avg  smp stop smp smpC C t N S n −  (4.13b) 

where soil

avg  smpC is the arithmetic average for nsmp samples,
ln

soil

smpS is the standard deviation of ln 

concentration values, and ( )1 ,t N  is the t-value for one-sided significance level α with N degrees 
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of freedom. If
ln

soil

smpS is computed from the nsmp samples then N=nsmp−1, while if 
ln

soil

smpS  is based on 

prior site characterization data or experience with other sites, then .N =  Note that for α 

=  which denotes the 95% upper confidence limit, t1 is 1.64 with ,N =  while for  α =   t1 

is 0, in which case soil

UCLC = soil

avg  smpC  indicating an equal probability of over- or under-estimating the 

average value. Eqs. (4.13a) and (4.13b) are approximate because the actual probability distribution 

will not exactly follow a lognormal curve (Reimann and Filzmoser 2000) and because they assume 

uncertainty in the arithmetic average concentration has the same variance as the geometric mean. 

As an example, consider a site with a cleanup target soil

stopC of 1 mg/kg. It is planned to take nsmp=20 

soil samples to assess whether the objective has been met. Assume a prior estimate of
ln 2.9.soil

smpS =   

If we want a 95% probability (α = ) that the actual average soil concentration will be less than 

1 mg/kg when we terminate treatment, then t1=1.64 and eq. (4.13) indicates that the average 

concentration soil

avg  smpC computed from 20 samples needs to be less than 0.345 mg/kg to achieve the 

desired reliability. If we increase the number of samples to 50, we could terminate with the same 

confidence when 0.510soil

avg  smpC  mg/kg. 

An alternative to termination based on soil sample measurements is to estimate average soil 

concentration from cumulative mass recovery data as described by eq. (4.3). Since mass recovery 

data is intrinsically integrated over a defined bulk soil volume Vsoil, no sample averaging operation 

is required and eq. (4.13) can be modified as 

  1 lnexp ln ( , )soil rec soilrem
UCL stop

soil soil

M
C t S C

V
 



  
= +    

  
 (4.14) 

where Mrem = M(t)−Mo is the best estimate of mass remaining based on recovery data, and 
ln

recS is 

the standard error of the natural log of mass remaining. 

An important aspect of the statistical stop criteria is that 

soil

UCL C decreases with decreasing 

measurement uncertainty (
ln

soil

smpS for soil data and 
ln

recS for mass recovery data) and with increasing 

number of soil samples, which allows earlier termination of heating at a given confidence level. 

As we have shown, 
ln

recS <<
ln

soil

smpS , which lends a significant advantage to mass recovery data for 

termination decisions. For decisions based on soil data, increasing the number of samples reduces 

uncertainty in principle (assuming unbiased sampling), which allows earlier termination and 

reduces heating costs. However, this benefit must be balanced against higher sampling costs.   

The foregoing statistical stop criteria may be applied to an entire thermal treatment volume to 

terminate operation of all heating units simultaneously. Alternatively, since time to reach soil

avgC will 

vary spatially, it may be possible to reduce operating costs by applying stop criteria independently 

to smaller regions to terminate heating earlier in areas that reach cleanup objectives sooner. For 

example, anticipating that regions with higher initial contaminant concentrations are likely to take 

longer to cleanup, a system designer may consider dividing a site into multiple treatment zones 

(TZ) based on ranges of pre-remediation soil concentrations determined from soil boring data. It 

may also be cost advantageous to further divide TZs into multiple monitoring zones (MZ). The 
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total number of MZs may thus range from 1 to a value equal to the number of MZs per TZ summed 

over all TZs. 

Tradeoffs will arise when trying to optimize the number of TZs and MZs. Specifically, while more 

TZs and/or MZs offer the possibility of cost savings by terminating heating earlier for areas that 

clean up more quickly, more total soil samples and/or more mass recovery measurements (and 

associated plumbing) will be needed to make reliable decisions at smaller scales. The potential 

savings from early termination may thus be offset by additional monitoring costs. 

UCL values at each decision scale will increase as the number of soil samples per sampling event 

increases, making it easier to meet stop criteria at a prescribed probability level. Increasing the 

number of soil samples thus enables earlier system termination, but there will be a trade-off 

between the cost for additional samples versus operating cost reductions for earlier termination. 

Similarly, increasing the frequency of sampling will enable heating to be terminated earlier on 

average, which is likely to produce some savings, but at the expense of greater sampling costs. 

However, sampling and analytical costs are typically small relative to other operating costs, 

making a net cost reduction likely. Increasing the number of MZs also has the potential to reduce 

operating costs by terminating some areas sooner at the cost of more measurements. Additional 

performance monitoring variables that will affect decision uncertainty and cost include the number 

of MZs per TZ, the number of locations sampled per sampling event within each MZ, the number 

of depths sampled per boring during each sampling event, the initial date for soil sampling, the 

time interval between sampling events, and the choice of measurement methods (i.e., soil samples, 

mass recovery data, or both). Optimization of performance monitoring parameters may be used to 

minimize total cost for specific site conditions, as discussed in the following section.  

MZ stop criteria that apply when soil and/or mass recovery data are used to make individual MZ 

termination decisions may be obtained by statistically pooling information from both soil and mass 

recovery data. If mass recovery data is employed, then mass recovery must be monitored 

independently for each MZ. The standard deviation of individual ln soil concentration 

measurements within TZi is characterized by 
ln

smp

TZiS  and we assume that all MZs within a given TZ 

have the same uncertainty (assuming random sampling locations). Different measurement types 

are weighted inversely proportional to their variance (Kool et al. 1987) and the pooled standard 

deviation is computed as a weighted root mean square. 

The pooled data termination criteria for an entire TZ can be computed from the volume-weighted 

average MZ soil concentrations within the TZ and its pooled standard deviation and site-wide 

termination criteria may be obtained by upscaling TZ statistical parameters in the same manner, 

as described in the following section. 

 

4.3.3 Statistical criteria for pooled data 

The protocol proposed for making equal reliability site-wide, treatment zone and monitoring 

zone termination decisions is 



4-18 

 

 

where pool

UCL globalC is a site-wide upper confidence limit based on statistically pooled soil sampling 

and mass recovery data (discussed below) across all TZs and MZs, pool

UCL TZ iC  is the value computed 

using pooled data from all MZs within TZi, pool

UCL MZ ijC  is the value from pooled data from a single 

MZj within TZi, soil

stop globalC  is a site-wide cleanup criteria specified by the site owner in consultation 

with regulators, and soil

stop  localC  is a termination criteria for individual TZs or MZs that may be equal 

to or less than soil

stop globalC . Specifying 0pool

stop localC =  effectively disables local termination criteria, in 

which case no individual zones will be terminated early.  

The MZ stop criteria that apply when soil and/or mass recovery data are used to make individual 

MZ termination decisions may be obtained by statistically pooling information from both soil and 

mass recovery data. If mass recovery data is employed, then mass recovery must be monitored 

independently for each MZ. The standard deviation of individual ln soil concentration 

measurements within TZi is characterized by 
ln

smp

TZiS  and we assume that all MZs within a given TZ 

have the same uncertainty (assuming random sampling locations). Different measurement types 

are weighted in inverse proportion to their variance (Kool et al. 1987) and the pooled standard 

deviation is computed as the weighted root mean square, yielding the following criteria for 

termination of MZj within TZi 

 ( )( )1 ln( ) exp ln ,pool pool pool soil

UCL MZij avg  MZij MZij stop  localC C t S C = +    (4.15a) 

where 

 
 MZ  MZ

MZ

ln ln (1 ) ln  

rec

MZijpool smp smp smp

avg ij MZij avg ij MZij

soil ij

M
C w C w

V

 
= + −   

 

 (4.15b) 

                  
( ) ( )

1/2

ln 2 2

ln ln

smp

MZijpool rec
MZij

smp rec

TZi

n I
S

S S

−

 
 = +
 
 

                       (4.15c) 

                  
( )

( ) ( )

2

ln

2 2

ln ln

smp

MZij

smp

TZismp

MZij smp

MZij rec

smp rec

TZi

n

S
w           

n I

S S

=

+

    (4.15d) 
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in which smp

avg  MZijC  is the average concentration for smp

MZijn soil samples from MZij, rec

MZijM  is the 

estimated mass remaining in MZij from mass recovery data with uncertainty 
ln

recS , VMZij is the bulk 

volume of MZj within TZi, smp

MZijw  is the relative weight (certainty) for soil data and thus (1- smp

MZijw ) 

for mass recovery, 
ln

smp

TZiS  is the prior estimate of standard deviation for ln concentration data 

applicable to TZi, and Irec is an indicator equal to 1 if mass recovery data is used or 0 otherwise. 

Note that when only soil data is employed, smp

MZijw  = 1 and when only mass recovery data is used 

smp

MZijw = 0. Values of
ln

smp

 TZS  may be estimated from samples within individual treatment zones 

collected during source characterization as the standard deviation of ln measured concentrations. 

In rough terms, if about 2/3 of measurements (i.e., ± one standard deviation) in a TZ are within a 

factor of 10 (e.g., 1–10, 10–100), 
ln

smp

 TZS  ≈ ln(10)/2 = 1.15. For measurements within a factor of 

100, 
ln

smp

 TZS ≈ ln(100)/2 = 2.30. 

The pooled data termination criteria for an entire TZ can be computed from the volume-weighted 

average MZ soil concentrations within the TZ and its pooled standard deviation as 

 ( )( )1 ln( ) exp ln ,pool pool pool soil

UCL TZi avg  TZi TZi stop  localC C t S C = +    (4.16a) 

   
1

1

MZi

MZi

N
pool

soil MZij avg  MZij

jpool

avg  TZi N

soil MZij

j

V C

C

V





=

=

=




 (4.16b) 

 ( )
1/2

2

ln ln

1

−

−

=

 
=   

 


MZijN

pool pool

TZi MZij

j

S   S    (4.16c) 

Note that the summation in eq. (4-16b) includes MZs in which heating may have terminated earlier, 

in which case pool

avg  MZijC is the value from eq. (4.16b) for the last sampling date prior to termination.  

Finally, the site-wide termination criteria may be obtained by upscaling TZ statistical parameters 

in the same manner as eqs. (4.16a) – (4.16c) yielding  

  ( )( )1 ln( ) exp ln ,pool pool pool soil

UCL global avg  global global stop  globalC C t S C = +    (4.17a) 

  1

1

TZ

TZ

N
pool

soil TZi avg  TZi
pool i

avg  global N

soil TZi

i

V C

C

V





=

=

=



 (4.17b) 

 ( )
1/2

2

ln ln

1

TZN
pool pool

 global TZi

i

S   S     

−
−

=

 
=  

 
  (4.17c) 

where VTZi is the bulk volume of TZi.  



4-20 

 

In addition to termination decisions at the MZ level (smallest decision level), we may concurrently 

apply termination rules at the TZ level to terminate all MZs within a TZ based on their aggregated 

data, or at the site level to terminate all TZs (and their MZs) based on aggregated data for the entire 

site. Note that since nsmp for an entire TZ is equal to the sum of nsmp values for its MZs, 


soil

UCL C for 

a TZ based on soil data will always be lower than that for the individual MZs. Therefore, it may 

be possible for an entire TZ to meet its aggregated termination criteria before the individual MZs, 

or likewise for site-wide criteria to be met before individual TZs.   

The following decision logic is proposed for making termination decisions at various scales after 

each measurement/sampling event: 

1. Tabulate and analyze the most recent sampling/monitoring data  

2. If pool soil

UCL global stop globalC C then terminate treatment in all TZs and MZs 

3. If pool soil

UCL TZi stop localC C then terminate treatment for TZi 

4. If TZi has multiple MZs and pool soil

UCL MZij stop localC C then terminate treatment for MZj  

5. Repeat step 4 for all MZs in TZi  

6. Repeat steps 3-5 for all TZs 

7. Repeat step 1-6 for next sampling/monitoring event until all treatment is terminated 

where pool

UCL globalC is a site-wide upper confidence limit based on statistically pooled soil sampling 

and mass recovery data across all TZs and MZs, pool

UCL TZ iC  is the value computed using pooled data 

from all MZs within TZi, pool

UCL MZ ijC  is the value from pooled data from a single MZj within TZi,

soil

stop globalC  is a site-wide cleanup criteria specified by the site owner in consultation with regulators, 

and soil

stop  localC  is a termination criteria for individual TZs or MZs that may be equal to or less than 

soil

stop globalC .  

An Excel spreadsheet, Thermal treatment termination decisions using real time data.xlsx, is 

available to track performance monitoring data and make real time MZ, TZ and site-wide 

termination decisions using mass recovery and/or soil concentration data measured in MZs based 

on the above statistical upscaling protocol. The spreadsheet also implements methods to 

incrementally calibrate thermal mass recovery models for each MZ (Appendix A).  

 

4.4 Design optimization 

4.4.1 Optimization approach and cost function  

We have identified various factors that will affect the performance reliability and cost of thermal 

remediation—some of which are inherent properties of the site and others that can be manipulated 

and hence treated as design variables. Due to the large number of factors, uncertainty in true values 

of many properties, and complexity of interactions, ad hoc design approaches are likely to be 

suboptimal in terms of performance and/or cost. We wish to evaluate potential performance 

improvement and cost reductions for thermal treatment associated with various monitoring 

strategies by application of SCOToolkit to perform optimization analyses to determine design 

parameters that minimize expected (i.e., probability-weighted) total cost to meet specified 

remediation criteria taking into consideration uncertainty in measurements and model predictions. 
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Our focus here will be on optimization of monitoring parameters to meet specified source cleanup 

objectives without explicit consideration of downstream plume behavior.  

Each Monte Carlo simulation considers equally probable realizations of thermal model parameters 

(e.g., Mo and Stherm) with termination decisions based on “noisy” data. At the termination of each 

realization, the performance and cost is evaluated and an optimization algorithm is used to 

iteratively adjust specified design variables to minimize the “expected” (i.e., probability-weighted 

average) cost.  

To encourage the optimization algorithm to identify design parameter values that have a high 

probability of meeting remediation objectives, the optimization objective function adds a user-

defined “penalty cost” for each Monte Carlo realization if the “true” site-wide average soil 

concentration (i.e., with “noise free” measurements) exceeds the global stop criteria. The penalty 

cost may be a real cost, for example the anticipated cost to implement “Plan B” if the initially 

proposed approach fails (e.g., a plume containment system) or it may be a fictitious value selected 

to yield a desired probability of success. Design parameters are determined to minimize the 

expected cost including any penalty costs. However, the penalty cost is not included in reported 

expected costs for optimized designs.  

The total cost $total for thermal treatment for each realization is computed as 

 
total cap op mon$ = $ +$ +$  (4.18a) 

 ( )/  /  1

TZN

op rec mass site SiteOp day op i TZop day ii
$ M $ t $ f $

=
= +  +   (4.18b) 

 



( )

/1

  / /  

1

 
TZ

MZi

N

mon MZi MZcap MZi site op i MZ dayi

N

smp events ij boring MZi boring smp boring soil smp

j

$ N $ N t f $

N N $ N $

=

=

= + 

+ +




 (4.18c) 

where $cap is the capital cost excluding fixed costs for monitoring equipment ($k), $op is operating 

costs excluding performance monitoring, $mon is monitoring cost ($k), Δtsite is the site treatment 

duration (site-wide max duration for all Z values in days), $SiteOp/day is the site-wide operating 

cost per day ($k/d) for activities that depend on the total treatment duration (e.g., vapor treatment 

system operation), Mrec is the total mass of contaminant recovered (kg), $mass is the treatment cost 

per unit mass ($k/kg), $TZop/day i is the operating cost per day for TZi when all heating wells are 

operating ($k/d), $MZcap is the cost per MZ for equipment to monitor cumulative mass recovery 

($k), $MZ/day is the cost per day per MZ to monitor cumulative mass recovery ($k/d), $boring is the 

cost per soil boring ($k), $soil smp  is the cost per soil sample taken from a given boring ($k), NTZ is 

the number of TZs, NMZi is the number of MZs in TZi, Nsmp events ij is the number of soil sampling 

events for MZj in TZi, Nboring/MZi is the number of soil borings per MZ in TZi for each sampling 

event, Nsmp/boring is the number of soil samples per boring, and fop i is a cost reduction factor for TZi 

due to incremental MZ termination computed as 

 
1

 

MZiN

ij MZijj

op i

site TZi

t V
f

t V

=


=



 (4.18d) 

where Δtij is the duration of heating for MZj in TZi. After a decision is made to terminate heating 

site-wide or in a MZ or TZ, fluid recovery operations will generally be continued for some time. 
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To compute operating costs during optimization simulations, a user-specified lag time is added to 

modeled termination signal dates to account for delays in shutdown of all relevant system 

components. 

Unit cost values may be determined from cost analyses performed by a thermal remediation 

contractor. Based on soil and aquifer characteristics, contaminant type and contaminant 

distributions from site characterization studies, the contractor will first identify the most 

appropriate thermal technology (ERH, TCH, SEE) and configurations of heating and vapor and 

liquid extraction wells for ERH, TCH or steam injection for each TZ. Unit costs for performance 

monitoring ($MZcap, $MZ/day, $boring, $soilsmp)  and treatment ($mass) can be estimated directly. The 

remaining cost variables ($cap, $SiteOp/day, $TZop/day) can be determined from sensitivity analyses. For 

example, for a site with two potential TZs, the following cost estimates may be made.  

(1) Compute cost $aAll to design, implement and operate a system with two TZs for a duration 

Δta (e.g., Δtpeak) with all heating units and recovery wells operating continuously,  

(2) Compute cost $bAll in the same manner as step 1 but for a longer duration Δtb (e.g., 2Δtpeak), 

(3) Compute cost $b1 in the same manner as step 2 except with a fraction foff of heating units 

turned off in TZ1 after Δta, 

(4) Compute cost $b2 in the same manner as step 2 except with a fraction foff of heating units 

turned off in TZ2 after Δta, 

where all costs exclude performance monitoring. Unit costs may be computed from the cost 

sensitivity results as 

 bAll aAll
cap a a

b a

$ $
$ = $ t

t t

−
− 

 − 
 (4.19a) 
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The logic may be extended for additional TZs by performing additional cost sensitivities in the 

manner of steps 3 and 4 above. A spreadsheet, Thermal treatment unit cost calcs.xlsx, is provided 

to compute unit costs from the foregoing cost sensitivity results (Appendix A). 

 

4.4.2 Example problem description 

We consider a hypothetical problem involving thermal treatment of a DNAPL PCE source in an 

unconfined aquifer using TCH. The site consists of 1.5 m of gravelly fill over interbedded silt and 

clay with some sand lenses to a depth of 9.1 m, and with clay from 9.1 to 12.2 m over bedrock. A 

water table occurs at 4.5 m with an average darcy velocity of 0.2 m/yr. Three treatment zones were 

identified based on site characterization data (Figure 4.5, Table 4.6). Thermal treatment is planned 

using TCH from the surface to the maximum observed PCE depth of 4.6 m.  
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The site cleanup objective ( soil

stop globalC ) is to achieve average soil concentration over the entire 

treatment volume <1 mg/kg. Optimization analyses that couple thermal treatment and dissolved 

plume migration could be used to determine the most cost-effective approach to meet groundwater 

criteria (Parker et al. 2010, 2012). However, we focus here solely on optimizing thermal treatment 

operational variables based on a specified soil cleanup criterion.  

Contaminant mass in each TZ (MoTZ) for each Monte Carlo realization prior to commencing 

thermal treatment is generated assuming a lognormal distribution as  

   ( )ln  lnexp (0,1)o TZ soil TZ soil TZ Mo randM V m S N= +                            (4.20) 

where VTZ is the bulk TZ volume, ln  soil TZm is the mean ln soil concentration in the TZ computed as 

(ln Cmax + ln Cmin)/2 based on values in Table 4.6 assuming Cmax and Cmin represent +/- one standard 

deviation confidence limits of a lognormal population, ln MoS  is the ln standard deviation of Mo 

which is assumed to be 0.7, and Nrand(0,1) is a normally distributed random variable with zero 

mean and unit standard deviation. If TZs are divided into multiple MZs, the initial mass in the jth 

MZ is generated such that the total equals MoTZ. Based on results from the eight field sites discussed 

previously, Stherm uncertainty is characterized by a uniform distribution with a range from 0.2 to 

0.8.  

The number of heating and vapor recovery wells and related infrastructure for the example problem 

were determined based on heat balance calculations taking into consideration capital and operating 

cost tradeoffs with continuous heating. The number of heating wells (NHW) and vapor recovery 

wells (NVW) for each TZ and unit cost values computed from cost sensitivity analyses (see 

Appendix 4.3) are summarized in Table 4.6. The estimated time to reach the PCE azeotropic 

boiling point, Δtpeak, for the design was 65 days, which is treated as deterministic in Monte Carlo 

simulations. Vapor recovery is assumed to continue for 2 weeks following termination of heating 

at all wells. 

 

 

Figure 4.5. Plan view of treatment zones for optimization problem. 
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Table 4.6. PCE soil concentration ranges, numbers of heating and recovery wells                            

and unit costs multiple TZ and single TZ cases for example problem. 

 

 TZs for multi-TZ cases Single 

Variable 1 2 3 TZ cases 

TZ area (m2) 609 288 121 1018 

Cmin (mg/kg) * 2 20 200 2 

Cmax (mg/kg) * 20 200 2000 2000 

Number of heating wells 54 25 13 92 

Number of recovery wells 18 9 5 32 

$TZ op/day ($k) 2.015 0.933 0.485 3.433 
 

Costs independent of TZ 

$cap ($k) 1,953.0 

$SiteOp/day ($k) 2.137 

$mass ($k/kg) 0.0055 

$MZcap ($k) 0.200 

$MZ/day ($k/d) 0.020 

$boring ($k) 2.175 

$soil smp ($k) 0.280 

* Cmin and Cmax are regarded as +/- one standard deviation confidence limits     

 

In addition to considering cases with the site divided into three TZs with approximately known 

contaminant levels, we also consider the entire site treated as a single TZ. For consistency with the 

multi-TZ analyses, Mo values for the single “lumped” TZ realizations are computed as the sum of 

values for the multi-TZ analyses. 

Three performance monitoring strategies are considered: 

(1) Soil data only.  Soil sampling is assumed to commence at a time tmon1 after beginning 

thermal treatment and is repeated at time intervals of Δtmon2. At each sampling event, 

Nboring/MZ borings per MZ are advanced with Nsmp/boring samples taken per boring at different 

depths. The total number of samples per sampling event per MZ is thus Nboring/MZ Nsmp/boring.  

(2) Mass recovery data only.  Cumulative mass recovery data for each MZ is used to estimate 

mass remaining and average soil concentration is computed from eqs. (4.1) to (4.3) using 

calibrated model parameters. Mass recovery data is assumed to be available weekly to 

conservatively account for time to process data and implement decisions.   

(3) Mass recovery and soil data.  Method 2 is used to make preliminary termination decisions, 

which are not implemented until soil sampling data confirm the decision. Soil sampling 

commences one week after mass recovery termination signals for the signaled regions only 

and is repeated at time intervals Δtmon2 until pooled soil concentration data and mass 

recovery measurements satisfy termination criteria.  
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To generate "noisy" measurement data and to compute confidence limits for termination decisions, 

estimates of 
ln

smp

TZS  for soil measurements and 
ln

recS for mass recovery measurements are needed in 

eq. (4.13). Based on RMSE estimates for the eight field sites discussed above, we assume that 

mass recovery data have an uncertainty of 
ln

recS = 0.4. For field sites with soil sample datasets, site-

wide 
ln

smpS  values computed from the raw data ranged from 2.11 to 3.86. Based on anomalous 

behavior observed for average soil concentration confidence limits for the field sites discussed 

earlier, a considerably larger site-wide 
ln

smpS  value may be appropriate. We use a site-wide value 

of 3.5 for example cases that involve a single lumped TZ. For cases with the site divided into three 

TZs with approximately equal variances, 
ln

smp

TZS  should be smaller than the site-wide value by a 

factor of about (1/3)1/2, which yields an estimate of 
ln

smp

TZS  ≈ 2.0 for each TZ in the multiple TZ 

cases. 

Stochastic cost optimization analyses for the hypothetical site were performed for six cases with 

the site treated as a single TZ or divided into multiple TZs, with fixed or optimized values for the 

exceedance probability α and local stop criteria ( soil

stop  localC ), and with design variables for the three 

monitoring strategies described above optimized. The maximum number of MZs for each TZ is 

taken equal to the number of recovery wells in the TZ. Our objective is to evaluate effects of 

various operational monitoring strategies and associated optimized variables on thermal treatment 

performance and cost. Six optimization cases are considered, which are summarized in Table 4.7.  

 
 
4.4.3 Design optimization results  

Probability-weighted average (“expected") total costs for the various cases ranged from $3,247k 

to $4,099k with 95% upper confidence limits (UCL95) from $3,247k to $4,987k considering all 

quantifiable sources of uncertainty (Table 4.7). Expected durations ranged from 289 to 411 days. 

The 95% upper confidence limit of total cost, considering all quantifiable sources of uncertainty, 

ranged from $3,247k to $4,987k. Total costs are divided into monitoring costs, other operating 

costs (including energy), and fixed costs for design and construction. The latter were constant at 

$1,953k for all cases. Expected monitoring costs ranged from $29k to $189k, and other operating 

costs from $1,265k to $1,957k.  

It may be noted that expected values for corresponding costs from the stochastic optimization 

analyses are higher than those reported in the literature (Baker et al. 2016, Heron et al. 2016). Costs 

are similar if normalized for treatment duration. Longer probability-weighted average treatment 

durations in the present study may be partly attributed to a publication bias in favor of sites with 

low Stherm values that are mostly completed within about 2–3 times tpeak. Based on data from the 

sites reported here, the frequency of sites with Stherm values >0.5 is about equal to that of lower 

Stherm sites. However, average remediation duration to achieve 99% mass reduction for low Stherm 

sites (0.5-0.8) is about 2.4 times tpeak compared to 4.8 times tpeak for high Stherm sites (0.5-0.8).  

To reach 99.9% mass reduction, these ratios climb to 3.3 times tpeak for low Stherm sites and 8.3 

times for high Stherm sites. A second factor may be that high Stherm sites tend to be terminated at 

lower mass recovery ratios owing to durations exceeding time and budget expectations. For the 

sites reported here, the average mass reduction ratio computed for low Stherm sites was 99.8% versus 

only 95% for high Stherm sites. A third factor contributing to longer treatment durations and costs 
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is that design optimizations were formulated to achieve a high probability (in most cases > 99%) 

that remediation criteria will be met. It is likely that most system designs are not this stringent. For 

these reasons, we believe the expected durations and costs from the stochastic optimization results 

are realistic considering the full range in Stherm values that may occur and assuming comparable 

cleanup levels are met with a high probability of success regardless of site recalcitrance. 

Results for the various cases are discussed below. 

Opt1. The first four cases utilize soil data only to make termination decisions for thermal treatment 

and treat the entire treatment volume as a single TZ. For Opt1 α = 0.5 (hence soil soil

UCL avg  smpC C = ) and 

soil

stop  localC = soil

stop globalC , indicating that heating in individual MZs and individual TZs is terminated 

when the measured average soil concentration within the respective area is below the site-wide 

stop criteria. These operating procedures are typical of industry practice. The number of MZs in 

the TZ (NMZ/TZ), soil borings per MZ for each sampling event (Nboring/MZ), and soil sample depths 

per boring (Nsmp/boring), time at which soil monitoring commences (tmon1), and the time between 

successive sampling events (tmon2) were optimized. 

The fixed α value of 0.5 in conjunction with the condition that soil

stop  localC = soil

stop globalC  made it 

difficult to find a set of design variables that could reliably achieve the remediation target. The 

best that could be managed by optimization still suffered an 8% probability that the true average 

concentration will exceed the target value of 1 mg/kg. No exceedances greater than 10 mg/kg were 

predicted. With optimized values of only one MZ in the single TZ, 10 borings in the MZ with 4 

sampling depths per boring, this case employs a total of 50 soil samples per sampling event, 

yielding reasonable monitoring costs that are consistent with industry practice ($67k). 

The expected total cost is $3,764k with $1,745k for operating costs other than monitoring with the 

UCL95 of total cost equal to $4,808. The expected treatment duration of 310 days is 4.8 times tpeak, 

which is consistent with the range in Stherm values and remediation times inferred from the field 

sites discussed earlier in this paper. Aside from the consideration of risks from higher Stherm values, 

we regard Opt1 as a reasonable approximation of typical industry practice. 

Opt2. This case is the same as Opt1 except that soil

stop  localC  is optimized subject to the constraint that 

it be no greater than soil

stop globalC . The optimized value of 0.094 mg/kg requires individual TZs to 

reach a significantly lower concentration than the site-wide target to terminate early, which permits 

site-wide termination to occur when remaining areas are at a higher average concentration. This 

flexibility allowed probability of failure to decrease to <1%, which enabled improved reliability 

as reflected by a lower total cost UCL95 of $4,525 compared to $4,808 for Opt1. However, 

improved reliability was achieved at the expense of a significantly longer expected remediation 

duration (411 days), and higher expected total cost ($4,099k), monitoring cost ($189k) and other 

operating cost ($1,957k). 

Opt3. This case is the same as Opt2 except that  is also optimized to a value of 0.120. The 

resulting design also achieves an exceedance probability of <1% but with a shorter expected 

duration (320 days) and lower expected monitoring, other operating and total costs ($79k, $1,802k 

and $3,834k, respectively) using only one MZ with 7 borings per MZ sampled at 4 depths. 

However, the total cost UCL95 for Opt3 ($4.987k) is greater than that for Opt1 or Opt2.      
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Opt4. This case is identical to Opt3, except that the site is divided into three TZs that have less 

uncertainty in average soil concentration than the site as a whole. The optimized value of α for this 

case is a stringent 0.017 while the value of 0.948 mg/kg for soil

stop  localC , which is essentially the same 

as the site-wide criteria and less aggressive than the values for Opt 2 (0.094) and Opt 3 (0.390). 

The two largest and least contaminated TZs (TZ1 and TZ2) are each divided into two MZs and 

TZ3 is divided into three MZs for a total of 7 MZs. Two borings per sampling event are taken from 

each MZ and TZ if they have not already terminated. Four depths are sampled per all borings.  

Although the expected treatment duration is slightly longer than that for Opt3 at 332 days, energy 

savings from early termination of MZs or TZs resulted in significantly lower expected non-

monitoring operating costs ($1,530k), expected total cost ($3,612k) and total cost UCL95 

($4,100k). Opt4 has a lower expected total cost and UCL95 of total cost, as well as a significantly 

higher probability of success than Opt1.  

 

Table 4.7. Results of stochastic cost optimization analyses for example problem. Bold values are 

fixed during optimization. Italic values are optimization results. 

 

                             Opt1 Opt2 Opt3 Opt4 Opt5 Opt6 

Monitoring method Soil Soil Soil Soil Recovery Both 

Probability of failure (%) 8 <1 <1 <1 <1 <1 

Expected duration* (d) 310 411 320 332 290 289 

 

Costs* ($k)       

Expected total cost 3,764 4,099 3,834 3,612 3,247 3,580 

95% UCL of total cost  4,808 4,525 4,987 4,100 3,752 4,289 

Expected monitoring cost 67 189 79 129 29 48 

Expected other op. cost 1,745 1,957 1,802 1,530 1,265 1,580 

 

Design variables       
NTZ 1 1 1 3 3 3 

Significance level (α) 0.500 0.500 0.120 0.017 0.025 0.003 
soil

stop  localC  (mg/kg) 1 0.094 0.390 0.948 0.701 0.783 

NMZ/TZ 1 19 1 2,2,3 6,1,1 3,1,1 

Nboring/MZ 10 1 7 2,2,2 - 1,3,4 

Nsmp/boring 4 4 4 4 - 4 

Δtmon1 (d) 245 168 168 182 - - 

Δtmon2 (d) 70 70 63 35 - 28 

* Expected costs and durations are probability-weighted averages. See text for discussion. 

 

  



4-28 

 

Opt5. This case is the same as Opt4 with three TZs, except that mass recovery measurements for 

each MZ are used to make termination decisions (Method 2). No soil sampling is performed during 

thermal treatment or for confirmation after treatment. The results achieve an exceedance 

probability of less than 1% with an optimized α value of  0.025 and soil

stop  localC  of 0.701 mg/kg. The 

number of MZs per TZ is 6 for TZ1 (the largest, least contaminated zone) and only one for TZ2 

and TZ3, for a total of 8 MZs. Expected monitoring costs for Opt5 ($29k) are much lower than for 

any of the soil monitoring cases (Opt1-Opt4). Because mass recovery data have lower 

measurement uncertainty and are available with much higher frequency (weekly is assumed), 

termination decisions can be made much sooner on average than with soil sample data. This is 

evidenced by a lower expected treatment duration (289 days) than Op1 – Opt4, hence sharply 

lower expected non-monitoring operating costs ($1,265k) and total cost ($3,247k). The expected 

total cost is 10% lower than the best case using soil data only (Opt4) with the same probability of 

success. The expected total cost is also 14% lower than that for Opt1, the surrogate for “typical 

practice” that has the additional liability of an 8% probability of failure. Furthermore, the UCL95 

for Opt5 total cost ($3,752k) is significantly less than corresponding values for all soil monitoring 

cases (Opt1-Opt4) and less than the expected total cost for all but Opt4. 

Opt6. This case is similar to Opt4 and Opt5, except that monitoring is performed using Method 3, 

which employs mass recovery data by itself until a termination signal is obtained for site-wide, TZ 

or MZ termination, after which soil data is collected periodically until pooled soil and recovery 

data confirm the decision. The results achieve an exceedance probability of less than 1% with a 
soil

stop  localC of 0.783 mg/kg and a stringent α value of 0.003. The number of MZs per TZ is three for 

TZ1 (largest, least contaminated) and one MZ for each of TZ2 and TZ3, for a total of five MZs. 

Only one boring per MZ is specified for TZ1 with three for TZ2 and four for TZ3 sampling 4 

depths per boring for each location. The frequency of soil sampling after a termination signal based 

on mass recovery data is 28 days. Monitoring costs ($48k) are not much higher than for Opt5 and 

the operating time of 289 days is essentially the same as for Opt5. However, other operating costs 

for Opt6 ($1,580) are 25% higher than for Opt5, which is attributable to a 39% higher average 

energy utilization for Opt6 due to fewer early terminations of individual MZs and/or TZs. 

Relatively large uncertainty in soil data result in wider pooled confidence limits for Opt6 

termination and a significantly higher UCL95 of total cost.  

 

4.5 Summary and conclusions 

Thermal treatment methods are effective technologies for remediation of DNAPL source zones 

due to their relatively low sensitivity to aquifer heterogeneity and DNAPL distributions. 

Nevertheless, significant uncertainty exists in the duration of heating required to meet remedial 

goals for a given system design. Normal distribution models for mass recovery as a function of 

time are unable to capture the positive skew of actual recovery data, which can lead to significant 

underestimation of the treatment duration necessary to reach cleanup objectives. We introduced a 

lognormal distribution model with recovery time duration characterized by the standard deviation 

in ln recovery time, Stherm, with values ranging from about 0.2 to 0.8 on a site-wide basis for field 

sites studied. For Stherm = 0.2, remediation duration can range from 1.6 × Δtpeak (time to reach 

effective boiling point) to achieve a mass reduction of 99% to 2.4 × Δtpeak for 99.99% reduction, 

while for Stherm = 0.8, treatment durations from about 6 to 20 × Δtpeak are predicted for the same 

mass reduction percentages.  
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We were unable to identify any significant correlations between Stherm values and geologic 

complexity, DNAPL source complexity, or initial contaminant concentration of the sites. 

Furthermore, since differences in Stherm values within a given site were as variable as differences 

between sites, estimates of Stherm from pilot tests may not be predictive of the whole site. A priori 

uncertainty in Stherm can result in significant uncertainty in site-wide treatment times. Iterative 

calibration of lognormal model parameters from mass recovery data provides incrementally 

refined estimates of Stherm and other model parameters which enable extrapolation of contaminant 

mass remaining for use in making reliable real-time termination decisions. Uncertainty in Stherm 

and other factors affecting treatment duration are taken into consideration in the design process 

using stochastic optimization methods.  

We have proposed a strategy to turn the liability of uncertainty in time to reach cleanup objectives 

into a potential advantage by dividing the contaminated soil volume into treatment zones (TZ) that 

exhibit different average contamination levels based on site characterization data and (optionally) 

further dividing TZs into monitoring zones (MZ) for purposes of making termination decisions. 

We also allow target soil concentrations for regions smaller than the full site (local stop criteria) 

to be specified at a value less than the site-wide stop criterion. Cleaning up less recalcitrant regions 

(lower initial soil concentration and/or Stherm) to a lower average concentration enables more 

recalcitrant regions (higher initial soil concentration and/or Stherm) to be terminated at a higher 

average concentration to achieve the same site-wide average, which offers the possibility of 

reducing overall treatment duration and total operating cost. The multi-level monitoring and 

termination strategy allows for site-wide termination as well as early termination of individual TZs 

or MZs within TZs.  

Thermal system termination decisions are commonly made by comparing the average 

concentration computed from a round of soil samples directly with a cleanup target. However, 

averages from soil data are subject to large uncertainty even when the number of soil samples is 

large. An alternative method, which estimates average soil concentration from mass recovery 

measurements during thermal treatment using the lognormal mass recovery model, has been 

demonstrated that exhibits less uncertainty and lower cost than soil sampling. To explicitly account 

for uncertainty in average soil concentrations estimated from soil and/or mass recovery data, the 

multi-level termination strategy stops treatment when an upper confidence limit of estimated mean 

concentration at a specified probability is below the target concentration. We employ a statistical 

methodology for computing confidence limits at site-wide, treatment zone and monitoring zone 

levels that allows termination decisions to be made at all scales with equal reliability.  

To identify cost-optimal performance monitoring strategies to guide termination decisions, we 

incorporated the multi-scale thermal treatment performance monitoring protocol into the stochastic 

cost optimization program SCOToolkit to identify design variables that minimize probability-

weighted total cost considering uncertainty in site properties, model predictions, and monitoring 

data while maintaining a high likelihood of meeting remediation objectives.  

Results for an example problem indicate that the practice of using computed average soil 

concentration (as opposed to an upper confidence limit) cannot achieve a high probability of 

meeting the target average soil concentration. Optimizing the confidence limit probability, local 

scale cleanup level, number of monitoring zones per treatment zone, soil borings per monitoring 

zone for each sampling event, sample depths per boring, date for first sampling event, and time 

interval between sampling events for a site treated as a single treatment zone using only soil 

sampling data achieved cleanup objectives with a higher probability of success than a more 
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conventional approach. Dividing the site into three treatment zones with different soil 

concentration ranges and optimizing the same variables reduced total cost by 6%. Optimizing 

confidence limit probability, local-scale cleanup level, and number of monitoring zones per 

treatment zone with three treatment zones while using mass recovery data instead of soil data, 

achieved an additional 10% cost reduction. If confirmation of mass recovery-based results with 

soil sample data is desired or required, delaying each local termination decision until confirmed 

by soil sampling will increase the cost. Therefore, if confirmatory soil sampling is required, we 

recommend waiting until all heating units have been stopped based on mass recovery data before 

performing site-wide soil sampling.  

In addition to computing the probability-weighted average cost for optimized designs, the method 

gives cost probability distributions that reflect uncertainty in measurements and calculations. An 

optimized example problem using only mass recovery data to make termination decisions (Opt5) 

had a 16% lower expected total cost than a case that approximates typical industry practice (Opt1), 

while the 95% upper confidence limit of total cost for the former was 28% lower. Thus, the 

proposed methodology not only yields “expected” cost savings, but also sharply reduces the 

magnitude of potential cost overruns.  
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5. DNAPL Zone Treatment by In Situ Chemical Oxidation 

5.1 Overview  

In situ chemical oxidation (ISCO) involves injection of a chemical reagent into the subsurface to 

chemically oxidize contaminants. The technology has been studied since the early 1990s and has 

been used extensively in the field for a variety of contaminants. The most common reagents are 

potassium or sodium permanganate although others have also been used, including persulfate, 

ozone, hydrogen peroxide, and modified Fenton’s reagent (H2O2 plus ferrous iron). The most 

common delivery method involves injection of a pulse of oxidant into an injection well network, 

followed by a period with natural gradient conditions in which oxidant reacts with contaminants 

and migrated with groundwater. This method is well adapted to the treatment of DNAPL source 

zones in relatively low permeability aquifers. In permeable aquifers, low residence times in the 

target zone diminish the cost effectiveness of this delivery method. An alternative delivery 

approach is to inject oxidant continuously at lower flow rates, capture unreacted reagent 

downgradient of the treatment zone and reinject it with additional oxidant to maintain a more or 

less constant oxidant concentration in the treatment zone over time.  

ISCO is a mature technology with well documented design protocols (Huling and Pivetz 2006, 

Siegrist et al 2006) including useful software tools for system design and cost estimation (Siegrist 

et al. 2010). These guidance documents and design tools provide a starting point for the tools 

described here. In particular, we assumed that the individual who wishes to undertake cost 

optimization of ISCO design, has used the aforementioned guidance and tools to develop a draft 

design that is suited to his site conditions. This will serve as the starting point for stochastic design 

optimization using SCOToolkit to refine selected operating variables and performance monitoring 

details taking into consideration effects of measurement and prediction uncertainty, coupling 

between ISCO performance and plume scale processes, and complex interactions and tradeoffs 

that affect performance and cost.  

 

5.2 DNAPL mass decrease during ISCO 

We consider a DNAPL source zone of volume Vo [L
3] to which we wish to apply ISCO. The total 

contaminant mass prior to ISCO is Mo [M] and the corresponding discharge rate is Jo [MT-1]. In 

general, we expect ISCO efficiency to improve if DNAPL source zones are divided into smaller 

operational units that are monitored and managed independently. For example, field data may 

indicate one or more "hot spots" having high soil concentrations, with adjacent areas of moderate 

concentrations, and peripheral zones of lower concentrations. Since lower concentration zones will 

likely require fewer oxidant injections, earlier termination will be possible and less aggressive 

design variables may more cost effective. Therefore, we consider division of the source zone into 

i = 1, ... , NTZ treatment zones (TZ). For each TZ, source discharge to groundwater downgradient 

of the source for the transport model is described by a modified form of eq. (2.1) as  

 
( )

( ) ( ) ( ) i
i mt i k i o i

oi

M t
J t F t F t J

M


 

=  
 

 (5.1) 

where Ji(t) is the discharge rate of contaminant from the source zone for TZ i as a function of time 

[MT-1], Mi(t) is the DNAPL mass remaining versus time [M], Moi is the mass just prior to ISCO 
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[M], Joi is the initial dissolution rate [MT-1],  is an empirical depletion exponent, Fmt i is a mass 

transfer enhancement factor [-], and Fk i is a mass transfer inhibition factor [-]. In the following, 

we drop TZ subscripts, i, for brevity. The enhancement factor is estimated based on Reitsma and 

Dai (2001) as 

 

/   
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( )
) 1

 

= +

=

ox CH
mt mt

CH ox
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ox CH CH

C t

n D

W
F t f

S W

D
f

 (5.2) 

where Cox(t) is the current aqueous oxidant concentration [ML-3], SCH is the effective solubility of 

contaminant in the DNAPL [ML-3], Wox is the molecular weight of oxidant [M mol-1], WCH is the 

molecular weight of contaminant [M mol-1], DOX is the aqueous diffusion coefficient of oxidant 

[L2T-1], DCH is the contaminant aqueous diffusion coefficient [L2T-1], and nox/CH is the 

stoichiometric ratio of oxidant to contaminant for the redox reaction. Diffusion coefficient ratios 

for permanganate are about 1.12 for PCE, 1.03 for TCE, and 0.95 for DCE.  yielding fmt values of 

1.49 for PCE and 2.1 for TCE with permanganate.  Values for /ox CHn will be discussed later.  

Mass transfer inhibition due to MnO2 precipitation during permanganate addition has been studied 

by West et al. (2007) and West and Keuper (2012), modeled as 

 ( ) 1  ( )= −k rind precipF t S C t  (5.3) 

where Cprecip(t) is the mass of precipitated MnO2 per treatment zone pore volume [ML-3] as a 

function of time (computed from the cumulative mass of injected oxidant and the reaction 

stoichiometry) and Srind = 4.6 x 10-6 L/mg based on West and Keuper studies, although site-specific 

measurements may be advisable as this value may vary with site conditions. If precipitation 

reactions are expected for other oxidants, lab or field pilot studies would need to be conducted to 

quantity Cprecip and Srind.   

The initial mass Moi in each TZi is generated in the model from user-specified minimum and 

maximum soil concentrations min

soilC  and max

soilC within each TZ from site characterization data. Mass 

conservation requires that  

 
1 1 1

,  ,  and  
= = =

= = =  
TZ TZ TZN N N

oi o oi o oi o

i i i

M M J J V V  (5.4) 

To satisfy the above constraints the following two-step method is used to generate TZ parameters. 

Step 1. Assuming minimum and maximum soil concentrations represent 95% confidence levels 

of a log-normal distribution, generate initial mass estimates for each TZ by 

 ( )1 ln lnexp  N(0,1)= +i i iM m S  (5.5a) 

 
ln

ln

0.5 (ln ln )
where

0.25 (ln ln )

i max min

i max min

m C C

S C C

= +


= −
 (5.5b) 

Step 2. Adjust estimates for consistency with Moi as 
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In addition to characterization of the source mass discharge function for the entire DNAPL source 

to be treated by ISCO (see Chapter xx on model calibration), potential treatment zones should be 

identified and key characteristics determined, including the depth, width and volume, minimum 

and maximum soil concentrations, and mean oxidant travel length. 

5.3 ISCO reaction model 

A mass balance model is solved for each ISCO treatment zone to compute average soil and 

groundwater concentrations within treatment zone volumes. The model accommodates boundary 

conditions for both pulsed and continuous oxidant injection conditions. Each treatment zone is 

modeled as a stirred tank reactor with five components, namely 

• Contaminant occurring as DNAPL 

• Aqueous and adsorbed contaminant 

• Rapidly oxidizable natural oxidant demand (“fast” NOD or NODf) 

• Slowly oxidizable natural oxidant demand (“slow” NOD or NODs) 

• Aqueous phase oxidant 

DNAPL serves as a rate-limited source of aqueous contamination described by eqs. (5.1) – (5.5). 

Direct oxidation of DNAPL contaminant is assumed to be negligible. However, DNAPL 

dissolution rate is coupled with aqueous oxidant concentration via (5.2). Following Cha and 

Borden (2012), oxidant is assumed to react instantaneously with aqueous and adsorbed 

contaminant and with NODf. Oxidation of NODs is modeled as a second-order kinetic reaction. 

Equilibrium is assumed to occur between aqueous and sorbed contaminants. The reaction of 

chlorinated solvent with an O2-equivalent oxidant (O2eq) is given by  

 
2a b c 2 2eq H O 2 2C H Cl + O + H O aCO +cHCl⎯⎯→O eqn n  (5.6) 

with stoichiometry coefficients 
2O eqn = a-(c-b)/4 and 

2H On = (c-b)/2. For PCE (C2Cl4), TCE 

(C2HCl3), and DCE (C2H2Cl2), as an example, the reactions become 

 

2 4 2 2eq 2

2 3 2 2eq 2

2 2 2 2eq 2

C Cl +2H O+O 2CO +4HCl

3
C HCl +H O+ O 2CO +3HCl

2

C H Cl +2O 2CO +2HCl

⎯⎯→

⎯⎯→

⎯⎯→

 (5.7) 

indicating that 
2O eqn = 1 mol-O2eq of oxidant per mole of PCE, 1.5 mol-O2eq per mole of TCE, and 

2 mol-O2eq per mole for DCE.  

Common oxidizing agents include permanganate (MnO4
-), ozone (O3), hydrogen peroxide (H2O2), 

and persulfate (S2O8
-2) that have theoretical oxygen equivalents (O2eq) of 0.75, 1.5, 0.5, and 1.0, 

respectively, although actual field values can vary with pH and other geochemical conditions, other 

added reactants (e.g., ferrous iron with hydrogen peroxide or persulfate) or heat (e.g., thermal 

activation of persulfate to produce the stronger oxidant SO4
-). As an example, the oxidation of 

TCE by MnO4
- may be written as 
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 - +

4 2 3 2 22MnO +C HCl 2CO +2MnO (s)+3Cl +H− ⎯⎯→  (5.8) 

 

 

indicating complete oxidation of one mole of TCE by nox/CH = 2 moles of permanganate. Note that 

the overall stoichiometry ratio nox/CH = 
2O eqn / O2eq = 1.5/0.75 = 2. Overall baseline stoichiometries 

for oxidation of PCE, TCE and DCE by the afore-mentioned oxidants are summarized in Table 

5.1. Theoretical values for other contaminants and oxidants may be easily derived. However, it is 

advisable to confirm (or refine) values based on results of bench- or field-scale pilot tests under 

conditions approximating those planned.  

NOD is characterized by the total NOD per dry soil mass ( NODtot

soilC ), the ratio of fast to total NOD 

(
NODff ), and the second order rate coefficient for NODs ( NODsk ). NOD parameters may be 

determined on soil samples using the laboratory protocol described by ASTM method D7262-07 

(ASTM 2007). Since potassium permanganate is the oxidant in this lab test, the quantity of NOD 

is typically reported as moles of KMnO4. These values are converted to mol-O2eq in SCOToolkit. 

Typical ranges for NOD parameters are given in Table 5.2. 

 

Table 5.1 Stoichiometry factors 
2O eqn / O2eq = nox/CH for PCE, TCE and                                           

DCE oxidation by MnO4
-, O3, H2O2, and S2O8

-2. 

 MnO4
- O3 H2O2 S2O8

-2 

PCE 
1.0 / 0.75 

= 1.5 

1.0 / 1.5 

= 0.67 

1.0 / 0.5 

= 2.0 

1.0 / 1.0 

= 1.0 
     

TCE 
1.5 / 0.75 

= 1.5 

1.5 / 1.5 

= 1.0 

1.5 / 0.5 

= 3.0 

1.5 / 1.0 

= 1.5 
     

DCE 
2.0 / 0.75 

= 2.67 

2.0 / 1.5 

= 1.33 

2.0 / 0.5 

= 4.0 

2.0 / 1.0 

= 2.0 

 

 

Table 5.2 Typical natural oxygen demand (NOD) parameter ranges (Cha 2012). 

Parameter 10% LCL 1 Median 90% UCL 1 Unit 2 

Total NOD per soil mass ( NODtot

soilC ) 2 28 158 mmol kg-1 

Fraction of “fast” NOD (fNODf) 0.028 0.126 0.361 - 

“slow” NOD rate constant (kNODs) 0.003 0.018 0.395 L mmol-1 d-1 

1 LCL and UCL = lower and upper confidence limits, respectively 
2 reported as mmol of MnO4

-1-
 (to obtain mmol O2eq multiply by O2eq (e.g., 0.5 for H2O2) 
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For generality in performing model calculations, all reactant species are expressed in mol-O2eq. 

The model may be used to simulate any oxidant species by specification of appropriate 

stoichiometric coefficients. The reaction sequence solved for each TZ over time is: 

• Compute quantity of contaminant releases from DNAPL over current time step. Update 

mass remaining in DNAPL and dissolved plus equilibrium adsorbed contaminant mass. 

• Solve mass balance for oxidant reactions with aqueous and adsorbed contaminant. 

• Compute oxidant loss by downgradient outflow and dilution by upgradient inflow. 

• If aqueous oxidant mass > 0, compute mass balance for oxidation of NODf. 

• If aqueous oxidant mass > 0, solve second-order equation for oxidation of NODs. 

• Update values of Fmt and Fk. 

Initial contaminant quantities in DNAPL, dissolved and adsorbed phases are obtained from the 

plume scale transport model. Prior to commencing ISCO, zero oxidant species is assumed to be 

present in treatment zones. Initial quantities of total, fast and slow NOD are computed as 

 0.75 = NODtot

NODtot soil TZm C V  (5.9a) 

 =NODf NODf NODtotm f m  (5.9b) 

 (1 )= −NODs NODf NODtotm f m  (5.9c) 

where mNODtot, mNODf and mNODs are total, fast and slow NOD in moles O2eq, NODtot

soilC is the total 

NOD quantity per soil mass in mol-KMnO4 per kg,  is soil bulk density (kg m-3), VTZ is the TZ 

volume (m3) and the factor 0.75 is the oxidation potential ratio in mol-O2eq per mol-KMnO4. The 

rate equation for slow NOD is  

 
0

= −NODs OXs NODs
NODs

dm m m
k

dt V
 (5.10) 

where OXsm  is mol-O2eq of oxidant after fast and slow NOD reactions and NODsk is the second-

order rate coefficient. By assuming OXf OXs OXm m m= =  in the first time-step, OXsm  can be 

iteratively computed for each time step (dt) using the following relationships 

 = +OXs OXf NODsm m dm  (5.11a) 

 *= +NODs NODs NODsm m dm  (5.11b) 

where OXf OX NODfm m m= −  to consider instantaneous reaction of fast NOD. Variables subscripted 

with * represent values returned from the previous time step. 

As NODsdm  is on both sides of (5.10) after replacing OXsm  and NODsm  with eq. (5.11), an implicit 

approach was used to find NODsdm  assuming its initial value is same as NODsm  computed in the 
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previous time step. The mol-O2eq of oxidant ( OXm ) at the current time step can be determined by 

accounting gains and losses as follows. 

   

For pulsed oxidant injection 

 
2

0
0

*
* * * *

0

during injection, otherwise



−

+

= =

 
= − + − 
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OX OX
OX OX

OX O eq

aq sOXs vert
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m qA
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V

 (5.12a) 

 And for continuous injection 
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0 for the first time step, otherwise
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 (5.12b) 

where 0OXm  is the OXm  value during injection, 
2eqOX Ok − is the oxidant mass per mol-O2eq, COX0 is 

the concentration of injected oxidant [ML-3], VOX is the volume of injected oxidant computed as 

0vf V  using a well overlap factor (fv) ranging typically between 1.1 and 1.3, Jm is mol-O2eq 

contaminant flux [mol-O2eqT
-1] computed from (5.1) with Frb=1 multiplied by 

2O eqn , flost is the 

fraction of the groundwater flux recovered by extraction wells (0 for pulsed injection, maximum 

of 1 for recirculation system with complete capture else <1), COX* is the oxidant concentration in 

the previous time step [ML-3], QOX is the oxidant injection rate [L3T-1], and aq s

CHm +  is mol-O2eq of 

contaminant in aqueous + sorbed phases within the treatment zone computed as follows 

 

*

*
* * *

during injection or for the first time step,

otherwise

(1 )

aq s mo o
CH

vert

aq s aq s aq s ISCO k vert
CH CH m CH OX

o

J V
m

qA

E F qA
m m J m dt m
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
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 −
= + − − 

 

 (5.13) 

where q is the average darcy velocity [LT-1], Avert is the vertical area [L2] of a treatment zone 

perpendicular to flow, and EISCO is the fraction of flow though the TZ captured by recovery wells 

(0 for typical pulsed flow system, max value of 1 for recirculation system). Note that eq. (5.13) 

accounts for slow rebound of dissolved contaminant concentration following depletion of oxidant 

in the treatment zone. COX at the current time step is then obtained as 

 
2− 

=  
 

OXs OX O eq

OX

OX

m k
C

V
 (5.14) 

and the mol-O2eq DNAPL contaminant in the TZ is computed by 
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 (5.15) 

where WCH is the contaminant molecular weight [M mol-1].  

If the number of injection wells in the treatment zone is NIW but a smaller number of wells Nblock 

are injected at a given time, then the number of serial injection events or "splits" to be performed 

to complete injection in all wells is Nsplit = roundup(Niw / Nblock). The total duration of each oxidant 

injection event is   

  =
OX split

inj

OX IW

V N
t

Q N
 (5.16) 

where Qox is the average volumetric injection rate per well [L3T-1]. Since the injection duration is 

generally short compared to the monitoring interval between injections, we treat each injection as 

an instantaneous event at a time tinj/2 following the actual start of an injection event. 

Average chloride concentration in each treatment zone is also computed from the cumulative 

moles of solvent oxidized and the mole fraction of chloride in the solvent, considering advection 

losses and dilution.  

Mass balance equations for DNAPL contaminant, aqueous and sorbed contaminant, oxidant, 

chloride, and NODf for each treatment zone are solved using forward difference solutions. The 

NODs mass balance equation is solved using an implicit backwards difference method described 

by eqs. (5.10) - (5.12). Advective losses of aqueous phase oxidant and contaminant are assumed 

to occur in proportion to the product of the average darcy velocity and current average 

concentration. DNAPL and NOD are assumed to be immobile.  

 

5.4 ISCO performance monitoring 

Our objective here is to formulate performance monitoring protocols to facilitate reliable real-time 

operational decisions to be made. To minimize decision lags due to travel times to downgradient 

locations, performance monitoring needs to focus on measurements within or near the aquifer 

volume being treated. Remediation progress is commonly monitored by measuring contaminant 

concentrations in soil and/or groundwater samples. But what is the relationship between these two 

types of measurements to each other and to the downgradient plume? To answer this question, 

consider a DNAPL source zone of volume V [L3], with an area Avert perpendicular to flow 

downgradient of the source [L2], mean darcy velocity q [LT-1], retardation factor RCH, source 

dissolution rate versus time J(t) [MT-1], and contaminant mass remaining in the source versus time 

M(t) [M]. The flow-averaged groundwater concentration
gw

avgC [ML-3] on the downgradient plane is  

 
( )

( )gw

avg

CH vert

J t
C t

qR A
=  (5.17a) 

while the average soil concentration 
soil

avgC [MM-1], within the source volume is  
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M t
C t

V
=  (5.17b) 

where  is the soil dry density [ML-3]. Combining eqs. (5.17a) and (5.17b) with eq. (5.1) assuming 

no effects of oxidant (Fmt=Fk=1), yields  

 

1/

0

0

gw

CH vert avgsoil

avg

qR A CM
C

V J





 
=   
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 (5.18) 

which allows us to compute “equivalent” average soil or groundwater concentrations. 

A complicating factor for using groundwater concentration data to monitor ISCO performance 

(and in using eq. 5.18) is that aqueous contaminant concentrations will be negligible as long as 

dissolved phase permanganate oxidant is present. Following oxidant injection, aqueous phase 

oxidant will deplete over time due to reactions and advection and aqueous contaminant 

concentrations will subsequently rebound. However, full rebound can take many months, 

depending on the DNAPL dissolution rate and groundwater velocity. Therefore, measurements of 

dissolved contaminant within or near the downgradient edge of a source zone will provide limited 

information on the progress of remediation until rebound occurs. This will require longer waiting 

times between oxidant injection events to make termination and reinjection decisions than if soil 

sample data were used. 

Since pre-existing groundwater monitoring wells will generally be present within the ISCO 

treatment area, which are required to be monitored at a specified interval (e.g., quarterly, semi-

annual), we assume that groundwater concentration will be measured at all such wells at the 

regulatory-mandated intervals. Additional numbers of groundwater monitoring locations may be 

stipulated strictly for ISCO performance monitoring (i.e., “temporary” wells or push-probe water 

samples). All groundwater sampling locations will be sampled at no less than the regulatory-

mandated frequency. At each groundwater sampling date following oxidant injection, oxidant 

concentration will be measured until oxidant concentration drops below a practical detection value 

(Cox min). Prior to reaching this level, contaminant concentrations will not be measured and 

afterwards, oxidant concentration will not be monitored until after the next injection event.  

In addition to mandated and optional water samples, we also consider collection of soil samples 

for ISCO performance monitoring. Decision logic soil and groundwater data or groundwater data 

only are described below. 

 

5.5 Decision logic for ISCO termination and reinjection 

The criterion for terminating ISCO treatment is commonly specified as  

 type type

avg stopC C  (5.19) 

where 
type

avgC = 
soil

avgC  [MM-1] or 
gw

avgC [ML-3] represents average soil or groundwater concentrations, 

respectively, and 
type

stopC = 
soil

stopC  or 
gw

stopC  represents corresponding termination criterion. In practice, 

we never know true values of 
type

avgC , but only estimates of the average 
type

avg  smpC  calculated from a 
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finite number of samples. If we substitute 
type

avg  smpC  for the true average 
type

avgC  in eq. (5.19), resulting 

termination decisions will have a significant probability of erroneously terminating treatment 

before the target criterion is actually met due to differences between 
type

avg  smpC  and 
type

avgC .  

A more conservative approach that explicitly accounts for this uncertainty is to modify the 

termination criteria as 

 
type type

UCL stopC C  (5.20) 

where type

UCLC  is the upper confidence limit of the estimated average concentration at significance 

level α (e.g., 0.1 for a 90% upper confidence limit). Since type

UCLC >
type

avg  smpC  for 0<α<0.5, eq. (5.20) 

is a more stringent criterion than eq. (5.19). The ratio of type

UCLC  and 
type

avg  smpC  represents a safety 

factor that reduces the likelihood of erroneous decisions that terminate too early. Note that α=0.5 

corresponds to type

UCLC =
type

avg  smpC . 

High variance properties of quantities that are physically constrained to be non-negative, such as 

contaminant concentrations, necessarily exhibit positively skewed distributions. Normal 

probability distributions cannot describe such behavior. Lognormal distributions capture the major 

features of such data and are commonly used as a reasonable and mathematically expedient 

approximation. If the average concentration is estimated from 
type

smpn  samples and a log-normal 

distribution is assumed, then 

 ( ) ( )( )1 lnexp ln ,type type type type

UCL avg  smp avg stopC C t N S C= +   (5.21a)  

where ln
ln

type
type

avg type

smp

S
S

n
=  (5.21b) 

in which 
type

avg  smpC is the arithmetic average of type

smpn samples,
ln

typeS is the population standard 

deviation of ln concentration, ln

type

avgS is the standard deviation of ln ,type

avg  smpC  and ( )1 ,t N  is the one-

sided t-value for significance level α with N degrees of freedom (Snedecor and Cochran 1967). If 

ln

typeS is computed from type

smpn  samples then N= type

smpn −1, while if 
ln

typeS  is based on prior site 

characterization data or experience with other sites, then N=∞. Eq. (5.21) may also be written 

 
( )( )1 lnexp ,

type

stoptype type

avg  smp stop  SF type

avg

C
C C

t N S
 =  (5.22) 

where type

stop SFC  is the “true” stop criterion divided by a safety factor to account for uncertainty. Note 

that decreasing population uncertainty 
ln

typeS  and/or increasing the number of samples type

smpn  will 

yield lower type

UCLC  and higher type

stop SFC  values at a given confidence level, which enable earlier ISCO 

termination at the specified confidence level. Alternatively, if the same termination criteria ( type

UCLC  
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and type

stop SFC ) are employed, more reliable data will result in a lower probability of erroneously 

terminating before actual concentrations meet the desired levels.  

As an example, consider a source zone with a cleanup target of 
soil

stopC = 1000 μg/kg. It is planned 

to take soil

smpn =15 soil samples to assess whether the objective has been met. Assume a prior estimate 

of 
ln 2.9.soilS =  If we want a 95% probability (α = ) that the actual average soil concentration 

will be less than 1000 μg/kg when we terminate treatment, then t1=1.646 and eq. (5.22) indicates 

that the average concentration computed from 15 samples needs to be less than type

stop SFC = 291 μg/kg 

to achieve the desired reliability. If the number of samples is increased to 30, we could terminate 

earlier with the same decision confidence when 
soil

avg  smpC < 418 μg/kg.  

Since the time to reach 
type

stopC  or 
type

stop SFC will vary spatially, it may be possible to reduce operating 

costs by applying the foregoing criteria independently to sub-regions to terminate injection earlier 

in areas that reach cleanup objectives before site-wide termination criteria are met. Alternatively, 

we could treat less contaminated zones longer to reach a local 
type

stopC  that is less than the site-wide 

value, allowing earlier termination of more contaminated areas when the site-wide criteria is met.  

Anticipating that regions with higher initial contaminant concentrations are likely to take longer 

to cleanup, a system designer may divide a site into multiple treatment zones (TZ) based on ranges 

of pre-remediation contaminant concentrations observed during site characterization. When 

independent TZ termination is considered, the criteria for ISCO termination in a single TZ is taken 

as 

 
( )( )1 lnexp ,

type
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where all variables are for TZ i. Criteria for simultaneous termination of all currently operating 

TZs are formulated in a similar fashion, while taking into consideration that site-wide statistical 

properties can be described by upscaling individual TZ statistics as follows   
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where VTZi is the bulk volume of TZ i. Note that the stop criterion for individual TZs is permitted 

to differ from that for site-wide termination, subject to the constraint that type type

stop TZi stop allC C , i.e., the 

TZ stop criteria cannot exceed the site-wide stop criteria. When evaluating eq. (5.24) for TZs that 

have previously terminated operation, the average concentration and number of samples from the 

last sampling event prior to termination are conservatively assumed to apply.  

In addition to determining when oxidant injection can be terminated, a corollary decision must be 

made regarding if or when reinjection should be initiated must be made. The reinjection criteria 

for a given TZ is specified as 

 
type type

UCL smp TZi reinject  TZiC C  (5.25) 

where 
type

reinject  TZiC  is the average concentration above which reinjection is indicated 

( )type type

reinject  TZi stop TZiC C , and ln

type

 avg TZiS  is defined by eq. (5.23b). Due to the inconvenience and cost of 

commencing injection in TZs at different times, reinjection is not initiated until criterion for either 

reinjection or termination has been met for all TZs.  

The time interval gw

mont between potential groundwater sampling events for ISCO monitoring is 

assumed to be equal to or an integer fraction (e.g., 1, 1/2, 1/3) of the regulatory mandated interval. 

Following an oxidant injection event, oxidant concentration will be monitored prior to taking 

samples for contaminant analysis. If the oxidant concentration exceeds its detection limit for the 

method utilized (Cox min), samples for contaminant analysis are not taken, as values would not be 

meaningful. Subsequently, average contaminant concentrations from groundwater samples are not 

deemed to represent full rebound conditions until the current average value is less than or equal to 

the previous value for the TZ or site-wide depending on the level for which the termination 

decision is to be made. A minimum number of groundwater sampling rounds 
gw

minN  is stipulated 

before a termination decision is allowed, where 
gw

minN  is at least 2. If 
gw

mont  is very short and/or 

rebound is very slow, larger 
gw

minN  values may be necessary to avoid erroneous early termination 

due to multiple rounds below detection limits prior to exhibiting rebound. The minimum number 

of sampling rounds is not applicable for making reinjection decisions. 

To coordinate soil monitoring (when utilized) with groundwater monitoring, the period between 

soil sampling events 
soil

mont  is constrained to be an integer fraction or multiple (notated as Fsoil/gw) 

of
gw

mont  (e.g., 1/3, 1/2, 1, 2, 3). Since rebound is not an issue with soil data, termination or 

reinjection decisions do not require a minimum number of soil sampling rounds. Operational 

decisions may be based on groundwater data only, soil data only, or on statistically-pooled soil 

and groundwater data (Appendix B) for the site as a whole or for individual TZs at the specified 

confidence level . However, to maintain site-wide coordination of injection events, reinjection in 

individual TZs is not implemented until all TZs have met either reinjection or termination criteria 

following each injection event. A flowchart of the performance monitoring and decision-making 

protocol given in Figure 5.1. 
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Figure 5.1. Flowchart for ISCO operational decisions.  
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5.6 Statistical criteria for pooled data 

In the previous section, decision criteria were formulated based on a single type of monitoring data 

(e.g. water samples from monitoring wells or geoprobes, soil samples from borings or geoprobes 

composited over specified core lengths). To pool multiple types of soil and/or groundwater data 

with different measurement uncertainties, all measurements must first be converted to a consistent 

basis as a soil or groundwater concentration via eq. (5.18). In the following, we assume all values 

are converted to “equivalent” soil concentrations in this manner.  

To pool across different measurement types, we weight average values inversely proportional to 

their variances (Kool et al. 1987) and compute the pooled standard deviation is the weighted root 

mean square, yielding the following criteria for TZ termination: 

 
( )( )lnexp ,

pool

stop TZipool pool

avgTZi stop SF TZi pool

TZi

C
C C

t S
 =


 (5.26a) 

 
1

ln ln
=

= 
typeN

pool type type

avgTZi TZi avgTZi

type

C w C  (5.26b) 

 
( )

( )

1/2 1/2
2

ln

ln 2
1 1

ln

1

−

= =

   
   =
   
   

 
type type

type typeN N type
TZi TZipool TZi

 TZi type type
type typetype TZi TZi

w S n
S  =      

N n S
 (5.26c) 

 
( )

( )

2

ln

2
1

ln

type

type

TZi

type

TZitype

TZi N k

TZi

k
k

TZi

n

S
w

n

S=

=


 (5.26d) 

where pool

stop SF TZiC  is the “true” stop criteria pool

stop TZiC  divided by a safety factor to account for 

uncertainty,  Ntype is the number of different sample types (e.g., water samples from monitoring 

wells, soil or water samples from geoprobes, etc.) with ln standard deviations for individual 

measurements 
ln

type

TZiS  and arithmetic average soil concentrations type

avg  TZiC  (or average groundwater 

concentrations expressed in “equivalent” soil concentrations) for each type in TZ i, 
ln

pool

 TZiS  is the 

uncertainty of pooled data that was weighted by the uncertainty (
ln

type

TZiS ) of each data type in TZ i, 

and type

TZin  is the number of samples taken in TZ i of specified type. Values of 
ln

type

 TZiS  may be 

estimated using data from samples within individual treatment zones collected during source 

characterization as the standard deviation of ln measured concentrations. In rough terms, if about 

2/3 of measurements (±1 standard deviation) in a TZ are within range of F = upper limit/lower 

limit then 
ln ln( ) / 2soil

 TZS F . 

The pooled site-wide termination criteria may be obtained by upscaling TZ statistics as 
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where pool

stop SF allC  is the “true” stop criteria pool

stop allC  divided by a safety factor to account for 

uncertainty, Ntype is the number of different sample types (e.g., water samples from monitoring 

wells, soil or water samples from geoprobes, etc.) with ln standard deviations 
ln

type

TZiS  per individual 

measurement and arithmetic average soil or groundwater concentrations type

avgC  expressed as 

“equivalent” soil concentrations for each type of measurement in TZ i, and 
ln

pool

 allS  is the site-wide 

uncertainty of pooled data that was weighted by the pooled uncertainty (
ln

pool

TZiS ) of each TZ i. 

An Excel spreadsheet, ISCO treatment termination decisions using real time data.xlsx, is 

provided to enable site personnel to make real-time termination decisions from performance 

monitoring data based on the foregoing decision logic (Appendix A). 

   

5.7 ISCO cost model and design variables 

ISCO costs are computed for each forward simulation (i.e., Monte Carlo realizations) of ISCO 

performance. Since ISCO applications are typically conducted over relatively short time periods, 

costs are discounted for the time difference between the average julian date while the system was 

operating to the discounting reference date, rather than discounting for each in operation. The 

ISCO cost model is formulated as follows:  
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where type denotes the options for monitoring soil and groundwater concentrations in TZs which 

are soil concentration from soil borings (SBsoil) or geoprobe samples (GPsoil), groundwater 

concentrations from monitoring wells (MWgw) or geoprobe samples (GPgw), or measurements of 

both soil and groundwater from geoprobe samples taken from the same hole at the same sampling 

event (GPsoil+gw). Descriptions of variables in the cost function are summarized below.  

 

$NPV  total net present value ISCO cost ($K), 

$base
  

base fixed cost excluding other itemized cost variables ($K),  
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NMWnew  total number of new (not pre-existing) monitoring wells,  

$MWnew 
  

installation and decommissioning cost per monitoring well ($K/well), 

Mox  cumulative mass of oxidant injected - internally computed (kg), 

$mass  cost per unit oxidant mass utilized ($K/kg), 

Vox   cumulative fluid volume injected - internally computed (m3), 

$vol  cost per volume of injected fluid excluding $mass
 ($K/m3), 

Ipulse  indicator for pulse injection (1 if true else 0), 

Ninj  total number of injection events - internally computed,   

$inj mob  
mobilization cost for each injection event ($K/injection event), 

tISCO  total duration of the ISCO operation - internally computed (days), 

$time   cost per unit time for project management, reporting, etc. ($/day), 

NOXsmp total number of oxidant measurements ($K) 

$OXsmp cost per oxidant measurement ($K) 

Nmon mob  total number of performance monitoring events - internally computed, 

$mon mob  mobilization cost for each performance monitoring event ($K/event), 

d      annualized discount rate (yr-1) 

tstart   ISCO system start date (Julian yrs), 

tref     reference date for present value discounting (julian yrs), 

NTZ  number of treatment zones 

Iactive ij indicator = 1 if TZ j active during sampling event i else 0 (internally computed)  

Nloc/TZ j number of holes sampled per sampling event in TZ j (user input or optimized)  

Nsmp/loc number of depths sampled per hole per event (user input or optimized)  

0$type

smp   cost to collect, analyze, etc first sample depth for data of type ($/sample) 

1$type

smp   cost to collect, analyze, etc each additional sample depth at same time ($/sample) 

Note that 1$type

smp is relevant only if Nsmp/loc >1 and is applicable to soil borings, geoprobe data or 

multilevel monitoring wells, but not to conventional monitoring wells. For each data type, there 

will be a tradeoff between the sampling cost and uncertainty in average concentrations computed 

from the data and hence on treatment duration and the likelihood of mistakenly terminating 

treatment too early resulting in failure to achieve the expected source discharge reduction. 

Injection and monitoring events are assumed to be synchronized across treatment zones to 

minimize mobilization costs.  

Estimation of unit cost parameters in eq. (5.28) should be performed by or in cooperation with an 

ISCO design engineer. The number and locations of injection wells, and extraction wells if 

required, will be generally be determined based on hydraulic modeling. The design engineer 

should be able to directly estimate all unit cost parameters for terms beyond the third term in eq. 

(5.28), i.e., $time, $MWnew, $inj mob, $mon mob, and unit sampling costs. To estimate the remaining three 

cost variables $base, $mass and $vol, the following cost sensitivity calculations should be performed. 

(1) Compute cost for single pulsed injection of specified volume or for injection for a fixed 

duration for a continuous injection-recirculation system with an assumed oxidant 

injection concentration.     

(2) Compute cost for same conditions as (1) but for two pulsed injections or double the 

injection duration for continuous injection. 
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(3) Compute cost for same conditions as (1) but double the injected oxidant concentration. 

All of the above cost calculations must exclude all monitoring and other costs in terms beyond the 

first three in eq. (5.28). The cost, total injection fluid volume and total injected oxidant mass for 

the three cases should be tabulated and a regression performed to a three-term truncated form of 

eq. (5.29) to determine $base, $mass and $vol.  

Spreadsheets are available to determine ISCO unit costs from the foregoing cost sensitivity 

protocol for pulsed and continuous injection: ISCO unit cost calcs for pulsed injection.xlsx and 

ISCO unit cost calcs for continuous injection. xlsx (Appendix A). 

In addition to unit cost parameters, measurement uncertainty must be characterized for each 

sample type at local and global scales. Sample types considered for ISCO and designations of their 

local and global standard deviations are  

• Soil concentrations from conventional soil borings ln lnglob(  and )SBsoil SBsoil

local alS S  

• Groundwater samples from monitoring wells ln lngloba(  and )MWgw MWgw

local lS S  

• Soil concentrations from geoprobe samples ln lng(  and )GPsoil GPsoil

local lobalS S  

• Groundwater concentrations from geoprobe samples ln ln( and )GPgw GPgw

local globalS   S  

• Soil and groundwater collected concurrently with geoprobe ln ln( and )GPsoil gw GPsoil gw

local globalS   S+ +
. 

Values for the first four data types, 
ln

type

localS and ln

type

globalS are direct user inputs, which may be 

quantified by analyzing pre-remediation source characterization data as 

 ( )ln

1

1
ln

=

= 
TZN

type type

 local TZi

iTZ

S STDEV C
N

 (5.29a) 

 ( )type

ln STDEV ln= type

 global allS C  (5.29b) 

where STDEV is a standard deviation operator, type

TZiC denotes data of the specified type within TZi, 

and type

allC denotes combined data of the same type from all TZs. 

• Oxidant concentration in injected fluid per TZ, Cox0 

• Target average groundwater or soil concentration for TZ termination, 
type

stop  TZiC  

• Average groundwater or soil concentration above which reinjection begins, 
type

reinjectC   

• Number of sampling locations and depths per TZ for each data type 

• Time intervals between groundwater and soil sampling events Fsoil/gw, 
soil

mont /
gw

mont , and  

• Minimum number of groundwater sampling rounds following injection before 

termination or reinjection decision can be made, 
gw

minN . 

Our objective is to identify operational and monitoring strategies to minimize total expected (i.e., 

probability-weighted) cost to reliably achieve cleanup objectives.  
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5.8 Example applications 

5.8.1 Example 1 - Sensitivity to aquifer parameters 

Several simulations are investigated to evaluate sensitivity of ISCO performance to various aquifer 

parameters. All simulations consider a PCE DNAPL source with a single treatment zone having a 

plan view area of 1,125 m2 and a thickness of 5.5 m yielding a total treatment volume of 6,188 m3. 

The TZ width perpendicular to flow is 75 m resulting in a vertical plane area of 413 m2. Base case 

site parameters are summarized in Table 5.3. A source zone remediation target of
gw

stopC =100 g/L 

is used, which is assumed to yield concentrations below regulatory standards at downgradient 

receptors. This level corresponds to 
soil

stopC = 26 g/kg via eq. (5.18). A total of 18 injection wells is 

used with oxidant solution injected at 16.35 m3/d (3 gallons per minute) in each well until about 

1.25 pore volumes of oxidant solution is injected per well to ensure overlapping injection zones. 

Since there is only a single TZ, all injection wells are utilized during each reinjection event until 

the cleanup criteria is met. For all simulations in Example 1, average groundwater concentration 

in each TZ was determined quarterly (i.e., 
gw

mont = 90 days) with a minimum of two monitoring 

events (
gw

minN = 2). Groundwater sampling commences after the oxidant concentration drops below 

Cox min of 50 mg/L and continues until 
gw

avgC  exceeds 200 g/L, in which case oxidant reinjection is 

performed, or until 
gw

avgC  is less than or equal to 
gw

stopC  and the previous sampling round 
gw

avgC .  

Deterministic simulations were performed to evaluate the effect of groundwater velocity and 

injected oxidant concentration for the following cases: 

(a) q = 0.008 m/d and Cox0 = 5 g/L, 

(b) q = 0.008 m/d and Cox0 = 25 g/L, 

(c) q = 0.08 m/d and Cox0 = 5 g/L,  

(d) q = 0.08 m/d and Cox0 = 25 g/L. 

 

Table 5.3 Base case model parameters for example problems. 

Parameter Best Estimate Log uncertainty (Sln) 

Initial source mass, Mo 100 kg 0.2 

Initial dissolution rate, Jo 0.1 kg/d 0.1 

Depletion coefficient, β 0.75 0.1 

Groundwater velocity, q 0.008 m/d 0.05 

Porosity,   0.3 - 

Bulk density, ρb 1855 kg/m3 - 

Total NOD concentration, NODtot

soilC  2.0 g/kg 0.3 

Fast NOD fraction, fNODf 0.15 0.3 

NOD rate coefficient, kNODs 0.02 L/mmol MnO4
-1/day 0.3 
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Average concentrations versus time were computed for oxidant, “observed” (i.e., nonequilibrium) 

and asymptotic (equilibrium rebound) dissolved PCE, and soil PCE. These are shown in Figure 

5.2 without consideration of pore clogging as relative concentrations computed as Cox(t)/ Cox0 for 

oxidant and as ( ) ( )0( ) / ( )type type type type

avg stop avg stopC t C C t C− − for soil and groundwater contaminant 

concentrations, where t0 is the time immediately prior to ISCO such that 0( )soil

avgC t  is 9000 g/kg 

and 0( )gw

avgC t  is 7000 g/L for Cases (a) and (b) and 700 g/L for Cases (c) and (d). 

Time series curves for Case (a) indicate that soil and groundwater concentrations met the 

remediation objectives in about 16 months following three oxidant injections (open circle in Figure 

5.2a). However, because high oxidant concentrations persisted in the treatment zone much longer 

due to the low velocity, the groundwater monitoring protocol was unable to confirm completion 

until month 41. Comparison of equilibrium and nonequilibrium groundwater contaminant 

concentrations (solid and dashed blue lines) reveals about 10% of full rebound is reached in 3 

months following the first injection. For the second injection about the same percent rebound was 

not reached until 9 months after injection. This is expected, because rebound rate will diminish as 

source dissolution rate decreases with DNAPL mass. This phenomenon will contribute to the delay 

between actually reaching the remediation objective and confirmation by groundwater monitoring. 

The higher oxidant concentration for Case (b) is predicted to reduce the time to reach the cleanup 

objective more than 50% to about 7 months with only a single oxidant injection (Figure 5.2b), 

although the groundwater monitoring protocol does not confirm termination until 30 months, again 

due largely to slow flushing of excess oxidant from the TZ.  

Case (c) with a high velocity and low oxidant concentration (Figure 5.2c) exhibits more robust 

rebound than Case (a), with about 85% rebound in 3 months for the first injection and 17% in 3 

months for the second injection – about 8 times faster than Case (a). The faster rebound allows the 

third injection to be implemented sooner than for Case (a) resulting in actual attainment of the 

cleanup goal in only 12 months. However, the monitoring protocol triggered a fourth injection 

shortly before this, which extended the duration of monitoring to about 21 months. Due to more 

rapid flushing of excess oxidant at the higher velocity, the extended monitoring period was much 

shorter than for Cases (a) and (b). Enhanced mass transfer rates associated with a higher oxidant 

concentration for Case (d) sharply accelerated remediation with actual attainment occurring in less 

than 2 months with confirmation from groundwater monitoring in 9 months (Figure 5.2d).  

The foregoing simulations were repeated with pore clogging. The mass transfer inhibition factor 

(Fk) in eq. (5.3), representing pore clogging effects, was computed to range from 0.96 (slow flow) 

to 0.97 (fast flow), indicating that mass transfer was minimally affected. Remediation duration did 

not increase by more than 2 days for any of the cases. These observations agree with results of 

Huling and Pivetz (2006) and West and Kueper (2012).  

It should be noted that our results are based on a value for Srind in eq. (5.3) of -4.6 x 10-6 L/mg 

reported by West et al. (2007) for a test column. However, the value of Srind is likely to vary for 

different aquifer materials, so pore clogging effects may be larger or smaller than indicated by the 

simulations if Srind exhibits substantial variability. Localized pore clogging effects have been 

reported in DNAPL zones and near well screens at field sites (Reitsma and Randhawa 2002). If 

pore clogging is a concern, it would be advisable to calibrate Srind from laboratory or field pilot test 

data. 
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Another geochemical factor that can affect the availability of oxidant during ISCO is the rate 

constant for NOD oxidation (eq. 5.10). Table 5.4 presents remediation times and numbers of 

injection events for simulations with different groundwater velocities and NOD rate constants 

(kNODs) with Cox0 = 5 g/L. The range of kNODs values is based on Yan and Schwartz (2000) and 

Waldemer and Tratnyek (2006).  

 

Table 5.4 Time in months to attain an aqueous PCE concentration less than 100 μg/L for 

Example 1 with various NOD rate coefficients (kNODs) and groundwater velocities with Cox0 = 5 

g/L. Values in parentheses indicate the number of injection events. 

Darcy velocity 
kNODs, L/mmol MnO4

-1/day 

0.002 0.02 0.2 

0.008 m/d 30.48 (3) 16.27 (3) 12.16 (3) 

0.08 m/d  9.93 (3) 11.90 (4) 11.93 (4) 

 

 

NOD rate exerts a greater effect on remediation period than pore clogging especially at lower 

oxidant injection concentrations for the cases simulated. The NOD rate coefficient and 

groundwater velocity have a complex effect on remediation duration. At low groundwater 

velocities, advective oxidant loss is slow and higher NOD rates allow NOD to be depleted more 

quickly so contaminant oxidation can proceed. However, at high groundwater velocities, oxidant 

losses due to flushing become predominant and higher NOD rates scavenge more oxidant before 

it is flushed from the TZ leaving less for contaminant oxidation, increasing remediation duration. 

The above simulations considered the use of groundwater sampling only to make reinjection and 

termination decisions. We now reconsider Case (a) using soil and groundwater samples, which are 

assumed to be taken on the same schedule. Comparing the results of Case (a) with groundwater 

data only (Figure 5.2a) with that for soil and groundwater data (Figure 5.3) indicate that the second 

oxidant injection is initiated at the same time (3 months-after-start) for both cases. However, soil 

monitoring triggers the third and final injection only 3 months later (6 months-after-start), while 

using the groundwater data only delayed the third injection to 12 months after start. 

Actual concentrations met cleanup criteria 16 months-after-start with groundwater data only, but 

only 11.5 months-after-start with soil data. Monitoring was required to continue to only 12 months-

after-start with soil data, but 41 months-after-start with groundwater data only due to slow 

attenuation of oxidant concentrations. Cost savings may or may not result depending on the savings 

from less groundwater sampling versus additional costs for soil sampling. However, in 

circumstance where remediation duration is important, soil data should be strongly considered. 
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Figure 5.2. Example 1 results with groundwater monitoring only and no pore clogging for (a) q = 

0.008 m/d with 5 g/L oxidant, (b) q = 0.008 m/d with 25 g/L oxidant, (c) q = 0.08 m/d fast flow 

with 5 g/L oxidant, and (d) q = 0.08 m/d conditions with 25 g/L oxidant. Empty circle (○) 

indicates the time when groundwater concentration is less than 
gw

stopTZC =100 μg/L and solid circle 

(●) indicates the termination time based on the monitoring protocol. 

 

 

 
Figure 5.3. Results for Figure 5.2a except using soil and groundwater monitoring data. Empty 

circle (○) indicates the time when groundwater concentration is less than  
gw

stopTZC =100 μg/L 

(equivalent corresponding 
soil

stop allC  = 26 g/kg) and solid circle (●) indicates the termination time 

based on monitoring protocol. 
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5.8.2 Example 2 – Monte Carlo simulations and stochastic optimization 

In this series of problems, we evaluate effects of selected design variables and design approaches 

on ISCO performance and cost. Performance and cost uncertainty is represented by 100 Monte 

Carlo realizations of site parameters generated using log-normal distributions based on best 

estimates (taken as the geometric mean) and ln standard deviations (Table 5.2). Measurement 

uncertainty (Sln) for individual groundwater samples was assumed to be 0.5 and the corresponding 

value for soil samples, when taken, was 1.15. These values were used to simulate “noisy” soil and 

groundwater performance monitoring data. For all cases, groundwater samples were assumed to 

be taken quarterly (
gw

mont =90 d) from existing compliance monitoring wells (4 per TZ). Following 

each oxidant injection, oxidant concentration was determined on the quarterly schedule. 

Contaminant samples were not collected until the oxidant concentration dropped below Cox min 

taken to be 50 mg/L for all cases. Soil sampling and additional groundwater sampling were 

considered for selected cases. 

Three potential TZs, A, B and C from most to least contaminated, were identified from site 

characterization data (Table 5.5 and Figure 5.4). For unoptimized cases, ISCO treatment was 

terminated independently for each TZ with termination criteria 
gw

stop TZC =100 g/L. For optimized 

cases, site-wide termination was also considered with
gw

stop allC =100 g/L (independent of 

contaminant distribution among TZs). Individual TZ termination was allowed with optimized 

values of 
gw

stop TZC constrained to be  100 g/L. For cases with soil sampling, the corresponding 

soil

stopC value was computed from eq. (5.18). The 
soil

stopC value corresponding to best estimates of model 

parameters is 26 g/kg. Note, however, that 
soil

stopC  will vary for each Monte Carlo realization 

depending on stochastic values for source parameters and groundwater velocity (eq. 5.18). The 

oxidant reinjection criterion 
gw

reinjectC  was taken as 200 g/L for unoptimized cases and was 

optimized for other cases. The concentrations of injected oxidant 
0oxC  were assumed to be 10 g/L 

for all TZs for unoptimized cases, but were optimized for the optimized cases. Assumed unit costs 

for all simulations are summarized in Table 5.6. 

 

Table 5.5 Treatment zones and initial PCE concentrations for Example 2. 

TZ Area (m2) Width (m) Thickness (m) Soil concentration (mg/kg) 

A 200 25 5.5 10-100 

B 460 60 5.5 1-10 

C 465 75 5.5 0.1-1 

all 1125 75 5.5 0.1-100 
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Figure 5.4. Configuration of treatment zones for Example 2. 

 

 

Table 5.6 Unit costs for Example 2. 

Parameter Unit cost Parameter Unit cost 

$base 108.16 $k 0

GPsoil

smp$  0.90 $k/sample 

$mass 0.0055 $k/kg 1

GPsoil

smp$  0.30 $k/sample 

$vol 0.02076 $k/ m3 $OXsmp 0.10 $k/event/TZ 

$time 0.30 $k/day $penalty 106 $k/failure 

 

A total of 8 cases was investigated with 4 unoptimized Monte Carlo simulations (NoOpt1-NoOpt4) 

and 4 stochastic optimization cases (Opt1-Opt4). Design variables for NoOpt1 were selected to be 

representative of typical engineering practice for ISCO sites. NoOpt2, NoOpt3, and NoOpt4 

investigate the use of more stringent criteria for making termination decisions. Opt1 – Opt 4 

investigate the effects of stochastic optimization of ISCO design parameters with or without risk-

adjusted termination criteria and with or without employing soil concentration data to condition 

operational decisions.  

A summary of design variables that were fixed (bold values) or optimized (underlined) and of 

performance metrics (normal text) for each scenario is given in Table 5.7. The expected 

(probability-weighted) net present value (ENPV) cost, probability of average groundwater 

concentration failing to meet the target value, failure-adjusted ENPV cost, expected average 

groundwater concentration, expected treatment duration, expected total volume of oxidant solution, 

and expected total mass of injected KMnO4 are also summarized in Table 5.6. ENPV cost is the 

probability-weighted total cost excluding penalty costs. Also tabulated is an adjusted ENPV cost, 

which is the ENPV cost divided by the probability of successful completion (=1−failure 

probability). The latter is a normalized measure of cost to compare design alternatives with the 

probability of failure taken into account. Probability distributions of NPV cost excluding penalty 

costs are illustrated in Figure 5.5 for all NoOpt and Opt cases. 
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Table 5.7 Results for Example 2 unoptimized design (NoOpt1 – NoOpt4) and stochastic 

optimization scenarios (Opt1 – Opt4). 

Case NoOpt1 NoOpt2 NoOpt3 NoOpt4 Opt1 Opt2 Opt3 Opt4 

ENPV ($k) 1034 1062 1035 1066 955 959 952 957 

Adjusted ENPV ($k) 1 1077 1073 1067 1066 955 959 952 957 

Failure probability (%) 4 1 3 < 1 < 1 < 1 < 1 < 1 

Expected Cgw (g/L) 50 2 49 1 6 5 11 4 

Expected duration (yrs) 4.20 4.29 4.16 4.29 3.93 3.89 4.07 4.20 

Expected oxidant vol (m3) 5260 5344 5335 5410 4293 4680 3952 3845 

Expected oxidant mass (kg) 52.6 53.4 53.3 54.1 46.2 46.1 47.6 48.0 

Expected number of 

 injection events 

TZA 4.7 4.8 4.8 4.9 4.5 4.6 3.7 3.5 

TZB 1.9 1.9 1.9 1.9 1.4 1.6 1.3 1.4 

TZC 1.6 1.6 1.7 1.7 1.2 1.3 1.3 1.1 

Number of 
monitoring wells per 

TZ 

TZA 4 4 4 4 4 4 4 4 

TZB 4 4 4 4 4 4 4 4 

TZC 4 4 4 4 4 4 4 4 

Number of soil 

borings per TZ 

TZA 0 0 0 0 0 0 0 0 

TZB 0 0 0 0 0 0 1 1 

TZC 0 0 0 0 0 0 2 1 

Soil samples per boring 0 0 0 0 0 0 1 2 

Min. sampling events 2 3 2 3 2 2 2 2 

Soil sampling frequency 

(Fsoil/gw)  

0 0 0 0 0 0 3 3 

Significance level, α 0.50 0.50 0.05 0.05 0.50 0.05 0.50 0.05 

gw

stop TZC  (μg/L) 100 100 100 100 95 25 47 94 

gw

reinjectC  (μg/L) 200 200 200 200 306 269 344 339 

Cox0 (g/L) 

TZA 10.0 10.0 10.0 10.0 7.0 6.4 9.2 8.4 

TZB 10.0 10.0 10.0 10.0 13.2 11.6 15.5 14.5 

TZC 10.0 10.0 10.0 10.0 14.1 13.0 12.2 15.5 

1 Adjusted ENPV = no penalty ENPV / (1-Failure probability/100). 

Bold = fixed variables, underlined = optimized variables, others = computed results 
 

 

NoOpt1 Results. We regard NoOpt1 as a reasonable approximation of current “best engineering 

practice.” The termination criteria compares average groundwater concentrations to the cleanup 

target without adjustment for measurement uncertainty using the significance level α = 0.5 using 

data from 12 existing monitoring wells (4 in each TZ). Reinjection and termination decisisions are 

made indepdndently for each of the three TZs. A minimum of two sampling rounds after each 

injection is stipulated before a termination or reinjection decision can be made. Termination 

decisions require that the UCL of current TZ average concentration is less than the stop criteria 



5-24 

 

and less than or equal to the average for the previous sampling date. Termination decisions are 

allowed after a minimum of two sampling rounds 
gw

minN  after each injection. 

NoOpt1 had a 4% failure probability (i.e., probability of 
gw

avg  allC  > 100 g/L) with an ENPV cost 

of $1,034k and an adjusted ENPV cost of $1,077k. Inspection of the 4 NoOpt1 Monte Carlo 

realizations that failed to meet actual remediation criteria (based on “true” noise-free simulations) 

indicated that three of the four failures occurred because observed aqueous concentrations in one 

TZ remained at non-detect for the required minimium of two quarterly sampling events, thus 

triggering ISCO termination for that TZ. However, the actual full rebound concentration was much 

above the cleanup target. The erroneous early terminations were thus attributable to slow rebound.  

NoOpt2 Results. This case is identical to NoOpt1, except that the minimum number of sampling 

rounds following each injection event was increased from 2 to 3 to avoid erroneous early 

termination decisions noted in NoOpt1. Increasing the minimum number of sampling rounds 

eliminated the three erroneous early termination decisions associated with slow rebound in the 

NoOpt1 case, leaving only 1 noncompliant realization (1% failure probability). The reduced failure 

probability comes at the expense of an increase in the ENPV cost to $1,062k with a slightly lower 

adjusted ENPV cost of $1,073k.  

NoOpt3 and NoOpt4 Results. These two cases are identical to NoOpt1 and NoOpt2, respectively, 

except that a significance level α of 0.05 was used rather than 0.5 – i.e., the 95% UCL of average 

measured concentration rather than the average itself was compared with the target level to make 

termination decisions. NoOpt3 with a minimum of 2 sampling rounds has a 3% failure, which 

corresponds to the three Monte Carlo realizations that failed in NoOpt1 due to slow rebound. Using 

the lower α value of 0.05 in NoOpt3 eliminated the single NoOpt2 failure case, which was 

attributable to average measured concentrations substantially less than actual averages because of 

measurement “noise.” NoOpt4, with a minimum of three sampling rounds, has a failure probability 

<1% (i.e., less than the resolution of 100 Monte Carlo realizations). Using a higher minimum 

number of sampling events for NoOpt4 eliminated the remaining failure realizations associated 

with slow rebound. The ENPV and adjusted ENPV costs for NoOpt4 were $1,066k. 

Opt1 and Opt2 Results. These simulations optimize the number of groundwater monitoring wells 

from a minimum of 4 in each TZ (currently available compliance wells) to a maximum of 10 in 

each TZ. Quarterly sampling is assumed. No soil sampling is considered. A fixed value of two is 

specified for the minimum number of groundwater sampling rounds following each injection 

before termination or reinjection decisions can be made. Fixed values of α = 0.5 for Opt1 and α = 

0.05 for Opt2 are assumed. Additional optimized variables for these cases are injected oxidant 

concentrations for each TZ, average groundwater concentration below which ISCO can be 

terminated for an individual TZ 
gw

stopTZC , and average groundwater concentration above which 

oxidant reinjection will be intitated for a TZ 
gw

reinjectC . Note that since α and 
gw

stop TZC  are explicitly 

related via eq. (5.22), both cannot be optimized. Results for Opt1 indicate a failure probability of 

<1% (Table 5.6). The ENPV cost is $955k, which is $79k (7.6%) lower than that for NoOpt1, the 

“best engineering practice” case, which had a 4% failure probability. The adjusted NPV cost for 

Opt1 is $122k (11.3%) lower than that for NoOpt1. Compared to NoOpt4, which had a failure 

probability <1%, the Opt1 ENPV cost is $111k (10.4%) lower. Savings for Opt1 are achieved by 

a 3 month shorter expected duration, 18% lower total oxidant volume, and 12% lower oxidant 

mass utilized compared to NoOpt1. 
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Optimization of the number of monitoring wells for Opt1 kept the number at their initial values of 

four per TZ. The optimized oxidant concentration was 7 g/L for TZ A (the smallest, most 

contaminanted zone) and about 14 g/L for TZs B and C. The TZ stop criteria 
gw

stopTZC was slightly 

more aggressive (95 g/L) compared to the site-wide value 
gw

stop allC (100 g/L) and the optimized 

gw

reinjectC value of 306 g/L was significantly more aggressive than the value used for the NoOpt 

cases (200 g/L). The probability-weighted average number of oxidant injection events was 4.5 

for TZ A, 1.4 for TZ B and 1.2 for TZ C. 

Results for Opt2 with  = 0.05 differ little from Opt1. The failure probabilities were both  <1% 

and the ENPV cost of Opt2 was only $4k higher than Opt1. The more stringent  value used for 

Opt2 was offset by slightly less aggressive optimized TZ oxidant concentrations and a less 

aggressive
gw

reinjectC , while the optimized value of 
gw

stopTZC was more aggressive than for Opt1. 

Interactions among the optimized variables are clearly complex and nonlinear.  

Opt3 and Opt4 Results. These cases are the same as Opt1 and Opt2, except that soil sampling is 

considered in addition to groundwater monitoring. We still assume existing groundwater 

monitoring wells will be sampled and allow additional wells (up to 10 per TZ) to be installed. 

From 0 to 10 soil borings are also allowed for each TZ with up to 2 sample depths per boring. The 

frequency of soil sampling as a multiple of the quarterly frequency of groundwater sampling was 

also optimized between once a quarter to once every 4 quarters.  

Opt3 with α = 0.5 yielded a failure probability <1% and an ENPV cost of $952k, just $3k less than 

Opt1. Opt4 with α = 0.05 also had a failure probability <1%. Its ENPV cost was $957k, slightly 

higher than Opt1 and slightly lower than Opt2. The optimized number of monitoring wells for both 

Opt3 and Opt4 was 4 for each TZ, correponding to the initial wells available. The optimized 

number of soil borings was zero in TZ A and one in TZ B for both cases. The optimized number 

of soil borings for TZ C was two for Opt3 and one for Opt4. In addtion, the optimized frequency 

of soil sampling (Fsoil/gw) was once every three groundwater samplings for both Opt3 and Opt4, 

i.e., optimized Fsoil/gw = 3 indicating 
soil

mont =3
gw

mont . 

Optimized oxidant concentrations for each TZ were higher for Opt3 and Opt4 than for Opt1 and 

Opt2, resulting in fewer oxidant injections for Opt3 and Opt4 compared to Opt1 and Opt2. 

However, the average treatment duration for Opt 3 and Op4 were longer due to longer intervals 

between injection events to perform additional sampling. As observed for Opt1 and Opt2, similar 

cost and performance was achieved for Opt3 and Opt4 by optimizing 
gw

stop TZC , 
gw

reinjectC , Cox0, and 

performance monitoring variables, regardless of the assumed fixed value of α We regard Opt4 as 

the best case for optimization as it permits soil sampling to the extent justified by performance and 

cost and uses a conservative significance level which reduces failure probability.   

Inspection of cost probability distributions for the various cases (Figure 5.5) reveals a distinct 

positive skew for all NoOpt cases as evidenced by expected values that are significantly greater 

than the medians. This is much less the case for optimized simulations, which exhibit essentially 

zero skew for Opt3 and Opt4, slightly negative skew for Opt2, and positive skew for Opt1 (which 

was largely constrained by NoOpt assumptions). 
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Figure 5.5. Probability distributions of unadjusted NPV total cost excluding penalty cost for 

Example 2 cases: (a) NoOpt1, (b) NoOpt2, (c) NoOpt3, (d) NoOpt4, (e) Opt1, (f) Opt2, (g) Opt3, 

and (h) Opt4. 

  



5-27 

 

Narrowing our attention to the “current best practice” case (NoOpt1) and the most conservative 

optimization case (Opt4), we consider the probability of exceeding various adjusted total costs for 

these cases (Table 5.8). The low ends of the distributions are offset very little with nearly identical 

minimum costs for both cases. However, the offset between the distributions increases at higher 

costs with the Opt4 case offset approximately $150,000 below NoOpt1 for NoOpt1 costs above 

$1,100,000. While the adjusted expected cost for Opt4 is $120,000 less than that for NoOpt1, the 

maximum adjusted cost is $156,000 less for Opt4. Thus, optimization not only reduced the 

adjusted expected cost by 11.1%, but reduced the worst-case cost by an even greater amount 

(14.5%).    

 

Table 5.8 Probability of exceeding failure-adjusted costs for NoOpt1 and Opt4 cases. 

Adj. Cost, $ NoOpt1 Opt4 

   600,000 100% 100% 

   700,000 98% 94% 

   800,000 95% 81% 

   900,000 82% 63% 

1,000,000 61% 37% 

1,100,000 41% 17% 

1,200,000 27% 9% 

1,300,000 16% 3% 

1,400,000 5% 0% 

1,500,000 1% 0% 

1,600,000 0% 0% 

 

5.9 Summary 

We have presented a simplified model for DNAPL source remediation using ISCO that 

incorporates the most important physical and chemical processes with a variety of performance 

monitoring options for making real-time decisions and implementing most cost-effective 

solutions. Stochastic cost optimization is employed to determine design variables that minimize 

the expected (probability-weighted average) total cost to achieve defined remediation objectives. 

Sensitivity analyses indicated that sites with higher groundwater velocities can be expected to 

reach cleanup objectives sooner, although more oxidant may be required due to larger advective 

losses. Remediation duration decreased markedly with increases in the second-order NOD rate 

coefficient at lower velocities, but was much less sensitive at higher velocities due to advective 

oxidant losses. Remediation duration was predicted to decrease markedly with higher 

concentrations of injected oxidant due to enhanced DNAPL dissolution. Pore clogging was not 

found to be significant under the range of conditions studied using a literature value for the pore 

clogging coefficient Srind. However, since little information is available on the variability of this 

coefficient, we suggest field data be collected to calibrate the value if pore clogging is of concern.  

Simulation results reported here clearly demonstrate the importance of accounting for 

measurement and model uncertainty in the design process. Cases studied that had <1% probability 

of failing to meet cleanup criteria showed post-remediation probability-weighted average 
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groundwater concentrations ranging from 1 to 11 g/L – far below the cleanup target of 100 g/L. 

This implies that if one rigorously designed for average site conditions, the probability of failure 

would be very high.  

A unique feature of the proposed ISCO operational methodology is the introduction of a 

termination criteria that compares the upper confidence limit of average measured concentration 

at a specified probability level with the cleanup target to provide a margin of safety to termination 

decisions. Another component is a strict monitoring protocol for making decisions to reinject 

oxidant or terminate further treatment for treatment zones (TZ) within the aggregate treatment 

volume using only groundwater sampling or groundwater and soil sampling. Derived statistical 

termination criteria allow site-wide and treatment zone termination decisions to be made with 

equal reliability. In some cases, cleaning up less contaminated TZs to more stringent criteria can 

allow site-wide average concentration targets to be met earlier and with lower costs. ISCO design 

variables that may be optimized include: 

• Concentration of injected oxidant in each TZ 

• Cleanup targets for TZ termination (with fixed site-wide criteria) 

• Contaminant concentration above which reinjection will be initiated  

• Number of soil and/or groundwater sampling locations in each TZ 

• Soil and/or groundwater sampling frequency 

• Number of samples per location 

• Minimum groundwater sampling events following injection before termination decisions 

can be made (to allow for rebound)   

Non-optimized cases reported here (NoOpt1-NoOpt4) revealed two distinct modes of failure when 

using the proposed monitoring protocol. The first is measurement error – i.e., limited numbers of 

samples and measurement “noise” leads us to believe cleanup criteria have been met when they 

actually have not. The second is rebound lag error – i.e., if we require a minimum of 
gw

minN  rounds 

of groundwater samples after oxidant injection before making a termination decision, but it takes 

more than 
gw

minN  rounds before the concentration rebounds above non-detect, we will erroneously 

conclude the TZ is clean. The likelihood of the first error can be reduced by specifying a 

significance level  <0.5 or using a TZ stop criteria for soil or groundwater that is less than the 

site-wide criteria, i.e.,
gw

stop TZC  <
gw

stop allC . Considering the complexity of optimized parameter 

interactions evident in the optimization examples and the fact that α and 
gw

stop TZC  (or 
soil

stop TZC ) 

cannot be simultaneously optimized, we suggest to use a modest fixed value for α (e.g., 0.2 

corresponding to an 80% upper confidence limit) and optimize 
gw

stop TZC values. 

Costs for ISCO have been reported to range from $26 to $679 per m3 with median values between 

$123 and $163 per m3 (McDade et al. 2005, Krembs et al. 2010). The extremely wide range in 

reported volumetric costs likely reflects large variations in contaminant properties, initial 

concentrations, target cleanup levels, source depth and thickness, geologic complexity, etc. For the 

Monte Carlo simulations reported here, unit costs ranged from about $115 to $225 per m3, which 

is well within the reported range. 

For the hypothetical site considered, optimization of TZ oxidant concentrations, treatment zone-

level cleanup criteria, reinjection criteria, and performance monitoring variables yielded a failure-
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adjusted expected cost about 11% lower than a non-optimized case approximating current best 

engineering practice. Furthermore, the cost probability distribution for the optimized design 

eliminated positive skew evident in the “best practice” such that the worst case cost for the 

optimized design was 14.5% lower than that for the non-optimized design. Since the number of 

monitoring wells used for the “best practice” case was greater than is often available, and the 

number assumed fortuitously turned out to be optimal, significantly larger cost savings are likely 

to be realized in many cases.  

Because cost and performance sensitivity are highly dependent on many site-specific factors, we 

do not want to leave the impression that optimal ISCO operating or performance monitoring 

variables can be inferred from the specific cases presented here. However, adoption of the 

stochastic design process in conjunction with proposed real-time performance monitoring and 

decision-mking protocols promises to yield more robust, reliable and cost-effective applications 

of ISCO to DNAPL sites with real-world uncertainty taken into account. 

ISCO 

We have presented a simplified model for DNAPL source remediation using ISCO that 

incorporates the most important physical and chemical processes with a variety of performance 

monitoring options for making real-time decisions and implementing most cost-effective 

solutions. Stochastic cost optimization is employed to determine design variables that minimize 

the expected (probability-weighted average) total cost to achieve defined remediation objectives. 

Sensitivity analyses indicated that sites with higher groundwater velocities can be expected to 

reach cleanup objectives sooner, although more oxidant may be required due to larger advective 

losses. Remediation duration decreased markedly with increases in the second-order NOD rate 

coefficient at lower velocities, but was much less sensitive at higher velocities due to advective 

oxidant losses. Remediation duration was predicted to decrease markedly with higher 

concentrations of injected oxidant due to enhanced DNAPL dissolution. Pore clogging was not 

found to be significant under the range of conditions studied using a literature value for the pore 

clogging coefficient Srind. However, since little information is available on the variability of this 

coefficient, we suggest field data be collected to calibrate the value if pore clogging is of concern.  

Simulation results reported here clearly demonstrate the importance of accounting for 

measurement and model uncertainty in the design process. Cases studied that had <1% probability 

of failing to meet cleanup criteria showed post-remediation probability-weighted average 

groundwater concentrations ranging from 1 to 11 g/L – far below the cleanup target of 100 g/L. 

This implies that if one rigorously designed for average site conditions, the probability of failure 

would be very high.  

A unique feature of the proposed ISCO operational methodology is the introduction of a 

termination criteria that compares the upper confidence limit of average measured concentration 

at a specified probability level with the cleanup target to provide a margin of safety to termination 

decisions. Another component is a strict monitoring protocol for making decisions to reinject 

oxidant or terminate further treatment for treatment zones (TZ) within the aggregate treatment 

volume using only groundwater sampling or groundwater and soil sampling. Derived statistical 

termination criteria allow site-wide and treatment zone termination decisions to be made with 

equal reliability. In some cases, cleaning up less contaminated TZs to more stringent criteria can 

allow site-wide average concentration targets to be met earlier and with lower costs. ISCO design 

variables that may be optimized include: 
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• Concentration of injected oxidant in each TZ 

• Cleanup targets for TZ termination (with fixed site-wide criteria) 

• Contaminant concentration above which reinjection will be initiated  

• Number of soil and/or groundwater sampling locations in each TZ 

• Soil and/or groundwater sampling frequency 

• Number of samples per location 

• Minimum groundwater sampling events following injection before termination decisions 

can be made (to allow for rebound)   

Non-optimized cases reported here (NoOpt1-NoOpt4) revealed two distinct modes of failure when 

using the proposed monitoring protocol. The first is measurement error – i.e., limited numbers of 

samples and measurement “noise” leads us to believe cleanup criteria have been met when they 

actually have not. The second is rebound lag error – i.e., if we require a minimum of 
gw

minN  rounds 

of groundwater samples after oxidant injection before making a termination decision, but it takes 

more than 
gw

minN  rounds before the concentration rebounds above non-detect, we will erroneously 

conclude the TZ is clean. The likelihood of the first error can be reduced by specifying a 

significance level  <0.5 or using a TZ stop criteria for soil or groundwater that is less than the 

site-wide criteria, i.e.,
gw

stop TZC  <
gw

stop allC . Considering the complexity of optimized parameter 

interactions evident in the optimization examples and the fact that α and 
gw

stop TZC  (or 
soil

stop TZC ) 

cannot be simultaneously optimized, we suggest to use a modest fixed value for α (e.g., 0.2 

corresponding to an 80% upper confidence limit) and optimize 
gw

stop TZC values. 

Costs for ISCO have been reported to range from $26 to $679 per m3 with median values between 

$123 and $163 per m3 (McDade et al. 2005, Krembs et al. 2010). The extremely wide range in 

reported volumetric costs likely reflects large variations in contaminant properties, initial 

concentrations, target cleanup levels, source depth and thickness, geologic complexity, etc. For the 

Monte Carlo simulations reported here, unit costs ranged from about $115 to $225 per m3, which 

is well within the reported range. 

For the hypothetical site considered, optimization of TZ oxidant concentrations, treatment zone-

level cleanup criteria, reinjection criteria, and performance monitoring variables yielded a failure-

adjusted expected cost about 11% lower than a non-optimized case approximating current best 

engineering practice. Furthermore, the cost probability distribution for the optimized design 

eliminated positive skew evident in the “best practice” such that the worst case cost for the 

optimized design was 14.5% lower than that for the non-optimized design. Since the number of 

monitoring wells used for the “best practice” case was greater than is often available, and the 

number assumed fortuitously turned out to be optimal, significantly larger cost savings are likely 

to be realized in many cases.  

Because cost and performance sensitivity are highly dependent on many site-specific factors, we 

do not want to leave the impression that optimal ISCO operating or performance monitoring 

variables can be inferred from the specific cases presented here. However, adoption of the 

stochastic design process in conjunction with proposed real-time performance monitoring and 

decision-mking protocols promises to yield more robust, reliable and cost-effective applications 

of ISCO to DNAPL sites with real-world uncertainty taken into account. 
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6. Transport Model Calibration and Uncertainty Analysis 

6.1 Overview 

Before the dissolved plume transport model can be used to evaluate effects of various design 

variables on the expected performance and cost of remediation strategies of interest, a number of 

site-specific parameters must be estimated from site characterization data and other sources. Most 

model parameters will be subject to more or less uncertainty, depending on the quality and quantity 

of data available. In addition to parametric uncertainty, models are, by definition, simplifications 

of reality, and thus are subject to intrinsic model formulation errors associated with explicit or 

implicit simplifying assumptions that have been invoked. Measurements used to estimate model 

parameters are themselves subject to sampling and analytical errors, which also contribute to 

prediction uncertainty.  

Therefore, the first step that must be undertaken prior to employing a model to evaluate current or 

proposed remediation strategies is to perform model calibration using all available data and then 

to quantify parametric, intrinsic and measurement uncertainty. The model can then be used to make 

forward estimates of performance and cost and to quantify the prediction uncertainty. 

 

6.2 Computational methods 

6.2.1 Inverse modeling approach  

The purpose of the calibration/uncertainty analysis module is to determine best estimates of key 

model parameters and to quantify parametric and residual model uncertainty. The SCOToolkit 

model calibration process utilizes field measurements (which may comprise various types of data, 

e.g., contaminant concentrations, natural ED concentrations, and contaminant fluxes at various 

locations and times), and prior information about parameter values and their uncertainty. 

Assuming Gaussian (or log-Gaussian) measurement errors and prior parameter distributions, we 

seek to minimize the negative log of the posterior distribution, L, described by   

 ( ) ( ) ( ) ( )1 * 1 *1 1
( ) ( ) ( )

2 2

TTTL − −= − − + − −w w y h s R θ y h s s s Q s s  (6.1) 

where y is a vector of field measurements, s is a vector of parameter values, s* is a vector of prior 

parameter estimates, h(s) is a vector of model predictions corresponding to the field measurements, 

R is a matrix of measurement covariances corresponding to the vector of data types  (e.g., 

measured contaminant concentration, source mass, source mass discharge rate, etc.), w is a user-

defined weighting matrix, and Q is the covariance matrix of prior parameter estimates. Off-

diagonal terms are disregarded for w, R and Q. 

The last term in (6.1) is often referred to as a “penalty function” because it imposes a penalty on 

the objective function in proportion to the deviations between calibrated parameter values and their 

prior estimates normalized by their uncertainty. This functions like an elastic constraint. As 

parameters stretch further from their prior estimates, the penalty increases to constrain them unless 

there is a sufficient counteracting force from reduced deviations between measurements and model 

predictions. This feature makes the inverse solution very robust. By specifying prior best estimates 

of model parameters and uncertainty in the prior estimates, the inverse solution is much more 

stable and allows improved estimates of more parameters to be made than would otherwise be 
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possible. Therefore, it is important to carefully consider all information at your disposal, from 

direct site data to experience with similar sites or literature correlations, to specify prior estimates 

of parameters and their uncertainty. In addition to variable constraints on parameters associated 

with the stipulation of prior parameter uncertainty, absolute upper and lower constraints may also 

be placed on any parameters. 

Each model parameter and each data type may be log-transformed prior to application of eq. (6.1). 

For parameters or data types that are physically constrained to be non-negative and that are 

expected to exhibit a coefficient of uncertainty greater than ~20%, log-transformation is advisable. 

Also, calibration data types that exhibit ranges in the data set that extend over several orders-of-

magnitude, log-transformation may be desirable if comparable relative error (as opposed to 

absolute error) is desired over the measurement range. Otherwise, the regression results will likely 

be controlled by absolute errors from a small number of large data values. 

Field measurements of contaminant concentrations, source mass, etc. that are calibration targets in 

the objective function may also be log-transformed at the discretion of the analyst. Since these 

values are invariably physically constrained to be non-negative and exhibit large variability, log-

transformation is highly advisable in most cases. It should be recognized that when calibration 

data are log-transformed, the objective function effectively seeks to minimize the relative error in 

measurements rather than the absolute error. This is generally desirable, since a 10 ppm error in a 

1000 ppm value is easily acceptable, while a 10 ppm error in a 1 ppm value is much less so. 

Nevertheless, it should be recognized that log-transformation has the effect of putting greater 

weight (in absolute terms) on small values than large values, hence on defining the plume perimeter 

more accurately than the magnitude of “hot spots.” To the extent the analyst requires more or less 

weight on certain values, user-prescribed weights can be assigned to individual data points of 

groups of data.  

A related calibration issue involves the handling of calibration data that are below detection or 

quantification limits. Since the log of zero is undefined, entering these values as zero is not an 

option. The inclination to enter such values as small nonzero values, such as 10-10, however, will 

produce undesirable results. To illustrate, consider a data point that is below the detection limit of 

say 1 ppb. The model predicts a value of 0.1 ppb. Not too bad, but the ln deviation would be ln(0.1) 

– ln(10-10) = 20.7 and the squared deviation would be 429, which would likely dominate the 

objective function resulting in very poor model calibration. As a practical matter, setting non-

detect values equal to around 10% of the detection limit will produce reasonable results. 

The magnitude of each data type’s uncertainty (i.e., diagonal terms in R) is generally not known a 

priori, but posterior estimates can be made using the Restricted Maximum Likelihood (RML) 

algorithm (Kitanidis, 1987). Note that the final estimate of residual prediction uncertainty R for 

each data type represents the portion of data variability that cannot be accounted for by the model, 

which may be due to sampling or measurement errors and/or to intrinsic limitations of the model 

to represent all processes in the field. For simplicity, we will refer to this uncertainty as the 

“residual” error. A gradient-based nonlinear optimization algorithm is used to find the solution 

that minimizes (6.1). 
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6.2.2 Evaluation of model prediction uncertainty 

Uncertainty in forward simulations of remediation performance and cost is characterized using a 

MC modeling approach. Liu et al. (2010) have shown that linearized uncertainty methods compare 

well with more rigorous and much more computationally intensive than Markov Chain Monte 

Carlo (MCMC) methods when data is not inordinately noisy and reasonable prior information is 

available to condition parameter estimates. Thus, we utilize linearized uncertainty propagation 

methods to generate conditional parameter realizations. 

An estimate of the posterior covariance matrix is computed from the final calibration results as 

 ( )
1

1 1cov( ) ( )T
−

− − +s H R θ H Q  (6.2) 

where Hij= i jh / s  is a sensitivity matrix. As noted above, incorporating prior estimates of 

parameters and their uncertainty into the regression objective function greatly reduces non-

uniqueness problems in the inverse solution and allows many more parameters to be calibrated 

than would be possible with unconstrained optimization. This not only allows refinement of 

parameters with relatively low uncertainty that may otherwise be assumed at their prior estimates, 

but allows interactions among more parameters, through the covariance matrix, to be taken into 

consideration in the error analysis. 

Performance models are used to simulate soil and/or groundwater concentrations in source zones 

during ISCO or thermal treatment, groundwater concentrations at ED injection gallery monitoring 

locations, and soil and/or (resident or flux) groundwater concentrations at compliance wells, which 

are used for making “real-time” operational decisions during simulations (e.g., to turn remediation 

systems off, terminate monitoring, or incur “penalty costs”).  

Monet Carlo realizations are computed in two steps: 

1. The first step is to generate Nmc equiprobable realizations of all uncertain model parameters 

for the problem under consideration using standard methods for multivariate Gaussian 

distributions (e.g., Press et al, 2007) based on parameter best estimates and covariances 

determined from the calibration and user-defined uncertainty for specified non-calibrated 

variables. If log-transformations of parameters were used during calibration, the same 

transformations must be used for parameter generation. In addition, uncorrelated normal 

or log-normal “noise” may be optionally applied to non-calibrated model inputs – including 

cost model coefficients. Simulations are performed for each parameter set realization. 

2. The second step adds log-normal “white noise” to each realization using a user-specified 

natural-log standard deviation that represents errors associated with sampling and 

measurement methods and those attributable to deviations from model simplifications. We 

recommend taking the later as the residual error in the current model calibration (i.e., 

standard deviation of calibrated and measured ln concentrations.  

NPV cost is computed for each MC realization (including penalty costs for noncompliant 

realizations) and the expected NPV cost across all realizations is determined. This protocol—in 

conjunction with the “penalty cost” assigned to realizations that fail to meet remediation 

objectives—ensures that optimized design parameters will be sufficiently conservative to achieve 

an acceptable probability of meeting compliance criteria. 
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6.3 Transport model calibration protocol 

6.3.1 Overview 

Since transport model parameters can, at best, only be roughly estimated a priori, model calibration 

to measured contaminant concentrations and other data, is critical to realize the maximum possible 

accuracy. Furthermore, uncertainty in model parameters, and predictions based upon them, can 

only be determined through inverse modeling methods as discussed above. While a priori estimates 

of many model parameters have large uncertainty, others exhibit small or moderate uncertainty. 

Even for parameters with large a prior uncertainty, if the range can be narrowed from 2 to 1 orders-

of-magnitude, calibration accuracy, reliability and even feasibility can be significantly improved. 

There are two important categories of poor models we will call ‘bad’ and ‘really bad.’ Merely bad 

models exhibit very high uncertainty; however, they are accurate within these wide bounds. That 

is, reality lies somewhere within the broad confidence limits. This is the realm of “known 

unknowns.” Remediation plans based on such models will lead to very conservative but reliable 

designs.  

Really bad models may have wide or not so wide confidence limits, but reality lies outside the 

limits. This is the realm of “unknown unknowns,” which can lead to very poor decisions. Really 

bad models are typically the result of erroneous assumptions – most often associated with an 

inappropriate conceptual model or incorrect boundary conditions. Boundary conditions in the 

SCOToolkit transport solution are rigorously formulated and the only user requirement is to select 

an output mode consistent with the sample type (e.g., flux concentrations for monitoring wells). 

We will consider conceptual model issues later. 

Another possible cause of really bad models is non-uniqueness in the inverse solution. The 

inversion algorithm used by SCOToolkit is very robust and relatively immune to non-uniqueness. 

However, insufficient or very “noisy” calibration data and/or poor specification of prior parameter 

values can lead to poorly posed inverse problems. The protocol described below employs all 

available quantitative and qualitative information to formulate a stable inverse solution and tests 

for possible non-uniqueness. 

 

6.3.2 Development of site conceptual model 

Development of an accurate site conceptual model is a critical task. If it is substantially wrong, 

nothing else will matter. Important components include characterizing the groundwater flow 

regime (e.g., aquifer properties, flow velocity and direction) and identifying contaminant sources 

(e.g., locations, dimensions, contaminants). The aquifer may be unconfined or semi-confined. 

Groundwater flow is treated as horizontal and planar, although mildly curvilinear horizontal flow 

paths may be approximated. Vertical groundwater flow is not explicitly considered, although 

effects of a steady-state vertical hydraulic gradient may be approximated for shallow sources by 

higher or lower vertical dispersivities for downward and upward gradients, respectively.  

The analytical transport solution assumes statistically homogeneous and isotropic aquifer 

properties – except for decay coefficients, which may be zoned as a function of distance from the 

source. Of course, no aquifers are strictly homogeneous. Statistical homogeneity means that 

properties can be upscaled or averaged at a scale sufficient to describe field behavior. For example, 

if permeability varies in a more-or-less random fashion independent of direction or distance from 
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a source, the “effective” upscaled permeability will approximate the geometric average of local 

scale values. If permeability exhibits a high correlation scale in the horizontal direction and a low 

correlation scale in the vertical direction (i.e., stratified beds), the effective horizontal permeability 

will correspond to the thickness-weighted arithmetic average. When permeability ratios between 

adjacent layers are large and lower permeability layers are thick, diffusional mass transfer 

limitations may arise, which may be upscaled as described in Chapter 2. 

Provided upscaled properties do not exhibit substantial spatial trends – i.e., upscaled properties at 

proximal and distal ends of the plume are similar – the analytical solution will usually be 

applicable. However, as the degree of local heterogeneity increases, mismatches between the 

averaging scale of the model and measurement scales will usually increase. For example, if the 

aquifer consists of alternating 1 m thick high and low permeability layers and monitoring wells 

are screened over several meters, model and measurement scales would be harmonious. However, 

if water samples are obtained from multi-level wells with very short screens, model and 

measurement scales would not be consistent. The later data could still be used for calibration, 

effectively using the inverse solution to perform upscaling. However, the average deviation 

between measurements and model simulated values will be much larger than if the measurements 

were available at a scale consistent with the model. For the example given, this could be achieved 

by vertically averaging small scale measurements over intervals of 2 m or more. In general, 

calibration error will decrease as the scale of field measurements increases. Field measurements 

also exhibit short term fluctuations which may be due to transient hydraulic fluctuations or to 

variability in sampling and lab analyses. In any case, averaging over time (e.g., annual averaging 

of quarterly samples) will also reduce calibration error. From an exposure risk standpoint, model 

accuracy at larger time and space scales is usually more important than at smaller scales.    

Keep in mind that a single SCOToolkit source function can represent residual DNAPL or DNAPL 

lenses or pools, but not both. If both are significant, you should use different sources for residual 

DNAPL and pools or lenses. Multiple sources may be completely separated, partially overlapping 

or completely overlapping.   

Many DNAPL sites have significant contamination from multiple species, which may occur due 

to releases of multiple contaminants and/or to in situ biotransformations of an initially released 

species. For example, PCE can degrade to TCE which degrades in turn to 1,1-DCE and then to 

VC. Since PCE and TCE have similar toxicological characteristics, when both occur in significant 

amounts, it may be useful to combine the two as a single “pseudo-species” for purposes of 

modeling with SCOToolkit, which can only model one nominal species at a time.   

Before proceeding further, confirm whether your conceptual model is reasonably within the 

bounds of SCOToolkit assumptions. 

 

6.3.3 Groundwater flow field 

Although the analytical transport model explicitly assumes a uniform planar groundwater flow 

field, SCOToolkit considers mildly nonlinear flow fields using a coordinate transformation to map 

nonlinear streamlines described by a cubic polynomial to “equivalent” planar coordinates. Field 

coordinates are usually specified by survey data in northing and easting values relative to a from 

a reference location. However, any Cartesian coordinate system may be adopted, provided the 

units are in meters.  
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If a planar flow field model is employed, the user must specify field coordinates for the center of 

a vertical plane at the downgradient edge of the source or ED gallery and the flow direction (in 

degrees positive counterclockwise or negative clockwise from the field X-axis). If a nonlinear 

streamline is applicable, in addition to source coordinates (Xo,Yo), coefficients a, b and c of the 

polynomial Y = Yo+a(X−Xo)+b(X−Xo)2+c(X−Xo)3 must be specified.  

A constraint on the polynomial streamline model is that X-axis values of the streamline must 

increase or decrease monotonically along the streamline. An example of a non-monotonic 

streamline is illustrated in Figure 6.1a below. Note that from northernmost end of the streamline, 

flow is initially to the southeast. But this gradually shifts south and then southwest resulting in 

multiple northing values for single easting values. However, if the coordinates are reversed as 

illustrated in Figure 6.1b, the function becomes monotonic with respect to the x-axis, now taken 

as northing.  

Unless the streamline is non-monotonic with respect to both the easting and northing, this simple 

axis swap resolves the problem. All that is required is to fit parameters with the reversed 

coordinates and to input northing values for all x-axis inputs and easting values for all y-axis inputs 

in SCOToolkit (e.g., source locations, well locations, gallery locations, etc.). When plotting model 

results as a map view (e.g., plume contours or posted values), it will simply be necessary to 

remember to switch the coordinates back for a normal map view (i.e., north up).  

The process of fitting linear or polynomial model parameters can be performed easily using the 

SCOToolkit Excel tool Streamline calulation.xlsx, which includes detailed instructions and 

automatically checks for and performs axis swapping as necessary (Appendix A).   

 

Figure 6.1. Streamline that is (a) non-monotonic with respect to the X-axis (easting), and 

(b) same data with axes swapped giving a monotonic function versus northing on the X-axis. 

 

6.3.4 Initial estimates of model parameters and their uncertainty  

Statistical issues 

Make a list of all parameters pertinent to your site conceptual model. You will need to make best 

estimates of all model parameters considering all site data at your disposal, plus experience with 

similar sites, published parameter ranges, and reported correlations with other variables. You will 

also need to quantify the uncertainty in each parameter. We will discuss methods to estimate 
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various SCOToolkit parameters below. But first, let’s consider a few issues regarding the 

quantification of parameter uncertainty. 

SCOToolkit allows users to represent parameter uncertainty using either a normal or log-normal 

distribution. A normal distribution with a coefficient of variation (ratio of mean to standard 

deviation) greater than about 0.3 has a significant likelihood of including negative parameter 

values, which are physically impossible for parameters in SCOToolkit. A few parameters, such as 

porosity, may have small enough uncertainty that a normal distribution could be used. However, 

since normal distributions are closely approximated by log-normal curves when the coefficient of 

variation is small, it is more convenient to use the log-normal distribution for all parameters. Note 

that the standard deviations of a natural log-transformed parameter (Sln) is a dimensionless measure 

of relative uncertainty. As discussed in section 6.3.2, most model parameters represent “effective” 

values averaged over the entire model domain. For physical quantities like porosity, simple 

arithmetic averaging is applicable if we have measurements from multiple samples. For other 

parameters, like hydraulic conductivity, the “effective” value depends on the spatial configuration 

of “point” values. For example, for flow parallel to layers, simple arithmetic averaging is 

appropriate, for flow perpendicular to layers harmonic averaging is applicable, while for randomly 

distributed heterogeneity, geometric averaging (i.e., averaging log values) is best.  

To the extent that effective field scale property values are determined from multiple local scale 

measurements, we need to characterize uncertainty in the effective or averaged value (Sln avg), not 

that of individual sample measurements (Sln smp). These quantities are related via 

 ln

ln ln 1/2

smp

avg

S
S S

N
 =  (6.3) 

where N is the number of samples in the data set used to compute the average (or “effective”) 

value. For example, if we have data for 9 slug tests with a sample ln standard deviation Sln smp of 

0.6 (i.e., standard deviation of all ln measurements), then Sln avg is 0.6/91/2 = 0.2. The latter is the 

uncertainty applicable to SCOToolkit (e.g., for use in computing pore velocity uncertainty which 

we will discuss later). We use the notation Sln here to designate uncertainty in effective parameter 

values. If multiple measurements are available from which to compute average or effective values, 

(1) may be used to calculate Sln.     

Another statistical relationship is useful for estimating the uncertainty of a value that is computed 

from multiple linearly related uncertain variables. If parameter q =f(p1,p2...pn), where f is a linear 

function of uncorrelated variables p1, p2, etc., then 

 

1/2

ln ln

1
i

N

q p

i

S S
=

 
=  

 
 . (6.4) 

For example, if mean hydraulic conductivity, hydraulic gradient, and porosity are estimated as 25 

m/d, 0.01, and 0.3 with Sln values of 0.1, 0.05 and 0.05, respectively, then the mean pore velocity 

is 25x0.01/0.3 = 0.83 m/d with an Sln of (0.102+0.052+0.052)1/2 = 0.12. 

For some parameters, data will not be available to explicitly compute parameter uncertainty. In 

such cases, use your experience and/or published results to estimate reasonable upper and lower 

bounds (Pmax and Pmin, respectively) for the parameters. If these bounds are taken to represent p% 

confidence limits, then Sln = (ln Pmax − ln Pmin)/t2(p) where t2 is ~2, 4 or 6 for p = 66, 95 and 99%, 

respectively. 
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Prior parameter estimates are used as the starting point for the nonlinear regression algorithm and 

uncertainty estimates are used to constrain the estimation algorithm by placing a “penalty” on the 

objective function as estimates stray further from the prior best estimate relative to the parameter 

uncertainty.  

The bane of nonlinear regression problems is non-uniqueness. When data being regressed is 

“noisy” and there are a lot of uncertain parameters, multiple sets of model parameters can produce 

nearly indistinguishable fits to the data, which may lead to false parameter estimates. Fewer 

parameters with smaller uncertainties reduce the likelihood of this. However, if some initial 

parameter estimates are significantly off and uncertainty has been underestimated, the over-

constrained regression may be unable find the “true” solution. So, there is a tradeoff. If parameter 

uncertainty is overestimated, non-uniqueness may cause problems. However, if it is 

underestimated, the solution may be over-constrained. In general, it is safer to error on the side of 

overestimating prior parameter uncertainty. But don’t overdo it.  

 

Aquifer parameters  

One of the most critical variables in the transport model is the mean contaminant velocity  

 eff

q
v

R
=  (6.5a) 

 1 b dk
R




= +  (6.5b) 

where q is the darcy velocity,  is porosity b is bulk density, and kd is the sorption coefficient. 

Parameter inputs required by SCOToolkit to compute the mean contaminant velocity are q,  b 
and kd. Note that since these parameters are all linearly related, we can only calibrate one of them. 

Any attempt to calibrate others would result in an infinite number of solutions with identical fits 

to calibration data.  

Darcy velocity is commonly estimated as the product of mean hydraulic gradient estimated from 

water level data, and hydraulic conductivity based on slug and/or pump tests.  

Porosity and bulk density can be measured on core samples. However, since their range is rather 

small, their values are often assumed based on studies of similar aquifer material. Given an 

estimate of porosity  and using a typical particle density s of 2650 kg/m3, bulk density b can 

be estimated from porosity as 

 (1 )b s  = − . (6.6) 

Sorption coefficients for organic chemicals can be estimated from aquifer organic carbon content 

foc as 

 d oc ock f k=  (6.7) 

where koc is a carbon normalized sorption coefficient, values of which are widely tabulated for 

common organic contaminants. Organic carbon content can be easily measured on samples of 

aquifer material, but since it can exhibit large spatial heterogeneity in some aquifers, it is advisable 
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to take several samples. Since only the average value is required for modeling, lab costs can be 

reduced by compositing the samples.  

If multiple species are modeled as a single pseudo-species, a weighted average koc value will need 

to be used, which may be computed as 

   

1

sN

oc pseudo oc i i

i

k k f
=

=   (6.8) 

where koc i is the koc value for species i and fi is a ratio of the average concentration of species i 

within the plume to the average of pseudo-species concentration. Note that differences in koc for 

multiple species will result in greater apparent dispersion of the pseudo-species plume compared 

to individual plumes. 

Decay coefficients are difficult to determine directly from individual wells with any accuracy, 

since nominal attenuation rates observed in wells depend on many factors in addition to chemical 

or biological transformations (e.g., dispersion, source attenuation). An alternative method for 

making initial estimates of the decay coefficient is to compute plume-wide ratios fij of the average 

concentration of daughter species i to that of parent species j over time and regress the data to 

compute the decay coefficient λ from 

 
ln ij

ij

d f

dt
 =  (6.9) 

Note that if a pseudo-species is modeled j represents the pseudo-species and i is the net daughter 

product of the pseudo-species. For example, if the pseudo-species is PCE+TCE, then fij is the ratio 

of DCE to PCE+TCE. The decay coefficient for PCE+TCE → DCE will be much smaller than the 

decay coefficient for PCE → TCE or TCE → DCE. Therefore, uncertainty in the decay coefficient 

will have much less effect of prediction uncertainty for the pseudo-species model.  

 

Source parameters 

As part of the site conceptual model development, estimates of average source length Lx, width Ly, 

and thickness Lz, and coordinates for the center of the downgradient vertical plane should be made 

for each source. Note that all source dimensions refer to the source configuration below the water 

table only. If the source is located completely within the unsaturated zone, width and length refer 

to the dimensions of the area at the water table impacted by leaching from the source. Source 

thickness in this case should be specified as a small but non-zero value, e.g., 0.5 m. Vertical 

dimensions are taken as positive downward with zero at the water table. Thus, a DNAPL pool 

lying from 4 to 5 m below the water table in a 10 m thick aquifer would have a source thickness 

of 1 m and a mid-point vertical coordinate of 4.5 m. Estimates of source width and thickness may 

be refined during calibration within specified lower and upper ranges based on site characterization 

data.  

Additional parameters required for each source include: initial date of contaminant release ts, final 

data of contaminant release to, source depletion exponent , total contaminant mass Mcal in the 

source at date tcal, and discharge rate Jcal at tcal, where tcal is a specified date prior to any source 

treatment actions at which data is available to make initial estimates of Mcal and Jcal. Initial ranges 

for ts and to can generally be determined based on operational history of the site.  
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In some cases, estimates of the mass of released contaminant may be estimated from operational 

records, although inventory records are notoriously uncertain. Nevertheless, such data can 

sometimes be helpful to establish brackets for reasonable values. Better estimates can generally be 

made from Nsoil soil samples collected within the source zone (at time tcal) for which soil 

concentrations
soil

smpC [M M-1] are measured for the species or pseudo-species that is to be modeled.  

Estimates of Mcal and its uncertainty ln McalS can be determined from such data by 

 ( ) soil

cal smpM V avg C=  (6.10a) 

 
( )( )

( ) ( )

1/2
2

2 2

ln ln ln

ln soil

smp

Mcal V

soil

stdev C
S S S

N


 
 = + +
  
 

 (6.10b) 

where  is the soil dry density with uncertainty Sln , V is source volume with uncertainty Sln V, 

avg(x) is the average of series x and stdev(x) is its standard deviation. ln McalS can be quite high 

unless the sample size (i.e., soil volume or mass) and/or sample number is large. For the purpose 

of estimating source mass, compositing samples over the entire boring interval will improve 

accuracy and reduce lab analysis costs.   

Estimates of Jcal and its uncertainty ln JcalS can be determined from measurements of contaminant 

concentrations in groundwater
gw

smpC [M L-3] on a vertical plane representative of the downgradient 

edge of the source or slightly up- or downgradient. Estimates of Jcal and its uncertainty ln JcalS can 

be determined from gwN groundwater samples as  

 ( ) gw

cal y z smpJ qL L avg C=  (6.11a) 

 
( )( )

( ) ( ) ( )

1/2
2

2 2 2

ln ln ln ln

ln gw

smp

Jcal q Ly Lz

gw

stdev C
S S S S

N

 
 = + + +
  
 

 (6.11b) 

where q is darcy velocity with uncertainty Sln q, Ly is source width with uncertainty Sln Ly, and Lz is 

thickness with uncertainty Sln Lz 

The most difficult to estimate source parameter is , which controls the shape of the J(t) and M(t) 

curves. Field observations of source mass and/or discharge rates over time are necessary to 

calibrate . As a first step, identify whether the source is predominantly residual DNAPL or 

DNAPL pools and/or lenses. Values of  for pools or lenses may range from about 0.1 to 1.0. 

Residual DNAPL values will be greater than 1.0. There is no hard upper bound, but values much 

above 2 are not common. If you can identify the source as a pool/lens, an initial estimate of  = 

0.4 with Sln = 0.3 is reasonable. For residual sources, a value of  = 1.6 with Sln = 0.15 is a good 

starting point. If you have no idea about the DNAPL “architecture,” using a value of  = 0.7 with 

Sln = 0.45 as a first guess with Sln = 0.3. These values can be used as prior estimates and refined 

by analyzing field data.  
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A simple method to estimate  from field can be derived by noting that  is the slope of a log-log 

plot of discharge rate versus source mass remaining as 

 
( )

( )

2

1

2 1

2 1

ln ( ) / ( )ln ( )
  

ln ( ) ln ( ) / ( )

t

t

J t J td J t

d M t M t M t
 = =  (6.12a) 

where t1 and t2 are times when measurements are made. Furthermore, 

 ( ) ( )2 1 2 1ln ( ) / ( ) ln ( ) / ( )gw gw

avg avgJ t J t C t C t=  (6.12b) 

 ( ) ( )2 1 2 1ln ( ) / ( ) ln ( ) / ( )soil soil

avg avgM t M t C t C t=  (6.12c) 

where ( )gw

avgC t = ( )( )gw

smpavg C t and ( )soil

avgC t = ( )( )soil

smpavg C t . We may thus substitute (10b) and/or 

(10c) into (10a) to estimate  from source mass or soil concentration data and source discharge or 

groundwater concentration data. When limited soil concentration data are available or engineered 

source mass reduction has occurred, current mass remaining may be computed as  

 ( )2 1 1 2( ) ( )  ( ... )gw

y z smp remM t M t qL L avg C t t M= − −  (6.12d) 

where ( )1 2( ... )gw

smpavg C t t is the average of all groundwater concentration measurements over the 

period from t1 to t2 and Mrem is the quantity of contaminant mass removed by source remediation 

efforts such as excavation or thermal treatment. The accuracy of  estimates made from various 

forms of (10) will improve as t2−t1 increases, or more specifically as the mass reduction ratio 1− 

M(t2)/M(t1) increases. Ratios greater than 20-30% are more likely to yield reliable  estimates. 

A more flexible approach to estimate Jcal, Mcal, and  simultaneously from soil and/or groundwater 

data available at multiple dates is to employ the above methods to obtain initial parameter estimates 

and then employ a nonlinear regression method to further refine parameters. This has been 

implemented in an Excel program titled Source function parameter estimation from field 

data.xlsm which employs measured soil and groundwater concentrations from a source area to 

estimate source parameters that may be taken as prior estimates for use in eq. (6.1) to refine source 

parameters concurrently with aquifer and other parameters based on site-wide data  (Appendix A). 

 

6.3.5 Decide what parameters to calibrate 

Having made prior estimates of all parameters, we now need to decide which parameters will be 

regarded as “known” and which will be refined by calibration to field data. The more parameters 

we attempt to calibrate and the less constrained they are (i.e., the greater their prior uncertainty), 

the more likely we are to have an ill-posed inverse problem, which means there may be multiple 

parameter sets that fit the data equally well or nearly so. So, we need to be selective about what 

we calibrate.  

Recall that since darcy velocity, porosity, and sorption coefficient are linearly related, only one 

may be calibrated. The parameter with the greatest uncertainty (Sln) should be selected to calibrate, 

with others fixed at their best estimates.  
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Two factors determine the priority ranking as to what other parameters should be calibrated. One 

factor is the parameter uncertainty (Sln) that we have already discussed. The second factor is the 

sensitivity of the output of interest to the parameter. The product  of these two factors represents 

the uncertainty in model output associated with a unit ln standard deviation from the best estimate. 

We could evaluate  by determining the mean square deviation between the model and calibration 

data (or some other statistic) for a “base case” with all parameters at their best estimates minus the 

same statistic for each parameter at a value one ln standard deviation above its best estimate. 

Parameters with the highest  should be calibrated, while the lowest may be fixed at their best 

estimate. An alternative but less rigorous method to rank parameters to calibrate is to consider only 

the parameter uncertainty.  

Either way, the cutoff for the number of parameters to calibrate will depend on how well-posed 

(or ill-posed) the inverse problem is, which depends on the quality of the calibration data. A 

practical way to decide how many parameters to calibrate is to compare the total model variance 
2

ln totS  for calibrations performed using the same regression dataset with different calibrated 

parameter sets, computed as  

 
2 2 2

ln ln lntot reg parS S S= +  (6.13) 

where Sln.reg is the log standard deviation of the regression (root mean square deviations between 

model and measurements), and Sln.par is log standard deviation associated with parameter 

uncertainty computed from the parameter covariance matrix and average parameter sensitivities 

as described in section 6.4.3. Since our goal is to minimize total uncertainty, parameters should 

only be calibrated if they produce a decrease in Sln tot. As the number of parameters increases, Sln.reg 

will decrease monotonically, although the magnitude of reduction will gradually diminish. On the 

other hand, Sln.par will generally increase with more parameters as the covariance matrix grows. 

The optimum parameterization occurs when a increase in Sln.par overtakes a decrease in Sln.reg. (see 

Figure 6.6 in section 6.4 of this chapter).  

 

6.3.6 Calibration data averaging and weighting 

The calibration data file will include a list of concentration measurements from field samples with 

their respective survey coordinates, depths below groundwater, and sample dates. Various types 

of data may be specified including resident concentrations, flux concentrations, soil 

concentrations, etc. Measurements for water samples taken from monitoring wells or extraction 

devices are best regarded as flux concentrations.  

An important consideration in setting up a calibration problem involves the handling of non-

detects. We advise to input non-detect concentrations as values equal to 20% of the detection limit 

and to set a minimum model concentration equal to 20% lower (i.e., 4% of the non-detect 

concentration). Any model predicted concentrations less than the prescribed minimum will be set 

to the minimum value for purposes of computing calibration deviations. This approach reasonably 

represents non-detects, and prevents simulated concentrations that may be many orders of 

magnitude smaller than the detection limit from inordinately influencing the calibration.  

Although individual measurements may be input for calibration, if multiple samples have been 

taken annually over a substantial number of years, computational time will be much faster if annual 

average concentrations are input. Averaging also reduces calibration data “noise,” which can help 
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stabilize the inverse problem. For each data point in the calibration input, the user must specify the 

number of underlying samples Nsmp  – i.e., 1 for a single sample, 2 for semi-annual averages, 4 for 

quarterly sample averages, etc.  

Also, for each calibration data point, the user must specify a prior estimate of the ln standard 

deviation between the single measurements and model predictions (Sln cal prior). For a given 

sampling method, the same Sln cal prior value is input regardless of the number of samples averaged 

to obtain the data value. Many factors can affect Sln cal prior including well or push probe diameter, 

screen or sample length, purge volume, soil vs. water samples, etc.  Note that for a given sampling 

method, the input value of Sln cal prior will be the same regardless of the number of samples averaged 

for the data point.  

Finally, for each data point in the calibration file, the user can specify an optional user weight Wuser 

to give more or less weight to certain data – e.g., for “key” wells or to put more weight on low 

concentrations to better delineate the plume perimeter. The net weight applied to each calibration 

data point is computed internally as 

 

1/2

ln

user smp

net

cal

W N
W

S
=  (6.14) 

where Sln cal = Sln cal prior for the first regression iteration. The regression data set is divided into 

sampling method groups that have the same Sln cal prior values. After each iteration, posterior 

estimates of Sln cal are computed from the current regression results for each sampling method 

group. The values are iteratively refined and final values Sln cal post are reported with the final 

calibration results.  

 

6.3.7 Calibration verification and refinement 

After a calibration run has been performed, a log-log plot of observed versus simulated 

concentrations should be inspected. Ideally, a regression of the scatter plot should have a slope 

close to 1 and an intercept close to 0 – i.e., it should center on a 1:1 line with equal scatter above 

and below independent of concentration. If there is bias in the scatter, additional weight may be 

applied to data points within specified concentration ranges to help reduce the bias. For example, 

if concentrations between 100-1000 scatter evenly about the 1:1 line, while values <100 and >1000 

are biased above or below the 1:1 line, additional weight may be applied to values <100 and >1000. 

Weights may be adjusted by trial and error to minimize the sum of squared deviations between the 

model and data, regression coefficient, or other relevant statistic. Time series plots for 

“representative” sample locations should also be inspected to verify that time-trends are reasonably 

captured by the model.  

Ideally, a well calibrated model will have a symmetric scatter plot with a majority of data points 

within about one order-of-magnitude of the 1:1 line and with reasonably consistent time-trends. 

Models with larger scatter, noisier time trends and minor deviations from the 1:1 line will result in 

greater prediction uncertainty. Results that show substantial deviations from the 1:1 line are more 

problematic. In some cases, the problem may be attributable to excessively noisy or insufficient 

calibration data (e.g., too few or poorly placed observation locations and/or data spanning too short 

a time-period). Deviations from the 1:1 line or failure to capture general time trends may reflect 
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deviations from the conceptual model, in which case Step 1 should be reviewed—especially source 

parameterization and aquifer description, including flow direction and curvature. 

To test for non-uniqueness, it is advisable to run inverse solutions starting from different initial 

values within the prior confidence bands. For example, instead of starting from geometric mean 

values, randomly select starting values that are within one standard deviation of the prior best 

estimate. If you get widely different parameter estimates that produce divergent simulation results 

over time, it may be helpful to reduce the number of parameters being calibrated (i.e., make sure 

parameters being calibrated produce a lower information criterion as defined by eq. (6.13)).  If this 

fails, additional data may be necessary to improve the model calibration.  

 

6.4 Example application for hypothetical multi-source problem 

The objective of this problem is to investigate tradeoffs between DNAPL source model, calibration 

data, and the accuracy and precision of predicted mass discharge over time. We also address the 

problem of identifying optimal model formulation and data collection strategies considering 

prediction uncertainty and cost-benefits of data collection.  

6.4.1 Synthetic data sets 

A hypothetical problem is considered for a large industrial site involving multiple TCE sources 

within a roughly 120,000 m2 area (Figure 6.2) with different location coordinates, areal and vertical 

extents, release dates, initial masses, and dissolution kinetics (Table 6.1). The depletion coefficient 

 ranges from 0.6 (pools/lenses) to 1.35 (residual NAPL), representing a range of DNAPL 

“architectures.”  Sources 1-3 occur within the upper third of the aquifer (“shallow zone” 0-4 m 

below water table), Sources 4-6 occur within the “intermediate zone” (4-8 m below water table), 

and source 7 occurs in the “lower zone” (8-12 m below water table).  Source 1, which is the larger 

source in the shallow zone, may be attributable due to multiple releases at the ground surface, a 

large buried source, or a waste disposal pond. Source 5 represents vertical DNAPL migration from 

Source 1. Sources 2 and 3 are less areally extensive releases with smaller total mass than Source 

1. Sources 4 and 5 and 6 represent vertical DNAPL migration from Sources 2 and 3, respectively. 

The shallow and intermediate zones are assumed to be characterized by thin discontinuous fine-

grained material interbedded in a permeable matrix with most DNAPL occurring in small pools or 

lenses (only source 4 in the intermediate zone is dominated by residual DNAPL). Interbedding is 

assumed to be absent from the lower zone, such that vertical migration from sources 5 and 6 results 

in predominantly residual DNAPL in source 7. 
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Figure 6.2.  Plan view of DNAPL source zones for example problem. 
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Table 6.1.  “True” source parameters for synthetic problem. 

 Sources  

 1 2 3 4 5 6 7 

Release date, toi (years) 1966 1962 1960 1965 1969 1960 1971 

x coordinate, xoi  (m) 10,308 10,111 10,205 10,092 10,322 10,214 10,358 

y coordinate, yoi  (m) 5,017 5,027 4,865 5,044 4,987 4,863 4,920 

Mass flux at toi, Joi  (kg/d) 0.153 0.045 0.030 0.073 0.118 0.131 0.069 

Source mass on toi, Moi  (kg) 1,333 174 242 283 958 409 1,110 

Source depletion exponent, βi 0.60 0.70 0.80 1.10 0.60 0.75 1.35 

Source width, Lyi (m) 116 32 40 52 108 52 108 

Depth (m) 0–4 0–4 0–4 4–8 4–8 4–8 8–12 

 

With 7 parameters per source zone, the combined DNAPL source is described by a total of 49 

parameters (not counting aquifer parameters). Thus, although the model formulation is highly 

idealized, it remains much too complex to calibrate with realistically attainable data without 

simplification. Synthetic data sets will be used to evaluate the effect of various simplified 

parametric formulations on prediction uncertainty. TCE concentrations in 22 fully screened 

monitoring wells were simulated for each year from 1987 to 2009 using the 7-source model 

assuming v = 0.1 m/d,  = 0.3, R = 1.2, AL = 120 m, AT = 16 m, Lz = 12 m, and x12 = 1000 m.  

The aquifer is assumed to be aerobic with reductive dechlorination rates of  = 0.0003 d-1 near 

the source and  = 0.0001 d-1 further downgradient. Log-normally-distributed “noise” in TCE 

concentrations with a ln-standard deviation (Sln) of 0.8 was assumed to represent conceptual and 

sampling/measurement error in the synthetic monitoring data. Well locations and “measured” 

(noisy) concentrations in 2009 are illustrated in Figure 6.3. 

 

 

Figure 6.3. Locations of monitoring wells and TCE concentration data in 2009. 
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In addition to dissolved concentrations from monitoring wells, quarterly measurements of TCE 

discharge rates from sources were assumed to be obtained from 2005 through 2009 over three 

depth intervals from a line of multilevel wells across the width of the combined source zones. Data 

were generated for a depth of 0 to 4 m (representing totals from sources 1-3), 4 to 8 m (representing 

sources 4-6), and 8 to 12 m (representing source 7 only). High noise mass discharge data were 

generated with Sln = 0.83 to represent discharge rates estimated from dissolved concentration data 

and average estimated groundwater velocity. Since actual groundwater velocity at each sampling 

location will deviate from the estimated average (which is also uncertain), the noise level for these 

discharge estimates is assumed to be greater than the noise used to generate dissolved 

concentration “data” from the model. Low noise mass discharge “data” with Sln = 0.24 were 

generated to represent more accurate direct measurements (Basu et al. 2006, Cho et al. 2007).  

 

6.4.2 Model calibration 

The simplest and most straightforward approach to calibrating source model parameters to enable 

forward estimates of source mass discharge rate versus time is to estimate Jcal, Mcal and  from 

field measurements of discharge rate over a period of time for a given source (or combination of 

sources) to match model predictions. Note that tcal is arbitrary and that in this case the release date, 

source coordinates and source width cannot be calibrated nor are they needed for forward 

predictions of mass discharge.  

A practical limitation of the foregoing approach is that accurate source flux estimates are rarely 

available for a very long period if at all, which makes the inverse problem ill-posed, resulting in 

poor parameter estimates. More seriously, this calibration approach sidesteps the more important 

problem of predicting future behavior of the dissolved phase plume and disregards information 

content inherent in monitoring well data, which is more extensive and usually available for a 

considerably longer time period. These drawbacks can be diminished by simultaneously 

calibrating source parameters and dissolved plume parameters in the coupled DNAPL source and 

dissolved transport model (Chapter 2) to fit measured contaminant concentrations and source flux 

data, if available, using the inverse solution algorithm described by eq. (6.1). We assume that the 

synthetic data set described in the previous section describes the “real” system. 

The “real” system in our hypothetical problem is characterized by a total of 59 parameters (7 for 

each source plus 10 aquifer parameters). It should be clear that we have little hope of estimating 

these many unknowns with realistically attainable prior information and calibration data. We must 

therefore use a simplified model. Of course, reality is infinitely more complicated than our 

hypothetical problem such that even the most complex model may be a gross simplification. 

However, as we shall see, our problem will serve its illustrative purpose. In this study, we consider 

the following different model formulations: 

Case 1-3. Single source with 3 parameters – Single source described by Jcal1, Mcal1 and   

Case 1-10. Single source with 10 parameters – Single source described by Jca1l, Mcal1,  and 

to1  plus aquifer parameters q, , kd, AL, AT, and 1=2. 

Case 2-13. Two sources with 13 parameters – Two source functions described by Jca1l, Jca12, 

Mcal1, Mcal2, ,  and to1=to2 plus aquifer parameters q, , kd, AL, AT, and 1=2. 
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Case 3-16. Three sources with 16 parameters – Three source functions described by Jca1l, Jca12, 

Jca13, Mcal1, Mcal2, Mcal3, , ,  and to1=to2=to3 plus aquifer parameters q, , kd, AL, AT, and  

1=2. 

Case 3-21. Three sources with 21 parameters – Three source functions described by Jca1l, Jca12, 

Jca13, Mcal1, Mcal2, Mcal3, , , , to1=to2=to3, xo1=xo2=xo3, yo1=yo2=yo3, and Ly1=Ly2=Ly3 plus 

aquifer parameters q, , kd, AL, AT, 1, 2 and L12. 

Case 3-27. Three sources with 27 parameters – Three source functions described by Jca1l, Jca12, 

Jca13, Mcal1, Mcal2, Mcal3, , , , to1, to2, to3, xo1, xo2, xo3, yo1, yo2, yo3, Ly1, Ly2 and Ly3 plus 

aquifer parameters q, , kd, AL, AT, 1, 2 and L12. 

The single source three-parameter model was calibrated to source flux data only with two variants:  

Data set a – high variance source flux data only (Jhi) 

Data set b – low variance source flux data only (Jlo) 

The other models require dissolved plume data to calibrate transport-related parameters, but may 

also employ source flux data. For Cases 1-10 and higher, the following calibration data sets were 

employed  

Data set c – Monitoring well concentration data only (C)  

Data set d – Monitoring well data and high variance source flux data (C+Jhi) 

Data set e – Monitoring well data and low variance source flux data (C+Jlo).  

This results in additional model formulation and data set combinations (e.g., Cases 1-10c, 1-10d). 

For cases with three source functions, Source 1 is assumed to represent DNAPL from 0 to 4 m 

below the water table, Source 2 from 4 to 8 m deep, and Source 3 from 8 to 12 m. For cases with 

two source functions, Source 1 is assumed to represent DNAPL between 0 to 8 m deep – hence 

flux data for 0 to 4 m and 4 to 8 m are added. For cases in which a single source function is assumed, 

flux data is summed across all depths. Calibration results for more than three sources are not 

presented, as the inverse problem was poorly posed due to the large number of unknown 

parameters.    

In addition to the synthetic field data described above that can be used for calibration by comparing 

with model predictions, we assume that site characterization and literature studies yield prior 

estimates of model parameters – some with fairly narrow confidence limits and others with large 

error bounds. For example, porosity can generally be estimated within a narrow range from boring 

logs with limited core testing, average groundwater velocity can often be estimated with somewhat 

greater uncertainty via hydraulic tests and water level data, while initial source mass estimates are 

usually highly uncertain. For each model formulation studied, prior estimates of parameter 

uncertainty and (biased) initial estimates of parameters themselves were assumed that are deemed 

to be typical of prior information available at many sites. For the simpler model formulations, prior 

values of non-calibrated parameters were treated as “known” and remained fixed during 

calibration. For calibrated parameters, prior estimates serve as initial guesses to be refined by 

calibrating to the available data subject to the constraint imposed by penalty term in (6.1). 

Results from 13 calibration cases will be discussed here. A summary of the model formulations, 

calibration data employed, prior information assumed, and final parameter estimates is given in 

Table 6.2. For all cases, tcal = 2009 was assumed. 
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6.4.3 Accuracy and precision of mass discharge predictions  

After performing model calibration, combined total TCE mass discharge from the source zones 

was computed through year 2100 using the calibrated parameters. Prediction precision was 

quantified by 

 
2 2 2

ln ln lnk k ktot reg parS S S= +  (6.15) 

where ln ktotS is the total ln uncertainty is source discharge on date t=tk, ln kparS is the error due to 

parameter uncertainty, and ln kregS is the residual regression error. The regression variance for 

prediction k with independent variables (xk, yk, tk) is computed as 
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where i =1 to No refers to observations used for calibration, overbars signify averages over the 

calibration data set, and MSE is the mean square error in concentrations used for calibration, 

computed as  
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where Np is the number of calibrated parameters. Error due to parameter uncertainty is estimated 

using a first-order error propagation method (e.g., Unlu et al., 1995), given in matrix notation as 

 
 ln  P C =2 T

S J Cov J  (6.18) 

where the LHS is a vector of variances due to parameter uncertainty for all predictions of interest, 

J is a Jacobian matrix, and Cov is the parameter covariance matrix. Terms in the Jacobian are 

 ln i
ij

j

C
J

P


=


 (6.19) 

where Ci is the ith prediction and Pj denotes the jth uncertain parameter, which as previously noted 

is either the actual parameter value or its natural logarithm depending on the variable. The 

covariance matrix is estimated as 

 ( )
1

MSE
−

= T
Cov J J . (6.20) 

One-sigma error bars on model predictions prior to, during and after the calibration period are 

shown for selected calibration cases in Figure 6.4 along with the “true” behavior, which is known 

for our hypothetical problem. Average values of ln kT JS for post-calibration dates between tk = 2010 

to 2100 (i.e., “out-of-sample” predictions) are tabulated for all cases in Table 6.2.  

The true discharge curves (Figure 6.4) exhibit a distinct change in slope on the semi-log scale after 

2025, reflecting the increasing dominance of fluxes from low  pools in Source 7 as the shallower 

lower  sources become nearly depleted. Not surprisingly, the single source function models are 

not able to capture this trend change. The 3-parameter single source models calibrated to J data 

only (Cases 1-3a and 1-3b) perform particularly poorly, predicting discharge rates <1 g/d by 2060, 
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whereas the true discharge does not reach this level for another 130 years in 2190 (not shown in 

figures). Using lower variance J data (Case 1-3b) improved prediction precision somewhat (i.e., 

lower prediction uncertainty), but did not improve accuracy. 

 

 

Figure 6.4. One-sigma error bars for predicted total TCE discharge from source zone vs. time for 

selected calibration cases. Solid points are best estimates for the calibrated model and smooth 

blue lines are “true” discharge for the exact multi-source functions. 
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Table 6.2. Summary of calibration analysis results.  
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Calibrating the single source model with plume C data only (Case 1-10c) substantially improved 

long-term accuracy compared to the 3-parameter models calibrated with near-source J data only 

(Cases 1-3). Using low quality (high noise) source zone discharge measurements in addition to 

plume C data (Case 1-10d) yielded an insignificant reduction in prediction uncertainty compared 

with plume C data only (Case 1-10c), indicating that the low-quality source discharge 

measurements conveyed little additional information for calibration. However, high-quality source 

discharge measurements in conjunction with plume data (Case 1-10e) reduced prediction 

uncertainty approximately in half.  

Adding second and third source functions (Cases 2-13c and 3-16c) resulted in progressive 

reductions in uncertainty as well as improved prediction accuracy. Increasing the number of 

parameters in the three-source model to 21 (Case 3-21c) resulted in little change in precision or 

accuracy. Further parameter additions (Case 3-27c) also yielded little change in accuracy, but 

yielding a notable increase in prediction uncertainty. 

The foregoing results demonstrate that the quality and quantity of data available for model 

calibration has a strong effect on the accuracy and precision of out-of-sample predictions. This is 

clearly illustrated by comparing the average STlnJ for TCE discharge predictions (post-calibration) 

for the five single-source model formulations (Cases 1-3a, 1-3b, 1-10c, 1-10d, and 1-10e), which 

incrementally employ more and/or higher quality data (Figure 6.5). The results reveal 

monotonically diminishing out-of-sample prediction uncertainty as the quantity and quality of data 

increase while using the same source model formulation. 

 

 
 

Figure 6.5. Effect of increasing data quality/quantity on average prediction uncertainty for single 

source models (Cases 1-3a, 1-3b, 1-10c, 1-10d, 1-10e from left to right). 
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6.4.4 What is the optimal conceptual model formulation?  

Now, let us turn to the somewhat philosophical question of defining the “best” model formulation. 

Scientific purists may contend that the “best” model is the one that describes all processes of 

interest with the greatest rigor known to science, and hence that presents the truest possible 

depiction of reality. From this perspective, the notion of an “optimal” model may seem like 

statistically inspired heresy. However, it is beneficial to reflect that all mathematical models are 

by definition simplifications of reality that attempt to predict a limited number of dependent 

variables in response to a limited number of independent variables within limited time and space 

scales. From a practical perspective, mathematical models serve as tools to predict system 

responses to certain variables to facilitate real-world decision-making.  

For the moment, let us define “best” as the model that gives the lowest uncertainty in predictions 

of interest for a given set of data that is available for calibrating uncertain model coefficients. For 

the case addressed in this paper, let us assume that future source mass discharge is the output that 

we are interested in predicting. Figure 6.6 plots average out-of-sample prediction uncertainty (STlnJ) 

for models with a range of complexity, as represented by the number of calibrated parameters. 

Using monitoring well concentration data only, Cases 1-10c, 2-13c, 3-16c, 3-21c, and 3-27c 

exhibit a minimum prediction uncertainty with 16 calibrated parameters. Prediction uncertainty 

increases sharply for simpler models and more gradually for models with more parameters, but it 

is clear that too much as well as too little complexity can adversely affect model precision.      

Using concentration data plus low variance source flux measurements for calibration, Cases 1-10e, 

2-13e, 3-16e, 3-21e, and 3-27e exhibit similar behavior to the C-data only, except that the optimum 

model shifts to 21 parameters with a minimum prediction uncertainty that is about 40% less than 

when only concentration data is available (Figure 6.6). The results suggest that an optimal model 

complexity exists that will minimize total prediction uncertainty for a given set of calibration data. 

Adding further complexity to the model beyond this optimum not only does not improve model 

predictions, but actually induces greater uncertainty. The only way to reduce prediction 

uncertainty further is to obtain more and/or better data to support calibration of a more rigorous 

model. 

 

Figure 6.6. Prediction uncertainty vs. number of fitted parameters for 1, 2 and 3 source models 

using C data only (triangle) or C data plus low noise J data (square). 
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Extrapolation of the above results suggests that perfect predictions may be possible if unlimited, 

error-free data were available to calibrate a model that rigorously represents reality. Unfortunately, 

real data is subject to error and costs time, effort and money to collect and process. Therefore, the 

optimal model complexity will ultimately depend on tradeoffs between the cost of collecting 

specific additional data versus the value of the data in terms of the benefits resulting from 

improvements in prediction precision and accuracy. Since the value of model improvements 

clearly depend on the models’ application and purpose, the “best” model must be viewed an elastic 

concept that depends on the specific objectives of the model.  

To investigate the effect of problem specific objectives on model selection and the value of 

additional data, let us return to our example problem and consider the use of our source zone model 

to guide remediation decisions. For this purpose, assume that natural processes at the site have 

been determined to be capable of attenuating source zone discharge of up to 1 g/d. We wish to 

evaluate costs for the following remediation options and illustrative cost functions: 

Permeable Reactive Barrier (PRB). A reactive barrier is installed and operated downgradient 

of the source until the source discharge is <1 g/d. The cost is $200k fixed cost + $100k/yr. 

Partial Source Reduction (PSR). Source zone thermal treatment is performed to reduce 

contaminant discharge to <1 g/d. The cost is $2,400k fixed cost + $50k/yr. 

Total net present value (NPV) costs are computed with operating costs discounted at 3% per year. 

Expected (probability-weighted average) cost and 99% upper confidence limit (UCL) cost are 

tabulated for Cases 3-16c and 3-21e for the two remedial options in Table 6.3. The NPV cost for 

PRB is higher than for PSR; however, there is very little difference between the expected cost and 

the UCL despite the sensitivity of PRB duration to uncertainty in source mass. Low sensitivity of 

NPV cost to source mass uncertainty is due to time discounting. A lower discount rate would 

sharply increase the UCL as well as the expected cost (due to positive skew in cleanup time). This 

is a good example of the sensitivity of decision problems on even seemingly minor details of the 

objective function formulation. 

If expected NPV cost is taken as the “best” (unbiased) statistical measure of cost performance, 

PSR would be selected as the best remedial option regardless of model formulation. Although the 

estimated PSR expected cost is lower for Case 3-16c than for Case 3-21e, the actual cost will be 

the same regardless of the model used because both formulations yield the same decision (i.e., 

PSR cost < PRB cost for both parameterizations. In this sense, the additional data employed for 

Case 3-21e (low variance source flux measurements) has no value in terms of the decision outcome 

or actual cost savings. 

However, a risk-averse party may prefer to make decisions that minimize an UCL of cost. Based 

on the 99% UCL, Case 3-16c indicates the PRB system is slightly preferable to PSR. However, 

since this decision would be contrary to the choice based on expected cost and also contrary to 

selecting the lowest UCL PSR cost for Case 3-16c, such a decision looks foolhardy. With regard 

to the value of collecting data to calibrate Case 3-21e, if one takes into consideration the need to 

hold cash reserves sufficient to cover the UCL cost, then the value of the low variance flux data 

for Case 3-21e may be estimated as the difference between the UCL cost for Cases 3-16c and 3-

21e times the foregone investment return over the holding period. 

So, for this practical example, we find that although Case 3-21e offers significantly lower 

uncertainty in source mass discharge predictions, the value of this improvement may not warrant 
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the cost of the additional data needed to support the more complex model. Given different 

remediation objectives, technologies, unit costs or discount rates that lead to greater decision 

sensitivity to prediction uncertainty, a higher value of additional information may arise that 

justifies a more rigorous model. 

 

Table 6.3. Total net present value costs for simplified decision analysis problem. 

Model 

Formulation 

PRB  

Expected Cost 

PRB  

99% UCL Cost 

PSR  

Expected Cost 

PSR  

99% UCL Cost 

Case 3-16c $3,390,000 $3,460,000 $2,785,000 $3,556,000 

Case 3-21e $3,415,000 $3,460,000 $2,476,000 $2,629,000 

 

6.5 Summary 

The ability to estimate DNAPL source mass discharge versus time from contaminated sites is 

important to facilitate effective and efficient remediation technology selection and design. 

Unfortunately, the extreme complexity of source zone “architecture” makes rigorous 

characterization impractical and mandates adoption of simplified empirical models. The 

practitioner is faced with a number of difficult questions: How much simplification or complexity 

is optimal given the remediation objectives, data available and time/cost constraints? What is the 

uncertainty in predicted performance and how does this affect the decision process? What data 

should be collected? 

The results of this study indicate that source functions calibrated to measured source discharge 

time-series of relatively short duration have the poorer accuracy and precision than functions 

calibrated jointly with transport parameters using longer time-series dissolved concentration data 

from wells over the entire dissolved plume. Accuracy and precision generally improved further 

when both dissolved concentration data and low variance source discharge measurements were 

used for calibration. High variance source discharge measurements (e.g., computed from dissolved 

concentration data and estimated mean groundwater velocity) did not improve predictions. 

Although we did not directly address the problem of identifying what additional data may be 

beneficial, the proposed methodology can easily be employed to evaluate the effect of specific 

additional types of data and sampling locations, frequency, and duration may be most beneficial 

in terms of reducing prediction uncertainty. Of course, this approach cannot be implemented until 

some minimum amount of data is available to perform a preliminary calibration. In practice, an 

iterative approach involving incremental calibration, assessment of data needs, and collection of 

additional data would likely be most cost effective.     

For a given data set available for calibration, an optimal model complexity – as represented by the 

number of calibrated parameters - was found that minimized forward prediction uncertainty. More 

complex models (e.g., multiple source functions, spatially variable decay, estimated source 

coordinates, release dates, etc.) generally reduced prediction uncertainty up to a point beyond 

which added complexity proved to be a liability unless additional or more accurate data can be 

obtained. Thus, the “no free lunch” principle exerts its influence when model complexity surpasses 

the information content of calibration data.  
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Defining the optimal model formulation and optimal data collection program for a given specific 

field application requires quantification of the benefit of improved model precision and the cost of 

additional data. As illustrated by a simple cost analysis problem, the optimal model formulation 

and data collection depends not only on the site and model characteristics but on remediation 

objectives, characteristics of specific technologies under consideration, and cost functions. Due to 

high costs for field data collection, quantification of the monetary value of specific data within the 

context of model-informed decision analysis deserves more attention. While detailed analyses to 

determine optimal model formulation may not be justified in many cases, the use of error 

propagation methods to circumscribe prediction uncertainty holds the potential to greatly improve 

more-based decisions. 

It should be evident that the “best” model cannot be selected based merely on minimization of 

residual calibration error. The addition of a sufficiently large number of adjustable parameters can 

always produce vanishingly small residual error. Unfortunately, small calibration error provides 

no assurance of neither forward prediction accuracy nor precision. Since we do not know the future 

(and if we did we would have no need for a model), forward accuracy cannot be assessed until 

after the future arrives. However, we can evaluate forward prediction uncertainty from calibration 

results, which provides the best means available to assess the utility of a model for forecasting the 

future. This approach is not foolproof since limited or erroneous data, fundamentally flawed 

conceptual models (e.g., unidentified sources, misunderstood processes), or just plain bad luck 

(low probability events outside the confidence bands can occur) can intervene to lead models astray, 

but we can stack the odds in our favor.    
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7. Remediation Design, Assessment and Optimization

7.1 Overview 

Predictions of remediation performance, no matter how sophisticated the performance model that 

is employed, are always subject to considerable uncertainty. Quantification of performance 

uncertainty is critical for remediation design, so that sufficient safety factors can be built into the 

design to avoid failure to meet system objectives, while avoiding unnecessarily high costs incurred 

by excessive overdesign. Remediation design (and engineering design in general) is an exercise in 

identifying optimal tradeoffs between risk of failure and cost of overdesigning.  

SCOToolkit addresses this problem by using an optimization algorithm to find design parameter 

values that minimize the expected NPV cost of achieving specified objectives. Expected NPV cost 

is computed as the average NPV cost over a number of equally probable Monte Carlo 

simulations. 

7.2 Compliance rules 

7.2.1 Statistical criteria 

The overall goal of groundwater remediation is taken to be the reduction of contaminant 

concentrations in designated compliance locations to less than specified values within a certain 

timeframe at the least possible cost. For a given remediation design, one of three possible 

outcomes is assumed to apply for a given remedial action at the actual site and hence for each 

simulated MC model realization: 

No Further Action (NFA). If compliance well monitoring data meet specified NFA criteria before 

the maximum simulation date, tmax, and after a date tend when all active remediation systems have 

ceased operation, then that MC realization simulation terminates and no further operating costs 

are accrued (i.e., all remediation and monitoring activities are terminated).  

Non-Compliance (NC). If contaminant concentrations for one or more compliance wells exceed 

certain noncompliance criteria after a specified “penalty date”, tpenalty, or if NFA has not been 

achieved prior to tmax, then a specified fixed present value “penalty cost” will be added to the cost 

function. Simulation of the MC realization is terminated. The realization is deemed a “failure.” 

Note that if tpenalty > tmax then no penalty cost can be incurred.  

Conditional Containment (PT). If contaminant concentrations at a designated PT trigger well 

exceed certain criteria after a specified PT trigger date tPT, then pump-and-treat or another type of 

containment system is assumed to be implemented upgradient of the trigger location. Discounted 

capital and annual operating costs for the containment system are accrued until NFA or NC 

conditions occur. Other remedial actions and their costs continue until the individual actions meet 

their specified termination criteria or tmax is reached. The PT system is not explicitly simulated, 

but is assumed to contain the plume. Model-predicted concentrations at compliance wells (which 

must be upgradient of the PT system) are computed as though unaffected by the containment 

system – i.e., attainment of NFA is conservatively assumed to be unaffected by the containment 

system. No PT costs are considered if tPT > tmax. If NFA is not reached before tmax, the case is 

regarded as NC and a penalty cost may be applied if applicable. We assume site-wide monitoring 

of contaminant
concentrations at a frequency of 

  SW

sampf per year at each designated compliance location. Since 
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concentration measurements at a given well can exhibit considerable temporal variability, 

compliance rules must be carefully defined to filter out measurement “noise” so that the likelihood 

of a false NFA determination is small. 

Two compliance rule options to filter measurement noise are considered. The first option employs 

annual averaging of concentrations from 
  SW

sampf compliance well samples per year and requires all 

annual averages within a lookback period of Nlookback years to be below a specified target 

concentration Cnfa to attain NFA. This approach is very conservative, and noisy data may 

inordinately extend the remediation duration. The second option, which has been suggested by the 

USEPA (Levine, 2010), involves a regression of concentration data from
  SW

sampf samples per year 

versus time within a lookback period tlookback. If the one-sided -probability upper confidence 

limit of the regression value at the end of the lookback period is less than Cnfa for each compliance 

well and the current date is after tend then NFA is indicated. This approach accounts for data noise 

in the decision process, but is less sensitive to outliers. A summary of the compliance rules is given 

in Table 7.1. 

Table 7.1. Compliance rule protocol options. 

 Extreme Value (EXV) Rule Regression Confidence Limit (RCL) Rule 

NFA If annual averages of contaminant concentration 

measurements for all compliance wells are less 

than Cnfa for each of the last tlookback years 

ending on or after tend then site monitoring 

activities are terminated. If rebound does not 

exceed Cnfa, NFA is met, otherwise a penalty cost 

is added to the cost function. 

If the upper confidence limit of the current 

value of a regression of annually averaged 

contaminant concentration measurements vs. 

time over the last tlookback years ending on 

or after tnoact is less than Cnfa for all 

compliance wells, then site monitoring 

activities are terminated. If rebound does not 

exceed Cnfa, NFA is met, otherwise a penalty 

cost is added to the cost function. 

NC If annual averages of contaminant concentration 

measurements exceed Cnfa in any of the last 

tlookback years ending on or after tpenalty i for 

compliance well i or if NFA has not been 

achieved prior to tmax for any compliance well, 

then a penalty cost is added to the cost function 

and the simulation is terminated. 

If the upper confidence limit of the current 

regression value at compliance location i 

over the last tlookback years ending on or 

after tpenalty i exceeds Cnfa for any compliance 

well or if NFA has not been achieved prior 

to tmax, then a present value penalty cost is 

added to the cost function and the simulation 

is terminated. 

PT If the annual average of contaminant 

concentration measurements in a designated PT 

trigger well exceed CPT for all of the last 

tlookback years ending on or after tPT, then 

discounted capital and operating costs for pump-

and-treat or other plume containment system are 

accrued. The simulation continues until NFA or 

NC criteria are met.  

If the lower confidence limit of the current 

regression value over the last tlookback years 

ending on or after tPT exceeds CPT for a 

designated PT trigger well, then discounted 

capital and operating costs for pump-and-

treat or other plume containment system are 

accrued. The simulation continues until 

NFA or NC criteria are met.  
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When the remediation strategy includes ED injection galleries, there is a possibility of rebound 

downgradient of ED injection galleries after injection ceases. This can lead to exceedance of Cnfa 

if downradient compliance wells are not stipulated for optional ED performance monitoring and 

CEDstop values for upgradient performance monitoring wells are greater than Cnfa (see Chapter 3). 

When the latter conditions apply for simulations meeting NFA criteria at tend, “true” (i.e., no noise) 

concentrations at compliance well locations at trebound = tend + trebound are computed to evaluate 

rebound. If the computed rebound concentrations Crbd are less Cnfa, then NFA status is confirmed. 

Otherwise, a penalty cost $penalty is added to the cost function and the MC realization is regarded as 

noncompliant (NC).   

Annual average concentrations are treated as geometric averages. Measured or simulated 

concentrations less than detection limits should be set to a stipulated fixed value (e.g., 10% of the 

detection limit). Log-normal measurement “noise” is applied to annual averages in MC realizations 

with a standard error equal to the ln C standard deviation from model calibration (“residual error)” 

divided by
 1/2 .SW

sampf Note that increasing sampling frequency decreases the noise in annual averages, 

which allows earlier NFA attainment. The optimal sampling frequency will depend on a tradeoff 

between cost reductions due to earlier termination versus additional sampling and analytical costs.  

The computational effort required for stochastic cost optimization increases in direct proportion to 

the number of simulated compliance well locations. For this reason, we recommend selecting a 

single worst-case compliance location at least for initial optimization runs. If desired, additional 

well locations may be added after the design has been refined. Compliance monitoring costs per 

sampling event can be specified to include all required monitoring locations.   

The “penalty cost” may be a real cost (e.g., for a last-ditch containment measure) or a fictitious 

cost applied merely to incentivize the optimization algorithm to reduce the failure probability. 

Penalty cost is specified in NPV dollars (i.e., no discount is applied internally). Care should be 

taken not to specify a penalty date (tpenalty) that cannot be realistically achieved with current site 

conditions and proposed remedial technologies lest compliance will be nearly impossible to meet 

and the optimization problem will be ill-defined. Likewise, if tmax is too early to achieve a low 

failure probability and high NFA probability, low remediation costs may be misleading. An 

exception may be if long-term containment with institutional controls is under consideration, tmax 

may be set to reach a pseudo-steady state condition, fixed and penalty costs set to zero, and design 

variables optimized to minimize operating costs. If optimization results produce an unacceptably 

high failure probability, increasing the penalty cost may produce a better outcome. If this does not 

improve the results, the problem is likely that you are proposing something that cannot be 

reasonably achieved. You will need to figure out why and either develop a plan to circumvent the 

problem, or if nothing reasonable works, you should have a good case for “technical infeasibility.”  

Note that pump-and-treat, if considered, is not explicitly simulated. Pump-and-treat is assumed to 

contain the plume, but model-predicted concentrations at compliance wells are treated as though 

unaffected by the PT system. Therefore, compliance well locations downgradient of the PT system 

should not be stipulated. 

Real-time implementation of RCL rule would involve performing regressions of the last N = 
  SW

lookback sampt f ln-concentration values after each sampling round versus Julian date, T, to fit a log-

linear trend model 

 ln C a bT= +   (7.1) 
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where a and b are regression coefficients. The regression error is  

 2

ln
2

=
−

C

SSE
S

N
 (7.2) 

where SSE is the sum of squared ln C regression residuals. To reduce computational effort in MC 

simulations, we generate a single (geometric) average concentration value for each year in each 

realization with noise 
lnC

S =SlnC/
 1/2SW

sampf  rather than generating 
 SW

sampf  sample values per year with 

noise SlnC.. One-sided upper or lower confidence limits of annual average concentrations at 

probability level  are computed by  

 

 

ln

 

ln

exp ( , )

exp ( , )






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 
= + − 

 

 
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end samp C

SW

end samp C

LCL a bT t f S

UCL a bT t f S

 (7.3) 

where Tend is the date at the end of the regression period and t(, df) is the one-sided Student-t 

value for probability  with df degrees of freedom. The regressions are performed during 

simulations on time series with N = Nlookback concentration values, which yields 
lnC

S  directly. 

Note that in real-time, regressions would be performed on N = 
  SW

sampf Nlookback concentration values 

to determine when NFA is met.  

 

7.2.2 Determining tpenalty, tmax and trebound 

Correct specification of tpenalty, tmax and trebound are important constraints on the optimization 

solution, but must be set with consideration of physical limitations that can make it difficult or 

impossible to find a feasible solution. 

The duration of time allowed before cleanup criteria are required to be met will have a significant 

effect on remediation design and cost. Specifically, if tpenalty or tPT are decreased or the magnitudes 

of contingent containment or penalty costs are increased, then earlier, more aggressive and more 

costly remediation will be favored. In the case of no contingent penalty or containment costs (or 

tpenalty > tmax and tPT > tmax) with a positive discount rate, the cost optimal solution will be to simply 

monitor until tmax or NFA is reached, regardless of the probability of achieving NFA. Some cost 

consequence of “failure” must be stipulated to induce active remediation. 

The penalty date represents the time at which concentrations at compliance well locations are 

required to meet the specified RCL or EXV conditions. For example, it may be required to contain 

the leading edge of the plume with an ED gallery as quickly as possible, while recognizing that it 

will take much longer to remediate the source and entire dissolved plume. In that case, tpenalty can 

be used to enforce the short-term requirement. In doing so, the value of tpenalty and the capability 

of the proposed remediation strategy for conditions at the site must be consistent. For example, if 

an ED gallery 50 m upgradient of the compliance location is under consideration and the retarded 

velocity is estimated to be about 10 m/yr, then the advective travel time ttravel is 5 years. If the 

lookback period ttlookback is 3 years and the ED start date is 2020, then tpenalty should be at least 

tEDstart + ttravel + ttlookback = 2028. A more conservative approach would be to use a multiple of 
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the travel time, e.g., tEDstart + 2ttravel + ttlookback = 2033. If there is not short-term requirement, but 

it is desired to return the site to normal use by a certain date, then this value may be set as the 

penalty date, recognizing that if the proposed remediation technology is not capable of meeting 

this requirement, the program will return a high failure probability. 

The maximum simulation date tmax is primarily a computational failsafe to prevent your computer 

from running forever in an attempt to solve an intractably posed optimization problem. From a 

practical standpoint, it can be regarded as the maximum date you are willing to accept as a possible 

outcome. Like the penalty date, consideration should be given to the site conditions when 

specifying this value – in particular, the length and velocity of the plume, how long it may take to 

reduce the source mass to a sufficiently small value (naturally or otherwise), and the number of 

ED galleries, if any.    

If optional downgradient ED performance monitoring at compliance locations is elected and 

CEDstop for the upgradient performance monitoring well is less than Cnfa, then trbd = 0 and rebound 

is disregarded. Otherwise, rebound is computed a date 

 ( ) ( )( )( ) ( ) ( ,j) ( )max max max= + +  −rebound i EDstop i j i EDstart i travel i EDstop it t t t t  (7.4) 

where ( ) EDstart it and ( ) EDstop it are the dates ED injection starts and stops, respectively, for ED gallery 

i, ttravel ij is the user-specified travel time to compliance well j from upgradient ED gallery i, and 

tEDstop i is the termination date for gallery i.  Note that that maxi argument is evaluated only for ED 

galleries that are upgradient of compliance location j but not upgradient of any other compliance 

locations.  

Typically, it is desired to achieve plume containment within a limited timeframe while recognizing 

that subsequent long-term measures may be required before achieving “no further action” status. 

The variable tpenalty is a user-specified date by which short-term controls are desired to be fully 

implemented such that compliance wells meet the criteria for being “clean.”  

If there is no short-term requirement mandate, tpenalty may be specified equal to or slightly less than 

the maximum simulation duration, tmax. If short-term cleanup requirements do apply, care needs to 

be exercised in specifying tpenalty to ensure that it is realistically attainable with the technology 

options under consideration. Specifying a value that is too short to be realistically achieved will 

produce a high failure probability. Too long a value will increase exposure risk unnecessarily.  

If any remediation or plume control measures are considered for deployment upgradient of 

compliance points, tNFA values specify the waiting time, if any, following termination of all system 

components (e.g., ED injection galleries) before compliance monitoring is terminated to allow 

rebound in monitoring data and prevent false “clean” determinations (hence, potentially large 

failure probabilities).  
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7.3 Site-wide and total costs 

The net present value (NPV) cost for site-wide monitoring, reporting and maintenance are 

computed as follows  

 ( )

( )

 (1 )

(1 )

start ref

comp

ref

start

SW SWcap SWop

NPV NPV NPV

t tSWcap SWcap SW SWcap

NPV well well other

t
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NPV samp samp well other

t t
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C C N C d

C C f N C d

−

−

=

= +

= + −

= + −

 (7.5) 

and the total NPV cost for all site remediation activities and penalty costs, which is the objective 

function to be minimized by the stochastic optimization algorithm, is  

 
all SW ED TR OX PT plty

NPV NPV NPV NPV NPV NPV pen NPVC C C C C C I C= + + + + +   (7.6) 

where 
all

NPVC  is the total NPV remediation and penalty cost ($k), 

SW

NPVC  is the total NPV site-wide cost ($k), 

ED

NPVC  is the total NPV ED injection system cost ($k), 

TR

NPVC  is the total NPV thermal remediation cost ($k), 

OX

NPVC  is the total NPV ISCO remediation cost ($k), 

PT

NPVC  is the total NPV PT cost ($k), 

plty

NPVC  is the NPV penalty cost ($k), 

SWcap

NPVC  is the total NPV site-wide fixed cost ($k), 

SWcap

wellC  is the fixed cost for monitoring well construction ($k/well), 

SWcap

otherC  is any other site-wide fixed costs ($k), 

SWop

totalC  is the total NPV operating cost for site-wide monitoring and reporting ($k), 

SWop

sampC  is the cost per sample for site-wide monitoring ($k/sample), 

SWop

otherC  is other annual site-wide operating costs ($k/yr), 

SW

sampf  is the number of samples per well per year taken for site-wide monitoring,  

 penI  is 1 if a penalty cost is triggered, else 0,  

 PTI  is 1 if PT implementation is triggered, else 0,  

SW

wellN   is the number of site-wide monitoring wells (including compliance wells), 

  tPT is the year that PT is triggered (yr), 

  tnfa is the year compliance is achieved or the max simulation date for NC (yr), 

  tstart is the first year capital costs are incurred (yr), 

  tref  is the basis date for NPV adjustment (yr), and 

  d is the annual discount rate (fraction). 
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If the time discount factor, d, is decreased, future costs are less sharply discounted, thus favoring 

earlier and more aggressive action. In this regard, it should be noted that the discount rate useful 

to a rational decision maker would be the real discount rate, i.e., the nominal “risk free” rate of 

return minus the inflation rate. In the long term in “normal” times, the real discount rate is typically 

2-3%. At the present time, it is near zero or negative, depending on how you compute inflation. 

Federal Reserve chairs and hedge fund managers can’t predict this key economic variable a few 

months out, never mind a few decades. So, consider putting hubris aside, use a zero discount rate 

and push fewer problems onto our grandchildren.  

 

7.4 Iterative assessment and design optimization 

Following initial calibration of source and dissolved plume parameters using all currently available 

data, one or more potential remedial action strategies may be identified to meet the site objectives. 

These may involve multiple technologies applied concurrently or serially. Stochastic cost 

optimization can then be undertaken to select the best approach going forward given the 

information at hand. After the strategy is implemented, new data regular site-wide monitoring as 

well as monitoring specific to individual technologies will accrue over time. Periodically, this new 

data may be incorporated into the calibration data set and the calibration updated. Monte Carlo 

simulations may then be run forward in time with updated parameters and covariances to evaluate 

whether the existing system is performing satisfactorily. Reoptimization can be performed to refine 

monitoring and other operational design variables or, if necessary, to evaluate alternative 

technologies. This process can be repeated periodically to identify and correct problems before the 

costs grow and the completion date slips further into the future. A flowchart for the iterative 

assessment and optimization protocol is given in Figure 7.1. 

 

 

Figure 7.1. Flowchart for iterative assessment and optimization protocol. 
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7.5 Hypothetical example problem 

7.5.1 Problem description 

A hypothetical problem is considered involving trichloroethene (TCE) contamination in a 30 m 

thick unconfined aquifer. The water table occurs at a depth of 5 m bgs and a continuous clay layer 

occurs at a depth of 35 m bgs. The aquifer consists of sand interstratified with discontinuous 0.5 – 

2 m thick silty clay layers. The underlying clay layer is at least 5 m thick. The clay lenses represent 

about 28 percent of the aquifer volume. The average darcy velocity across the aquifer thickness is 

0.09 m/d. DNAPL releases were assumed to occur between 1950 and 1987 resulting in two 

DNAPL sources (Figure 7.2). Soil characterization borings performed on a grid pattern initially 

identified the one larger source, but missed the smaller second source. Assumed true values of 

source parameters (Table 7.2) and aquifer parameters (Table 7.3) were used to generate 

groundwater monitoring data for a network of 26 well clusters (Figure 7.3).  

Lognormally distributed “noise” with a ln-standard deviation (Sln) of 1.4 for each observation (0.7 

for annual averages of quarterly data) was added to simulated concentrations to represent spatial 

and temporal variability and measurement uncertainty. Each well cluster sampled groundwater 

from 8-12 m, 18-22 m and 28-32 m bgs (3-7, 13-17 and 23-27 m below the water table) starting in 

1980. A surface water body occurs at the far-right boundary of Figure 7.3. Also shown in Figure 

7.3 is a key compliance well located immediately upgradient of the surface water and two potential 

locations of ED injection galleries including gallery ED2 upgradient of the stream and ED1 

midway between the source and the stream. DNAPL in the source area is removed by a thermal 

source reduction (TSR) method described in Chapter 4. 

The objective of this example problem is to evaluate the iterative calibration-assessment-

optimization capability of SCOToolkit v3. The remediation objectives are to bring concentrations 

entering surface water below 5 g/L as quickly as possible with ED injection at ED2 and to 

permanently decrease concentrations below 5 g/L throughout the aquifer using one additional 

ED gallery (ED1) by 2050. In this example, tpenalty and tmax are set to Dec 2015 and Dec 2050 

respectively. To avoid the computational expense of simulating a large number of compliance 

wells, we will use a single downgradient compliance well with a lag time of 15 years that the single 

compliance well must remain clean after shutting off ED1, 5 years after ED2, and 30 years after 

TSR. 
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Figure 7.2. DNAPL source configuration for hypothetical site. Red dots on grid are boring 

locations for source characterization (depths are below ground surface, water table is 5 m deep). 

Note that Source 2 is not found until 2009 at which additional source characterization is 

performed. 

 
Figure 7.3. TCE concentrations in monitoring wells in 2005 and locations of the DNAPL 

sources, compliance well, ED injection galleries, and wells for monitoring upgradient of ED 

galleries. 

 

We will employ a 5-year assessment cycle with a timeline as follows. 
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Stage 1  

• Make initial prior estimates for model parameters and perform model calibration using 

monitoring wells data from Jan 1980 – Dec 2005 (Source 2 is not included in this stage) 

• Optimize remediation design considering possible TSR of Source 1 and one or more ED 

injection galleries. 

• Monitor TSR performance of Source 1 quarterly at multi-depth in MW2 that is immediately 

downgradient of the source area. 

• Operate the Stage 1 remediation plan from Jan 2007 – Dec 2010. 

Stage 2 

• Failure of thermal treatment to meet flux reduction expectations triggers additional source 

characterization and identification of Source 2. Recalibrate the model using monitoring 

well data from Jan 1980 – Dec 2009, mass recovery data from thermal treatment (266 days 

from Jan 1, 2007) and additional source characterization data from MW2. Use Stage 1 

calibrated parameters as new prior estimates. 

• Reoptimize remediation design based on new model calibration considering additional 

source thermal treatment and modification of existing ED gallery operating parameters. 

• Implement Stage 2 remediation plan modifications Jan 2011 and operate through Dec 2014. 

Stage 3 

• Recalibrate the model using monitoring well data from Jan 1980 – Dec 2014 and mass 

recovery data from additional thermal treatment. Use Stage 2 calibrated parameters as new 

prior estimates. 

• Reoptimize remediation design based on new model calibration considering modifications 

of ED gallery operating parameters and possible ISCO if source needs “polishing.” 

• Implement Stage 3 remediation plan modifications Jan 2015 and operate through Dec 2021. 

Stage 4 etc 

• Continue as above until NFA achieved 

 

7.5.2 Results and discussions 

We had completed these simulations in late 2015, but in the meantime developed a more flexible 

and rigorous means of dealing with uncertainty in termination decisions for thermal and ISCO 

systems that promises to enable significant cost savings to be realized with these technologies. We 

have implemented these modifications in the SCOToolkit v3 code. The example problem for 

iterative reoptimization was rerun with the revised code. Time and total cost to achieve NFA for 

the actual system (i.e., using “true” parameters) for one-stage vs. multiple-stage optimization is 

presented as follows. 

 

Stage 1 

Calibration 
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Stage 1 calibration includes only Source 1 while it was calibrated to concentrations dissolved from 

combined source (Source 1 and 2). Although the calibration efficiency (r, linear correlation 

coefficient) was 0.80, Stage 1 calibration overestimated mass flux and mass for Source 1 about 2.5 

and 2.4 times higher than true values (which are unknown in reality), respectively (Table 7.3 and 

Figure 7.4). Log uncertainty of both parameters was substantially reduced after Stage 1 calibration 

compared to the prior value of 0.5. It is notable that although a prediction uncertainty (SlnC) 

decreased to 1.05 from its prior value 1.4, it is still 50% higher than true uncertainty of 0.7. This 

observation implies that some MWs showed high bias between measurement and prediction due 

to uncounted Source 2 dissolution. 

Calibrated aquifer parameters are presented in Table 7.4. The darcy velocity and longitudinal 

dispersivity were overestimated compared to their true values. It may be the same issue in Source 

1 calibration that caused by the absence of Source 2 in calibration. 

The 100 Monte Carlo realizations of calibration parameters were generated for stochastic cost 

optimization after Stage 1 calibration using their covariance matrix and Jacobian (Chapter 6). 
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Figure 7.4. Calibration results of (a) mass flux and (b) mass remaining for Stage 1, 2, and 3. 

 

 

 

 

 

 
Figure 7.5. Changes in prediction uncertainty for Stage 1, 2, and 3. 
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Table 7.2. True source parameters and prior/posterior estimates for Stage 1, 2, 3 calibrations. 

  True 

Value 

Stage 1 Prior Stage 2 Prior Stage 3 Prior Stage 3 Posterior 

Parameter PDF1 Values Std3 Values Std3 Values Std3 Values Std3 

Source 1 start date (ts), yr N 1950 1965 7 1964.03 2.23 1964.93 1.43 1964.65 0.01 

Source 1 end date (to), yr N 1987 1985 0 1987.00 0.00 1987.00 0.00 1987.00 0.00 

Source 1 mass on tcal
2, kg LN 0.25 3500 0.50 0.63 0.17 0.24 0.09 0.23 0.05 

Source 1 rate on tcal
2, kg/d LN 1900 0.50 0.50 4568 0.33 2012 0.12 1885 0.01 

Source 1 depletion exponent, - N 1.55 1.3 0.25 1.09 0.16 1.48 0.15 1.39 0.07 

Source 1 width, m  45 45 0       

Source 1 horiz. area, m2  1100 1000 0       

Source 1 depth to top, m  0* 0 0       

Source 1 depth to bottom, m  10 10 0       

Source 2 start date (ts), yr N 1960 

If blank, it was 

not identified 

before Stage 1. 

1965 7 1966.62 1.13 1966.36 1.05 

Source 2 end date (to), yr N 1985 1985 0 1985.00 0.00 1985.00 0.00 

Source 2 mass on tcal
2, kg LN 0.1 0.3 0.50 0.18 0.10 0.13 0.06 

Source 2 rate on tcal
2, kg/d LN 900 750 0.50 3593 0.43 963 0.08 

Source 2 depletion exponent, - N 0.65 0.5 0.25 0.51 0.13 0.50 0.12 

Source 2 width, m  15 15 0     

Source 2 horiz. area, m2  350 400 0     

Source 2 depth to top, m  18 18 0     

Source 2 depth to bottom, m  19 19 0     

* Note depths are measured from ground surface. Water table is a 5 m depth. 

Bold: posterior values from previous stage calibration 
1 Assumed probability distributions: N = normal, LN = lognormal. 
2 Source mass and discharge rates on tcal = Jan. 2005.  

3 Standard deviations (Std) of LN variables are log-transformed (dimensionless); all other values are in specified 

units. 
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Table 7.3. True aquifer parameters and prior/posterior estimates for Stage 1, 2, 3 calibrations. 

  
True 

value 

Stage 1 Prior Stage 2 Prior Stage 3 Prior Stage 3 Posterior 

Parameter PDF1 Values Std2 Values Std2 Values Std2 Values Std2 

Avg aquifer darcy velocity, m/d LN 0.09 0.08 0.20 0.10 0.10 0.10 0.08 0.09 0.06 

Mobile volume fraction (fm)3  1 1         

Mobile zone porosity, -  0.32 0.3         

obile zone TCE (kd)4, m3/kg LN 1.30E-4 1.60E-4 0.20 1.34E-4 0.19 1.04E-1 0.08 1.21E-4 0.14 

Mobile zone density, kg/m3  1860 1890         

Immobile zone porosity, -              

Immobile zone TCE kd, m3/kg              

Immobile zone density, kg/m3              

Immobile zone TCE diff coef, m2/d              

Max diffusion path length (Lim
max), m              

Longitudinal dispersivity, m  10 15 1 14.03 0.11 11.10 0.07 11.33 0.05 

Ay/Ax LN 0.08 0.1 1 0.05 0.12 0.07 0.08 0.07 0.06 

Az/Ax LN 0.005 0.01 1 0.01 0.13 0.003 0.09 0.003 0.08 

Flow direction, degrees   5 4.5         

Aquifer thickness, m  30 30         

Effective decay coef w/out ED, 1/d  2E-4 1E-4 1 4.1E-4 0.16 1.6E-4 0.21 1.3E-4 0.20 

ED reaction rate coef (ED), 1/d  0.005 0.01         

obile ED (kd)4, m3/kg LN 2.00E-4 3.00E-4         

Immobile ED (kd), m3/kg             

Immobile zone ED diff coef, m2/d             

ED decay coef, 1/d  0 0         

H-equiv EA concentration, g/m3  2.75 2.39         

H-equiv O2 concentration, g/m3  0.57 0.49         

H-equiv ED ratio, -  0.26 0.26         

H-equiv CH ratio, -  0.061 0.05         

Serial decay fraction, -  0.32 0.5         

Bold: posterior values from previous stage calibration 

1 Assumed probability distributions: N = normal, LN = lognormal. 
2 Standard deviations of LN variables are log-transformed (dimensionless); all other values are in specified units. 
3 Mobile and immobile zone pore fractions include 5 m thick underlying clay 
4 kd mobile and immobile for TCE are assumed to be same and are calibrated (same to ED) 
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Optimization 

As it is the best knowledge obtained from Stage 1 calibration, design optimization for Stage 1 is 

based on this. Design optimization includes TSR for Source 1 and ED1 (middle) and ED2 

(downstream). All remediation activities begin in Jan 1, 2007 except ED1 in which its optimal 

commencing date and duration are determined according to other remediation performance during 

optimization. 

TSR design variables are 1) local soil concentration to terminate heating a monitoring zone (MZ) 

in a treatment zone (TZ) (1 TZ for Source 1), 2) number of MZs in a TZ, and 3) number of soil 

sample locations and samples per bore hole. Time to peak mass recovery rate (tpeak) is assumed as  

64 days. ED1 design variables are its starting date, TCE concentration upgradient of ED1 to 

terminate ED1, and number of groundwater monitoring samples per year. ED2 is, however, 

immediately active on Jan 1, 2007 to maintain the TCE concentration below MCL 5 ppb while 

being operated same as ED1. 

Results from Stage 1 optimization show that mass was recovered about 4000 kg in Dec 2017, 

which is much higher than true mass and impossible. Figure 7.6 summarizes the total projected 

cost-to-complete (CTC that is ENPV to reach NFA). CTC by Stage 1 optimization is about 

$11,000k with tnfa = 2038, while the true cost simulated by these optimized design variables is 

about $19,200k with tnfa = 2079, where Source 2 is included in simulation. This indicates that Stage 

1 optimization based on Source 1 will not perform correctly in the real site (i.e., two sources). 

Therefore, we collected quarterly multi-depth TCE concentration at MW2 for two years (2007-

2008) as part of post-remediation monitoring that contribute to additional source zone 

characterization. This additional data is included in Stage 2 calibration in addition to regularly 

monitoring data in other MWs data from 2006 to 2009. 

 

 

Figure 7.6. Projected cost-to-complete and time-to-complete. 

 

The actual cost incurred until tnfa is summarized in Figure 7.7, which was computed for true 

parameters using true TSR optimization result (Source 1 in 2007 and Source 2 in 2011) and 

optimized ED variables in each stage. Those variables are summarized in Tables 7.5 and 7.6, 

respectively. 
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Stage 2 

Calibration 

The optimized variables form Stage 1 were implemented during 2007 to 2010. TCE concentration 

in MW2 was monitored at 10, 20, and 30 bgs during and after TSR1. Figure 7.8 describes the TCE 

concentration of MW2 at 20 m bgs for true parameters and Stage 1 calibration using Stage 1 

optimization that includes only Source 1. In Dec 2008 after 2 years of TSR1, Stage 1 optimization 

substantially mislead TCE concentration about 100 ppb at Z = 20 m bgs (where Source 2 is located 

at Z = 23 m bgs), while quarterly measurements (noisy data based on ‘True+TSR1’ with SlnC = 

1.4) still show 1000~8000 ppb. This finding initiated site recharacterization resulting Source 2 

identified. Therefore, Stage 2 calibration includes both Source 1 (treated) and Source 2 (untreated) 

(see Table 7.3). 

Past remediation activities included in Stage 2 calibration are 1) mass recovery data from TSR1 

and 2) injection rate for both EDs and start date of ED1 optimized in Stage 1. The calibration 

efficiency (r) was 0.82 slightly higher than Stage 1. However, Stage 2 calibration improved the 

estimates of mass flux and mass for Source 1, which are close to true values (Table 7.3 and Figure 

7.4). Although the log uncertainty of both parameters for Source 1 was substantially reduced 

compared to Stage 1 calibration, Source 2 mass is still uncertain (Figure 7.4b) because Source 2 

characterization data is only for 2 years (2007-2008). The overall prediction uncertainty (SlnC) 

decreased from 1.05 to 0.73 that is close to assumed uncertainty 0.7 for annual average. 

Dispersivity related parameters were particularly improved compared to Stage 1 (Table 7.4). 

 

 

Figure 7.7. Actual cost incurred until tnfa. 

 

Table 7.4. True TSR optimization results for each source. 

Variables TSR 1 TSR 2 

Start year 2007 2011 

Duration (days) 266 350 

Cstop_local (μg/kg) 105 114 

NMZ/TZ 11 1 

NGP/MZ 1 3 

Nsmp/GP 3 3 

True mass recovery (kg) 1712 693 

Note) Bold: optimized values based on true source parameters. 
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Table 7.5. ED design variables for each stage. 

Variables Stage ED1 ED2 

Injection rate (kg/d) 1 2.1 8.0 

  2 8.5 7.6 

  3 6.3 4.8 

Start date 1 2009.5 2007.0 

  2 2011.0 2011.0 

  3 2015.0 2015.0 

CEDstop (μg/L) 1 89.8 12.8 

  2 3.1 2.0 

  3 1.6 27.5 

Termination year* 1 2020.5 2061.0 

 2 2031.0 2023.0 

  3 2023.0 2023.0 

Nsmp (/yr) 1 3 3 

  2 1 1 

  3 1 1 

Note) Bold: optimized values based on the calibration in Stage 

* Termination year was post-simulated for true parameters using optimize ED variables. 

 

 

 

 

Figure 7.8. TCE concentration of MW2 based on true parameters + recovery data, and  

calibration + optimization in Stages 1 and 2. 

  



7-18 

 

Optimization 

Measured mass recovery data for Source 1 and the design variables of ED1 and ED2 from Stage 

2 optimization were implemented continuously up to the beginning date of Stage 2 optimization 

Jan 2011. Stage 2 optimization determines 1) optimal mass recovery and sampling strategy for 

Source 2 (TSR2) and 2) optimal injection rate, termination date, and sampling frequency of both 

EDs. Compared to Stage 1, the injection rate of ED1 (middle) increased due to Source 2 

identification and ED2 (downstream) maintained its injection rate similar to Stage 1. It is notable 

that the termination criteria for both EDs are substantially decreased compared to Stage 1 (Table 

7.6). This observation needs careful attention because the reduced (stricter) termination criteria 

did not extend injection duration because Stage 2 calibration provided more accurate parameters 

leading to less uncertain decision-making than Stage 1. 

As presented in Figure 7.6, the projected CTC computed by Stage 2 optimization is similar to 

Stage 1 in which optimization was ideal only to Stage 1 calibration without Source 2. The projected 

CTC computed for the true parameters using Stage 2 optimization results are 40% less than the 

Stage 2 ENPV. Stage 2 optimization showed about 50 years longer NFA date than Stage 1 

optimization but just 10 years longer than the Stage 1 true NFA date. As uncertain Source 2 is 

included in Stage 2 optimization, it is closer to the true behavior. By forward simulating Stage 2 

optimization results with true parameters, the true tnfa is shortened 40 years compared to that by 

Stage 1 optimization (Figure 7.6). 

The actual cost toward tnfa based on Stage 2 optimization is about $13,600k that is much lower 

than the actual cost by Stage 1, $19,200k. Note that actual cost includes the previously paid actual 

cost (Figure 7.7). As a part of post TSR monitoring, TCE concentration was quarterly measured at 

MW2 for multiple depths to improve Stage 3 calibration and optimization. Additional data for 

Stage 3 calibration include 1) TCE concentration data in all MWs up to 2015 and 2) TSR2 mass 

recovery data. Note that deterministic optimization was performed for Source 2 to estimate true 

mass recovery data. 

 

Stage 3 

Calibration 

The optimized variables form Stage 1 and Stage 2 were implemented during the period of Jan 2007 

to Dec 2010 and Jan 2011 to Dec 2015, respectively. TCE concentration in MW2 was monitored 

at 10, 20, and 30 bgs during and after TSR2 (2011~2012). Recall that Figure 7.8 describes the TCE 

concentration of MW2 at 20 m bgs for true parameters and Stage 1~2 calibration. Stage 2 

calibration and optimization better describes the true TCE curve than Stage 1. This observation 

strongly supports that post-remediation monitoring is essential in decision-making for further 

progress. The measured concentrations in MW2 after TSR2 show significant reduction after TSR2 

yet still highly uncertain due to noise.  

TCE mass of Source 1 and Source 2 was more consolidated by adding MW2 data from 2007 to 

2012. Calibrated values for mass flux and mass in Stage 3 are close to true values as shown in 

Figure 7.4, which is supported by posterior uncertainties for those parameters less than 0.1. 

Prediction uncertainty was also maintained similar to Stage 2 (Figure 7.5). Overall calibration 

efficiency (r) was 0.82, which is same as Stage 2 implying further calibration does not improve 

the prediction performance by adding extra data. As a result, final parameter values after Stage 3 

calibration in Table 7.3 are close to their true values. 
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Optimization 

Stage 3 optimization determines only ED1 and ED2 operation strategy. Because Stage 3 

calibration with mass recovery data of Source 1 and 2 was credible, Stage 3 optimization can be a 

final stage to determine the design variables for the remaining period until met NFA. ED 

termination criteria (CED stop) are finally optimized as 1.6 and 27.5 ppb for ED 1 and ED2, 

respectively. Those are representative values that should be less than 95% UCL of previous 5-year 

measurements with SlnC=SlnCpost/Nsmp
1/2., where SlnCpost is the posterior SlnC from previous 

calibration. As CED stop is stochastically optimized across 100 MC simulations, longer measurement 

series is recommended to estimate reliable UCL in fields. 

Figure 7.6 indicates that tnfa = 2042 determined by Stage 3 optimization is close to tnfa = 2034 by 

true parameters simulated using Stage 3 optimization results. We expect those two values will be 

closer after Stage 4 calibration and optimization. Finally, the total accumulated actual cost to be 

incurred by tnfa = 2034 is 37% lower than Stage 1 if implemented until tnfa = 2079 (Figure 7.8) 

 

7.6 References 

Levine, H. (2010) EPA perspective on site closure: how clean is clean? US Department of Defense 

SERDP/ESTCP Partners in Environmental Technology Technical Symposium and Workshop, 

Washington DC, Nov 30-Dec 2. 
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8. Application to Joint Base Lewis-McChord EGDY site 

8.1 Site Description 

The East Gate Disposal Yard (EGDY) is a source of groundwater contamination at the Logistics 

Center National Priority List Site located on Joint Base Lewis-McChord (JBLM) in Fort Lewis, 

Washington (Figure 8.1). EGDY was used between 1946 and the mid-1970s as a waste disposal 

site for solvents from cleaning and degreasing operations. Material was transported to the disposal 

yard in barrels and vats from various areas. About seven barrels of liquid waste per month were 

disposed during peak operation. A TCE plume in the shallow aquifer evolved from the disposal 

site with concentrations in the range of hundreds μg/L in the source area and concentrations 

exceeding 5 μg/L over 4 km downgradient (Dinicola, 2005; USACE, 2008). 

The climate of Fort Lewis is characterized by warm dry summers and cool wet winters with a 

mean annual temperature of about 13 °C and mean annual precipitation of about 1000 mm. Fort 

Lewis is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits 

including a shallow aquifer (Vashon) and a deep aquifer (Sea Level Aquifer, SLA). The Vashon 

aquifer is unconfined and continuous throughout the Fort Lewis area. It ranges in thickness 

between about 30 to 60 meters. The Vashon and SLA aquifers are separated by a mostly continuous 

low permeability aquiclude. However, a “window” occurs about 2 km downgradient of the 

disposal area that allows water and contaminants from the shallow Vashon aquifer to migrate to 

the deep SLA aquifer. 

 

 

Figure 8.1. Location of EGDY site and TCE plumes as of 2004 (Dinicola, 2005). 
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Groundwater at Fort Lewis generally flows to northwest in the Vashon aquifer and west-southwest 

in the SLA aquifer. A simplified geologic cross section of the Fort Lewis site is shown in Figure 

8.2. More details on the site geology are found in Dinicola (2005), Truex et al. (2006), and USACE 

(2008). 

Several remediation actions have been performed at the EGDY site to contain the existing 

contaminant plume or reduce DNAPL mass in the source zone. Disposal trenches were excavated 

in 2000 to remove contaminated waste buried above the water table. About 1260 drums of 

contaminant were removed. To reduce DNAPL mass below the water table, Thermal source 

treatment (TSR) using electrical resistance heating was implemented for three source zones 

between late 2003 and early 2007. Tables 8.1 and 8.2 summarize the activities. 

 

 

Figure 8.2. Hydrogeologic cross section of Fort Lewis site (Dinicola, 2005). 
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Table 8.1. EGDY site remediation history (USACE, 2008) 

Date Activity Location 

1995 - 2005 Pump-and-treat systems installed in Vashon       

Aquifer 

One near EGDY 

second near highway I-5 

2003 - 2005 Integrated pump test in Areas 1 and 3 in Nov     

2003 and Sep 2005, respectively  

EGDY 

2003 - 2005 Source flux measurements in Areas 1 and 3 in   

Nov 2003 and Sep 2005, respectively  

EGDY 

2003 - 2006 TSR and monitoring in Areas 1, 2 and 3 in Dec   

2003 - Aug 2004, Feb 2005 - Aug 2005, and Oct 

2006 - Jan 2007, respectively 

EGDY 

2005-2006 Whey injection pilot tests EGDY 

2005 - 2007 Post-TSR monitoring in Areas 1,2 and 3 in May 

2005, Sep. 2005, and Feb 2007, respectively  

EGDY 

2006 - 2008 Post-treatment soil coring in Areas 1,2 and 3 in 

Apr 2006, Apr 2006, and Mar 2008, respectively 

EGDY 

2009  Pump-and-treat system installed in SLA Near hospital 

 

2010 SLA P&T system in operation  

   

 

 

Table 8.2. Summary of TSR operations at EGDY site (USACE, 2008) 

Variable Area 1 Area 2 Area 3 

TSR treatment area (m2) 2360 2080 1691 

TSR max depth below ground surface (m) 10 16 9 

TSR treatment volume (m3) 23625 135953 15368 

Energy on date 12/17/2003 02/14/2005 10/11/2006 

Energy off date 08/04/2004 08/05/2005 01/26/2007 

Duration (days) 231 172 107 

Mass removal, TCE + DCE (kg) 2990 1340 1120 
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8.2 Model Calibration 

8.2.1 Characterization of groundwater flow field 

The EGDY site was analyzed by Kim et al. (2013) as a part of ER-1611 using version 1 of 

SCOToolkit that used a semi-analytical vertically-averaged 2-D transport solution. The present 

analysis employs SCOTolkit version 3 that is capable of simulating 3-D transport for both 

contaminant and electron donor and uses a more rigorous model for thermal treatment. Therefore, 

as a first step to set-up a revised site characterization model for calibration, all previous monitoring 

data were converted to a 3-D format using the mid-screen elevation as the model depth. 

Improved functionalities of SCOToolkit enable iterative recalibration and reoptimization to refine 

remediation and monitoring strategies over time. The analysis considers multiple zones in the 

aquifer with different first-order decay coefficients to simulate distance-dependent natural 

attenuation and losses from the shallow Vashon aquifer to the deeper SLA through a “window” 

between the two units (Figure 8.1) 

Groundwater flow at the EGDY site was characterized by USACE (2008). The model used in this 

project simulates groundwater flow and transport with curvilinear streamlines as described in 

Chapter 2. Streamlines commence from each DNAPL source and actual or planned ED injection 

galleries. Groundwater streamlines were digitized and fitted to third-order polynomial equations 

of the form y = ax+bx2+cx3 (see Chapter 2). The model computes travel distances from sources to 

the wells of interest along streamlines. Transport in the SLA is not simulated since the contaminant 

plume in SLA has been contained by P&T since 2010. Instead, this analysis models vertical mass 

losses through the “window” between the two aquifers using a first-order reaction coefficient to 

simulate advective losses proportional to the Vashon aquifer concentration and the vertical 

hydraulic flux.  

Coefficients of individual streamline equations are presented in Figure 8.3. ED galleries 1 to 3 

upgradient of each source are not simulated in this analysis, which focuses on the effects of TSR 

and possible additional source zones. An electron donor gallery immediately upgradient of an 

inferred but unknown source zone (Source 4 hereafter) will be considered for potential mass 

transfer enhancement and downstream plume remediation. ED gallery streamlines follow the same 

functions as the associated sources.  

8.2.2 Calibration using pre- and post-TSR data 

Chlorinated solvent concentrations in groundwater reported by Truex et al. (2006) were utilized to 

construct time-series for each monitoring well. Measured concentrations of TCE and DCE were 

converted to “TCE-equivalent” total concentrations such that the H-demand is equal to that for 

complete reduction of TCE and DCE to ethane (vinyl chloride levels are not significant). Note that 

calibration to total solvent concentration rather than to TCE alone means that the effective decay 

coefficient represents the product of individual species decay coefficients. Since the latter are 

typically much less than 10-2 days-1, the effective decay for the total concentration will be very 

small and hence will contribute little to model uncertainty. Locations of monitoring wells in the 

Vashon aquifer used for model calibration are shown in Figure 8.3. Pre-TSR data include dissolved 

concentration measurements from 17 wells from Sep 1990 to Aug 2003. 
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Origin a b c 

Area 1 (Source 1) 

Area 2 (Source 2) 

Area 3 (Source 3) 

Source 4 (unknown) 

4.275E-01 

3.500E-01 

1.129E-01 

2.213E-01 

5.615E-04 

7.257E-04 

1.244E-03 

4.172E-04 

2.756E-08 

6.437E-08 

2.758E-07 

-9.595E-08 

Figure 8.3. Streamlines and MWs used to model groundwater flow at the EGDY site. The blue 

zone represents the “window” connecting the Vashon and SLA units. 

 

We assume that contamination in the SLA is transported from the Vashon aquifer through a 

window between the two aquifers (Fig. 8.3). The Vashon aquifer is divided into three zones with 

different decay coefficients. Zone 1 extends from the DNAPL sources to the window; Zone 2 

encompasses the window itself; and Zone 3 is the region downgradient of the window. The model 

uses 0.0001 d-1 as a prior estimate of biodecay coefficients of for Zones 1 and 3 and 0.002 d-1 for 

Zone 2. 

Mass flux was estimated to be 0.754 kg/d from Area 1, and 0.323 kg/d from Area 2 in November 

2003, and 0.420 kg/d from Area 3 in April 2006. To model source zone mass dissolution and 

transport downstream, initial estimates of source and aquifer parameters were estimated from 

information in various reports (Dinicola, 2005; Truex et al., 2006; USACE, 2008) summarized in 

Table 8.3. Model parameters were calibrated to site data using 2000 as the reference year (tcal) for 

source mass and source flux. Post-TSR data included longer time-series for pre-TSR wells through 

Mar 2015, plus measurements of source mass flux (Nov 2003 ~ Apr 2006) and mass removed by 

TSR (Dec 2003 ~ Oct 2006). 
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 Figure 8.4 shows the time-series of available quarterly monitoring well (MW) data. Data was 

obtained from the JBLB and other USACE (2008). Calibration was performed using annually-

averaged concentration data. Depending on the number of samples taken per year, this may involve 

averages of 2, 3 or 4 quarterly measurements or in some cases only a single measurement. Since 

calibration data variability will diminish with the number of samples averaged, measurement 

uncertainty is classified according to the number of samples averaged per year. 

 

 

 

 

 

 

  

Figure 8.4. Time series of monitoring 

data at selected MWs. Red vertical 

lines indicate the last date of TSR in 

Area 3. 
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We performed calibration for three cases to incrementally improve parameter estimates: 

1. Pre-TSR/S3/2003: calibrate 3-source model to MW data from Sep 1990 to Aug 2003 using 

prior estimates of source mass from pre-TSR data based on USACE (2008) 

2. Post-TSR/S3/2007: calibrate 3-source model to MW data from Sep 1990 to Dec 2007 with 

actual TSR data based on USACE 2008 (with 3 standard deviation limits for Mcal). 

3. Post-TSR/S4/2007: same as post-TSR/S3/2007 except (a) fixed Mcal for 3 known sources 

based on measured TSR recovery, and (b) calibrate parameters for a fourth unidentified 

source (S4). 

4. Post-TSR/S4/2015: same as post-TSR/S4/2007 except include additional MW data through 

2015  

 

Table 8.3. Fort Lewis site characterization data. 

Area           Parameters Prior Value1 STD2 Reference 

Area 1 Mass at 12/16/2003 (kg) 8600 0.27 USACE, 2008 

 Flux at 12/16/2003 (kg/d) 0.75 1.00 USACE, 2008 

 Release date 1970 5.00 USACE, 2008 

 Width (m) 47  USACE, 2008 

 Thickness (m) 9  USACE, 2008 

Area 2 Mass at 02/13/2005 (kg) 7500 0.25 USACE, 2008 

 Flux at 02/13/2005 (kg/d) 0.32 1.00 USACE, 2008 

 Release date 1970 5.00 USACE, 2008 

 Width (m) 42  USACE, 2008 

 Thickness (m) 13  USACE, 2008 

Area 3 Mass at 10/10/2006 (kg) 9500 0.27 USACE, 2008 

 Flux at 10/10/2006 (kg/d) 0.42 1.00 USACE, 2008 

 Release date 1973 5.00 USACE, 2008 

 Width (m) 34  USACE, 2008 

 Thickness (m) 8  USACE, 2008 

Vashon q (m/d) 0.4 0.25 Truex et al., 2006; Dinicola, 2005 

 Porosity 0.29 - Truex et al., 2006; Dinicola, 2005 

 Kd (m
3/kg) 3.1E-5 0.25 Truex et al., 2006 

 AL (m) 80 1.00 Assumed 10% of plume length 

 AT/AL 0.1 1.00 Typical value 

 AV/AL 0.01 1.00 Typical value 

 λ for Zones 1 and 3 (/d) 1.0E-4 0.50 Initial value 

 λ for Zones 2 (/d) 2.0E-4 0.50 Initial value 

 Saturated depth (m) 30 0.20 Truex et al., 2006 

 ED average (H-eq ppb) 48 0.15 Dinicola, 2005 

 Saturated depth (m) 30 0.20 Truex et al., 2006 
1 Prior estimates represent arithmetic mean for release date, geometric mean for other parameters. 
2 Standard deviations of prior estimates are dimensionless statistics for ln-transformed values for all parameters 

except release dates, which are in actual units. 
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Figure 8.5. Observed vs. simulated concentrations for different model calibrations.                          

Mcal 1-3 is the total calibrated mass in sources 1-3 in 2003; Mcal 1-4 is the mass in sources 1-4. 

 

Figure 8.5 shows scatter plots and correlations for observed versus predicted concentrations for 

each calibration. Correlation coefficients improve slightly for each progressive calibration from 

0.85 for pre-TSR/S3/2003 to 0.91 for post-TSR/S4/2015. However, estimated parameter values 

differ significantly. In particular, the total Mcal for the three identified sources (Mcal1-3) is 24,884 

kg for the pre-TSR/S3/2003 calibration and 16,030 for the post-TSR/S3/2007 calibration in 2003 

(tcal), which are 4.6 and 2.9 times the actual mass recovery during TSR indicating thermal 

recoveries of only 22% and 34% for the respective calibrations (Table 8.4). 

These unreasonably low recovery ratios led us to infer that a fourth unidentified source is likely. 

Upon initially reaching this conclusion, we performed a modified post-TSR/S3/2007 calibration 

with upper bounds for Mcal of the three known sources specified assuming 99% recovery by 

thermal. The results (not shown) yielded very poor results with a correlation of only 0.28, 

indicating the three-source model is not consistent with observed thermal recovery. 

pre-TSR/S3/2003 

Mcal 1-3  = 24,884 kg 

 

post-TSR/S3/2007 

Mcal 1-3  = 16,030 kg 

 

post-TSR/S4/2007 

Mcal 1-4  = 8,651 kg 

post-TSR/S4/2015 

Mcal 1-4  = 5,938 kg 
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No empirical data is available to identify the location or dimensions of a fourth source. However, 

preliminary sensitivity analyses indicated a location on a streamline between TSR areas 2 and 3 

produced the greatest regression improvement. No attempt was made to rigorously calibrate the 

source location and geometry. In our experience, calibrating source locations is very difficult in 

the absence of a very dense monitoring network. In particular, a source located roughly along the 

identified streamline but substantially up or downgradient could produce very similar results. 

Additional field investigations would be necessary to locate the unidentified source if this is 

deemed necessary. 

Post-TSR/S4/2007 and post-TSR/S4/2015 calibrations in Table 8.4 fixed Mcal for the three known 

sources at 5,506 kg assuming 99% recovery by thermal treatment yielding estimates for a fourth 

unidentified source of 3,145 kg and 432 kg, respectively, based on the assumed source location. 

 

Table 8.4. Calibration summary for EGDY site. 

 
Pre-TSR/ 

S3/2003 

Post-TSR/ 

S3/2007 

Post-TSR/ 

S4/2007 

Post-TSR/ 

S4/2015 
 

Parameters Best Sln Best Sln Best Sln Best Sln  Notes 

Mcal1 8473 0.27 7702 0.32 3020 * 3020 *  2990 kg removed by Aug’04 

Mcal2 7150 0.24 3598 0.38 1354 * 1354 *  1340 kg removed by Aug’05 

Mcal3 9262 0.27 4730 0.47 1132 * 1132 *  1120 kg removed by Jan’07 

Mcal4 - - - - 3145 0.78 432 0.50  unidentified 

Mcal sum 24884 - 16030 - 8651 - 5938 -  5450 kg removed by Jan’07 

Jcal1 0.16 0.77 0.09 0.68 0.27 0.28 0.20 0.21  0.75 kg/g in Nov’03 

Jcal2 0.77 0.30 0.34 0.27 0.12 0.64 0.10 0.47  0.32 kg/d in Nov’03 

Jcal3 0.34 0.31 0.19 0.25 0.12 0.37 0.10 0.26  0.42 kg/d in Apr’06 

Jcal4 - - - - 0.25 0.31 0.08 0.20  

Jcal sum 1.26 - 0.62 - 0.76 - 0.48 -  

β1  1.00 0.50 1.00 0.50 0.98 0.40 1.07 0.37  

β2 1.00 0.35 1.29 0.28 1.03 0.48 1.12 0.46  

β3 1.00 0.48 1.14 0.45 1.10 0.36 1.07 0.33  

β4 - - - - 1.09 0.44 1.03 0.24  

λ1 9.4E-5 0.45 6.7E-5 0.42 8.7E-5 0.43 5.8E-5 0.43  

λ2 9.7E-4 0.42 1.0E-3 0.30 9.9E-4 0.40 9.2E-4 0.31  

λ3 5.8E-4 0.30 4.7E-4 0.21 7.8E-4 0.26 7.9E-4 0.15  

qw 0.18 0.20 0.10 0.15 0.15 0.19 0.10 0.08  

AL 89 0.54 119 0.47 33 0.55 41 0.46  

AT/AL 0.20 0.53 0.15 0.45 0.37 0.57 0.27 0.48  

AV/AL 0.03 0.81 0.02 0.82 0.03 0.79 0.02 0.76   

Notes: Calibration reference date (tcal) is 2003. 

Best values denote calibrated best estimates. 

Sln values are posterior estimates of ln-transformed parameter standard deviations. 

Units are kg for Mcal, kg/d for Jcal, d-1 for , m/d for qw, and m for AL 

*indicates indeterminant Sln because parameters are fixed based on actual TSR recovery data. 
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The pre-TSR/S3/2003 calibration represents our best initial estimate of model parameters with 

data available through 2003, while the post-TSR/S4/2015 calibration represents best final estimate 

with thermal recovery data and 12 additional years of monitoring data (Table 8.4). The largest 

differences occur in source parameters, with an estimated total mass in all sources of 24,884 kg in 

2003 for the initial calibration, but only 5,938 kg for the final calibration of which 432 kg is in the 

unidentified fourth source.  

The mass discharge from all sources in 2003 was estimated to be 1.26 kg/d for the initial 

calibration, but only 0.48 kg/d for the final calibration. Source depletion exponents (β) are 

essentially the same for all calibrations, although sensitivity to this parameter appears to be low. 

Effects of lower estimates of source mass and discharge rate for the final calibration (which tend to 

decrease predicted concentrations) appear to be offset by a zone 1 decay coefficient (λ1 closest to 

the sources) that is 38% smaller and a transverse dispersivity (AT) that is 39% smaller for the final 

calibration relative to initial calibration values (which tend to increase simulated 

concentrations in the core of the plume). 

8.3 Remedial design evaluation and optimization 

8.3.1 Long-term simulations with no further remediation action 

Non-optimized MC simulations were performed to assess the long-term effectiveness of thermal 

treatment at the site based on the initial pre-TSR/S3/2003 and final pre- and post-remediation 

parameter estimates. Simulations of TSR were made such that the contaminant mass removed from 

each source was equal to the measured removal. The following simulations were performed: 

• NoOpt1a - No TSR or subsequent remedial action for pre-TSR/S3/2003 calibration

• NoOpt1b - Actual TSR with no other remedial action for pre-TSR/S3/2003 calibration

• NoOpt2a - No TSR or subsequent remedial action for post-TSR/S3/2007 calibration

• NoOpt2b - Actual TSR with no other remedial action for post-TSR/S3/2007 calibration

• NoOpt3a - No TSR or subsequent remedial actions for post-TSR/S4/2007 calibration

• NoOpt3b - Actual TSR with no further remediation for post-TSR/S4/2007 calibration

• NoOpt4a - No TSR or subsequent remedial actions for post-TSR/S4/2015 calibration

• NoOpt4b - Actual TSR with no further remediation for post-TSR/S4/2015 calibration.

Simulations for the above cases were performed to simulate probability distributions for TCE-

equivalent concentration at a compliance well (Figure 8.3) screened over the upper 10 m of the 

Vashon aquifer. Median estimates and two-sided 95 and 99% probability confidence limits were 

computed for each case (Figure 8.6). 

NoOpt1 results, based on the pre-TSR/S3/2003 calibration, indicate a 50% probability that the 

TCE-equivalent concentration will be less than 5 g/L in the year 2205 without thermal treatment 

(95% confidence limits from 2095 to 2303) and in 2150 with the actual thermal treatment (95% 

confidence limits from 2080 to 2294).  
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Figure 8.6. TCE-equivalent concentration at the compliance well without source treatment (left) 

and with actual source treatment (right) based on different calibrations (rows). Solid red lines 

represent the MCL for TCE. Dashed red lines denote 50% probability time to reach MCL. 

NoOpt1b 

NoOpt2a NoOpt2b 
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Results for NoOpt2, based on the post-TSR/S3/2007 calibration, do not differ substantially from 

NoOPt1 results. The results indicate there is a 50% probability that the TCE-equivalent 

concentration will be less than 5 g/L in 2200 without thermal treatment (95% confidence limits 

from 2123 to 2334) and in 2160 with the actual thermal treatment (95% confidence limits from 

2074 to 2288).  

NoOpt3, based on the post-TSR/S4/2007 calibration, yields a 50% probability that the TCE-

equivalent concentration will be less than 5 g/L in 2115 without thermal treatment (95% 

confidence limits of 2067 to 2275) and in 2095 with the actual thermal treatment (95% confidence 

limits of 2053 to 2239). The median dates are significantly earlier that for NoOpt1 and NoOpt2.   

NoOpt4, based on the pre-TSR/S4/2015 calibration, indicates a 50% probability that the TCE-

equivalent concentration will be less than 5 g/L in 2100 without thermal treatment (95% 

confidence limits of 2078 to 2132) and in 2040 with thermal treatment (95% confidence limits of 

2027 to 2069).  

While the spread between upper and lower 95% confidence limits decreases little from NoOpt1 to 

NoOpt3, averaging about 200 years, the spread decreases to about 50 years for NoOpt4, indicating 

the last 8 years of monitoring data has significantly improved model precision. Specifically, 

NoOpt4b indicates that without any additional active remediation, compliance is expected by 2040 

with 50% confidence and by 2069 with 95% confidence. In the meantime, pump-and-treat systems 

in the Vashon and Sea Level aquifers would need to continue operation to control plume migration. 

Figure 8.7 summarizes the predicted upper and lower 99% confidence limits and median dates at 

which concentrations are predicted to fall below 5 g/L based on initial and final calibrations with 

no remedial actions (NoOpt1a and NoOpt4a) and with actual thermal treatment of known sources 

(NoOpt1b and NoOpt4b). While confidence bands for simulations of no remedial action based on 

initial and final calibrations mostly overlap at the 99% level, confidence bands for simulations    

with remedial actions only partially overlap and the median NoOpt4b date lies below the lower 

99% confidence limit of the analogous NoOpt4b simulation. This indicates that error bounds based 

on the early calibration are not accurate, which we attribute, at least partially, to errors in the 

conceptual site model (i.e., missing source).  

 

 
Figure 8.7. Confidence bands (two-tailed 99%) for date to reach 5 ppb concentration at the 

compliance well with no remedial action (blue lines) or with actual thermal treatment of the three 

known sources only (red lines) based on initial or final calibrations. Circles are median dates. 

Initial calibration (NoOpt1a)

Final calibration (NoOpt4a)

Initial calibration (NoOpt1b)

Final calibration (NoOpt4b)

No remedial action

Thermal treatment of known sources

Date compliance well below 5 μg/L
2000 2100 2200 2300 2400
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8.3.2 Progressive calibration-optimization analysis 

Data from the EGDY site was used to perform a two-stage progressive calibration-optimization 

analysis as follows: 

1. Perform initial calibration (pre-TSR/S3/2003), 

2. Optimize thermal system for S1-S3 using pre-TSR/S3/2003 parameters (Opt1), 

3. Implement optimized design and monitor site through 2007, 

4. Recalibrate with additional data (post-TSR/S4/2007) which identifies a likely S4 source, 

5. Optimize thermal remediation system for S4 using post-TSR/S4/2007parameters (Opt2).  

The first optimization (Opt1) addresses thermal system design for the three known sources as of 

2003. Each source is regarded as a single thermal “treatment zone” (TZ), which is divided into 4 

“monitoring zones (MZ). All heating units within a given TZ are turned off when the upper 

confidence limit of the measured TZ soil concentration is below Cstop global. Heating units within 

individual MZs may be terminated prior to reaching the TZ level criteria if the upper confidence 

limits of measured MZ soil concentration is below Cstop local Values for Cstop local and Cstop global were 

optimized subject to the condition that Cstop local ≤ Cstop global. Vapor monitoring of each TZ and MZ 

was assumed for making thermal system termination decisions (Chapter 4).  Compliance is based 

on the RCL rule (Chapter 7) with 95% confidence using a 5-year lookback period with quarterly 

groundwater sampling. A cost penalty (Chapter 7) was applied if compliance well concentrations 

do not meet compliance levels by a penalty date tpenalty (2035) or if site-wide cleanup criteria are 

not met by tmax (2050). Cost variables used for both optimizations are summarized in Table 8.5. 

 

Table 8.5. Cost variables used in design optimization. 

Description Variable Value Unit 

Thermal treatment costs a    

Total fixed cost for thermal treatment excluding monitoring $cap 937, 559, 334, 748 $k 

Operating cost per day excluding heating unit operating cost $SiteOp/day 12.00, 11.95, 

15.50, 11.97 

$k/day 

Operating cost per day for TZi with all heating units on $TZop/day 6.18, 6.15, 7.98, 6.17 $k/day 

Treatment cost per unit recovered $mass 0.01 $k/kg 

 Cost per MZ for equipment to monitor mass recovery $MZcap 0 $k 

Cost per day per MZ to monitor cumulative mass recovery $MZ/day 0 $k/day 

Cost per soil boring $boring 9.00, 6.44, 9.31, 7.72 $k 

Cost per soil sample taken from a given boring $soil smp 0.5 $k 

Other costs    

  Cost per compliance sampling event SWop SW

samp wellC N  2.5 $k/event 

  PT operating costs and other site-wide costs b PTop

totalC  87.5 $k/year 

  Penalty cost for non-compliance pen

NPVC  50,000 $k 

  Reference year for cost discounting tref 2005 year 

  Discount rate d 0 year-1 

a   Estimated based on Table 6.6-5 of USACE (2008).  Note: values do not include source characterization costs, 

post-remediation flux measurements or groundwater pumping at source. Four cost values are for each source.  
b    J. Gillie, CTR US USA IMCOM, personal communication (2010). 
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Optimized TSR design variables and costs for Opt1 are given in Table 8.6. The expected 

(probability-averaged) total cost for Opt1 was $15.828 million for operation from 2003 until site-

wide NFA was attained with a failure probability of less than 1%. Opt1 results indicate a 99% 

probability of achieving NFA by 2029. (Figure 8.8a). Following completion of S1-S3 thermal 

treatment, the post-TSR/S3/2007 and post-TSR/S4/2007 calibrations revealed a likely fourth 

source (S4). As of late 2007, NoOpt3b, which is based on the post-TSR/S4/2007 calibration 

(Figure 8.6), provides the best forecast of performance following thermal treatment of S1-S3 with 

no additional active remediation. Contrary to the rosy projections of Opt1 (Figure 8.8a), which are 

predicated on only three sources and data through 2003, the four-source NoOpt3b simulation 

indicates that it is likely to take 100 years and may take 300 years or more to achieve NFA without 

additional remedial actions.  

Accordingly, a second optimization (Opt2) was performed using post-TSR/S4/2007 calibration 

parameters to design an S4 thermal system to potentially commence operation in early 2008. Opt2 

assumes S1-S3 treatment based on Opt1 design variables. Predicted remediation performance over 

time for Opt2 (Figure 8.8b) is very similar to that predicted for Opt1, which is not surprising since 

both assume all DNAPL sources to be treated to comparably small residual source levels. The 

expected total cost from 2003 to NFA attainment for Opt2 was computed from the expected cost 

for S4 treatment and site-wide operations from 2008 to NFA plus expected costs from 2003 

through 2008 from Opt1, yielding a total of $21.922 million. This is significantly higher than that 

for the 2003 calibration-based optimization (Opt1). However, the low Opt1 cost is largely 

attributable to the inaccurate site conceptual model underlying the 2003 calibration (i.e., missing 

S4 source).  

 

Table 8.6. Progressive optimization results for thermal remediation for EGDY site: Opt1 for 

sources 1-3 based on Pre-TSR/S3/2003 calibration. Opt2 for source 4 based on Post-TSR/S4/2007 

calibration. Costs are not discounted. 

Opt1 results 
ENPV ($k) 

Design Variables 

Source  Cstop global (mg/kg) Cstop local (mg/kg) 

TSR for S1 5,694 13.52 1.05 

TSR for S2   4,730  2.40 0.46 

TSR for S3   2,869  4.78 0.27 

Expected other costs 2003-2007   2,535   

Expected total cost 2003-NFA 15,828   

Expected NFA date 2026   

Opt2 results   Design Variables 

Source  ENPV ($k) Cstop global (mg/kg) Cstop local (mg/kg) 

TSR for S4 5,831 0.54 0.46 

Realized 2003-2007 costs 12,958   

Expected other costs 2007-NFA 3,133   

Expected total cost 2003-NFA* 21,922   

Expected NFA date 2024   

* includes $500k for S4 characterization 
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Figure 8.8. Confidence limits of TCE-equivalent concentration at the compliance location for     

(a) Opt1 based on pre-TSR/S3/2003 calibration, and (b) Opt2 based on post-TSR/S4/2007 

calibration. Solid red line is MCL and dashed line is 50% probability date to reach MCL. 

 

While the 2007 calibration exposes Opt1 results as unreliable, it is still pertinent to ask whether 

the Opt2 strategy for thermal treatment of S4 is cost advantageous relative to continuing to monitor 

and operate the existing pump-and-treat systems with no S4 treatment. We can evaluate this by 

comparing the Opt2 cost from 2008 to NFA attainment with the cost of monitoring and pump-and-

treat from 2008 to the expected NFA date with prior remediation of S1-S3 but without S4 

remediation. The latter result may be obtained from the previously discussed NoOpt3b simulation, 

which is based on the same calibration as Opt2 (post-TSR/S4/2007). A comparison is presented in 

Table 8.6 for undiscounted costs as well as for costs discounted at 3% per year. The results indicate 

that thermal treatment of S4 is preferable if costs are not discounted, while discounted costs favor 

not undertaking thermal treatment of S4.  

Given uncertainty regarding the location of S4, steadily decreasing observed and simulated 

dissolved phase concentrations, and effective pump-and-treat systems in place for plume 

containment, a decision was taken to defer field investigations of the apparent fourth source.  

The most recent calibration update based on monitoring data through 2015 provides an opportunity 

to evaluate remediation progress and reassess the need for further investigation and treatment of 

the S4 source. The NoOpt4b Monte Carlo simulation (Figure 8.6), which simulates dissolved 

contaminant concentrations over time at the compliance location based on the post-TSR/S4/2015 

calibration with actual thermal treatment of S1-S3, provides a basis for this assessment.  

NoOpt4b predicts a much earlier expected NFA date of 2050 versus 2110 for the 2007 calibration-

based NoOpt3b simulation (Table 8.7). An analysis of expected costs based on the 2015 calibrated 

NoOpt4b simulation indicates that no treatment of the S4 source was more favorable than treating 

the source for both discounted and undiscounted expected costs, which validates the earlier 

decision to defer treatment of S4.  

 

a b 
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Table 8.7. Expected NFA date and cost from 2008 to NFA for 2007 and 2015                              

calibrations at two discount rates. Bold values indicate minimum cost remediation                     

option for each calibration and discount rate. 

 No S4 treatment   S4 thermal treatment 

Calibration 
NFA 

date 

Cost, $k 

(d=0%) 

 Cost, $k 

(d=3%) 
 

NFA 

date 

Cost, $k 

(d=0%) 

Cost, $k 

(d=3%) 

Post-TSR/S4/2007 2110 11.07 3.43  2035 8.84 7.89 

Post-TSR/S4/2015 2050 4.62 2.61  2033 8.62 7.79 

 

The 2007 calibration predicts that thermal treatment of S4 would decrease the NFA date from 2110 

to 2035 with a slightly lower undiscounted total cost, but a substantially higher discounted cost 

(Table 8.7). The decision to treat or not treat S4 based on cost is sensitive to the discount rate due 

to a tradeoff between the large present cost for thermal treatment (~$6 million) versus long-term 

pump-and-treat costs (~$100k/year). In such cases, it is more conservative to use a lower discount 

rate, which suggests deferring treatment of S4 at least until the analysis is less ambiguous. 

With additional data through 2015, long-term prediction uncertainty decreased resulting in a much 

earlier expected NFA date and lower discounted and undiscounted costs without S4 treatment, 

confirming the decision to defer treatment.  

The decision not to pursue thermal treatment of S4 resulted in a 46% undiscounted cost 

savings and a 67% discounted cost savings based on the 2016 calibration.  
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9. Application to Dover AFB Area 5  

9.1 Site Description 

Dover Air Force Base (AFB) is located in Kent County, Delaware, and has been in operation since 

1942. Base operations have generated numerous wastes, including solvents and hydrocarbons, 

which were historically buried in drums or disposed in the storm drainage system. Wastes were 

disposed in various on-base locations, which have resulted in several NAPL sources with 

comingled contaminant plumes. Our focus in this study is a merged groundwater plume associated 

with several sources within the West Management Unit (WMU) designated as Area 5 (ORNL, 

2008).   

Dover AFB is underlain by unconsolidated sediments of the Atlantic Coastal Plain (USGS, 2000). 

The units of interest are the Columbia Formation and the underlying Calvert Formation. The 

Columbia Formation is mainly composed of sands, silts and gravels. A clayey silt unit separates it 

from the Frederica aquifer in the upper Calvert Formation. The water table configuration at Dover 

AFB is generally controlled by surface water bodies including Little River, St. Jones River, and 

Delaware Bay (USGS, 2000) and recharge from precipitation. The average darcy velocity in Area 

5 is estimated to be about 0.02 m/d (USGS, 2000). 

Five contaminant sources in Area 5 have been identified, including three oil-water separator sites 

(OT51, OT50, OT44), a location with underground fuel storage tanks (SS20), and a waste 

collection drain site (OT41). Locations of the sources and time-series of TCE-equivalent 

concentrations at selected monitoring wells (MW) are shown in Figure 9.1. Chlorinated ethenes, 

ranging from VC to PCE and soluble fuel hydrocarbons (BTEX) have been monitored semi-

annually since 1988 (Table 9.1).  

A number of remedial actions have been undertaken to address chlorinated solvent contamination 

in Area 5, which are summarized in Table 9.2. Emulsified vegetable oil (EVO) and lactate solution 

have been injected as electron donors (ED) since 2006 to enhance microbial reductive 

dechlorination of chlorinated ethenes. The process, referred to as Accelerated Anaerobic 

Bioremediation (AAB), involves intermittent ED injection in 12 galleries known as Permanent 

Injection Circulation Transects (PICT).  

 

Table 9.1. Contaminant source locations (ORNL, 2008). 

Contaminant OT51 Source E OT50 SS20 OT44* OT41* 

Benzene X   X X X 

Toluene X   X  X 

cis-1,2-DCE X X X X  X 

PCE X X X X  X 

TCE X X X X X X 

cis-1,2-DCE X X X X  X 

VC X X X    
  Notes:  X indicates contaminant is present at this source; 

              * indicates sources not considered in the present study (see text for discussion) 
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Figure 9.1. Contaminant plume as of 2005 with 5 and 500 ppb boundaries, locations of sources 

and MWs, and EVO injection galleries at Dover AFB Area 5. Red vertical line in plot: first 

injection of ED. Plot with thick border: compliance MWs.  
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Table 9.2. Chronology of events in Dover AFB (ORNL, 2008). 

Date Event 

April 2006 Record of decision (ROD) prepared for OT51, OT50, SS20, O

T44, OT41/Motor Pool, and Area 5 (WMU) 

May 2006 Finalized Area 5 remedial action work plan (RAWP) 

May 8 – 24, 2006 Collected membrane interface probe data delineate Source Ar

eas D and E prior to treatment injections 

May 16 – June 9, 2006 AAB direct injection performed at Source Areas E, F, G, and 

H 

May – July 2006 Installation of AAB and monitoring wells 

May – October 2006 First round of AAB PICT injections 

Week of June 12, 2006 Baseline groundwater sampling conducted in upgradient porti

on of Area 5 (OT51/OT50) 

June 2006 – on going AAB groundwater monitoring 

July 2006 Natural Attenuation (NA) monitoring conducted for Area 5 

January/February 2007 NA monitoring conducted for Area 5 

July 2007 – November 2007 Second round of AAB PICT injections; stopped before compl

etion because of cold weather 

Apr 2012~ Oct 2012 Installed PICT3 extension and Source Area F (SAF)-PICT  

 

 

Table 9.3. Classification of MWs in Area 5 (ORNL, 2008). 

Well ID AAB NA Well ID AAB NA Well ID AAB NA 

DM3501S X   DM3511D  X DM335S  X 

DM3502S X   DM3512S  X DM335D  X 

DM3503S X   DM3513D* X   DM339S X  

DM3504S X X DM3514D X X DM339D X  

DM3504D X X DM3515D* X   DM375D  X 

DM3505S X   DM3516M X X DM378F  X 

DM4507D X   DM3517M X   MW078S  X 

DM4506D X   DM329S  X MW078D  X 

DM3507D X   DM329D  X MW214S  X 

DM3508S X X DM331S*  X MW214D* X X 

DM3508D X X DM331D  X MW216S X X 

DM3509F*  X DM334S X X MW216D X X 

DM3510D X   DM334D X X       

Note: S = shallow, M = middle, D = deep, * = selected compliance locations. 
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9.2 Model Calibration 

Groundwater streamlines originating at each contaminant source were estimated from water table 

contours and the contaminant plume and described by cubic polynomial regressions (Figure 9.2). 

Streamline functions starting from each EVO injection gallery were also determined. To obtain 

streamline functions that increase monotonically in the x-direction, streamline regressions were 

performed with northing as the x-coordinate and easting as the y-coordinate as discussed in 

Chapter 3.  

The Area 5 model simulates DNAPL source dissolution and transport for each source as well as 

transport of injected ED from each injection gallery (i.e., PICTs in Figure 9.2). Since the model 

does not explicitly simulate incomplete dechlorination, we model total chlorinated ethenes as a 

pseudo-species. We sum the concentrations of all chlorinated ethene species after converting to 

their stoichiometric equivalent quantity of TCE as described in Chapter 3. Model calibration was 

performed initially using chlorinated solvent data collected from 1988 to 2005 before ED injection 

started, followed by a series of post-remediation calibrations by using MW data up to 2015. 

 

 

Figure 9.2. Streamlines for sources and ED injection galleries (PICTs).                                                 

Compliance MWs are marked with *.  

N

**

*

*

*
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While Lee et al. (2012) used depth-averaged data in a 2-D model, the present analysis used data 

from various depths to calibrate a three-dimensional model. Non-detect measurements that 

represent 22% of entire MW data were omitted to avoid biased calibration on a log-scale, which 

can be sensitive to the numerical value that must be assigned to non-detects to enable calibration. 

A sufficiently large number of low concentration measurements remained in the calibration data 

to constrain the plume perimeter. Most measurements (87%) are less than 500 ppb. Based on 

preliminary calibrations, high concentrations were not well calibrated using equal weights on log-

concentrations. Therefore, a weighting factor classification method was used to give greater weight 

to high log-concentrations. Final weighting factors were determined as 1 for <500 ppb, 21/2 for 

500-1000 ppb, 21 for 1000-5000 ppb, and 21.5 for 5000-10000 ppb. 

Unlike Lee et al (2012), sources OT41 and OT44 were omitted from the model in this study, 

because preliminary calibrations indicated they had negligible contribution to observed chlorinated 

solvent concentrations. PICT gallery widths, start and stop dates for injection each year, and 

quantities of ED injected were obtained from AAB operational data. 

Each contaminant source was characterized by its width, initial release date, contaminant mass 

Mcal) in Jan 2006 (tcal), source discharge rate (Jcal) in Jan 2006, and mass depletion exponent (β). 

Initial estimates of parameters for each source are given in Table 9.4. Values of Jcal, Mcal, and β 

were calibrated for each source. To reduce the number of parameters, all sources were assumed to 

have the same source release year calibrated with minimum and maximum dates of 1960 and 1980, 

respectively. Reported estimates of source width were regarded as sufficiently accurate and were 

not calibrated.  

Since the effective (retarded) contaminant pore velocity is a linear function of darcy velocity, 

porosity, and retardation factor, only one of these parameters may be calibrated. Since darcy 

velocity is the most uncertain, we calibrate it and use best estimates of porosity (0.3) and 

contaminant retardation factor (1.2). Additional aquifer parameters that were assumed known are 

the aquifer saturated thickness (10 m), natural background ED concentration (1200 H-eq ppb), and 

natural background electron acceptor (EA) concentration (2400 H-eq ppb). We assume the natural 

background concentrations of ED and EA are stochastic with their log uncertainty of 0.1 during 

Monte Carlo simulations. Other aquifer parameters that were calibrated are longitudinal 

dispersivity, transverse-to-longitudinal dispersivity ratio, vertical-to-longitudinal dispersivity 

ratio, first-order decay coefficients for contaminant and ED, and ED retardation factor. 

Two additional calibrated parameters that control the efficiency of the ABB system are the H-

equivalents per mass of ED (f’ED) and the fraction of reductive dechlorination that follows a serial 

pathway (Fserial) as described in Chapter 3. All parameters are characterized by lognormal 

probability distributions. For lognormally distributed parameters, prior best estimates represent the 

geometric mean of the variable and the standard deviation is the statistic for natural logarithm of 

the variable (Sln). The 99% confidence limits for log-normally distributed variables range from 

approximately exp(-3Sln) to exp(3Sln) times the geometric mean. For example, the prior estimate 

of Source 1 contaminant flux in 2006 has a geometric mean of 0.01 kg/d with a ln standard 

deviation of 1 indicating a 99% confidence range from 0.0005 to 0.2 kg/d. Prior best estimates of 

all parameters and their ln standard deviations are given in Table 9.4. 
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Table 9.4. Parameter prior estimates and their uncertainty for Area 5. 

Parameters Prior value1 STD2 Reference 

Site OT51 Mass in 2005 (kg) 2000 3.0 ORNL, 2008 

(Source 1) Source flux in 2005 (kg/d) 0.01 1.0 ORNL, 2008 

 Release date (y) 1980  - ORNL, 2008 

 Width (m) 45  - ORNL, 2008 

 Depletion exponent (-) 1.50 0.5  

Source E Mass in 2005 (kg) 1000 3.0 ORNL, 2008 

(Source 2) Source flux in 2005 (kg/d) 0.005 1.0 ORNL, 2008 

 Release Date (y) 1980  - ORNL, 2008 

 Width (m) 45  - ORNL, 2008 

 Depletion exponent (-) 1.50 0.5  

Site OT50 Mass in 2005 (kg) 1000 3.0 ORNL, 2008 

(Source 3) Source flux in 2005 (kg/d) 0.01 1.0 ORNL, 2008 

 Release date (y) 1980  - ORNL, 2008 

 Width (m) 45  - ORNL, 2008 

 Depletion exponent (-) 1.50 0.5  

Site SS20 Mass in 2005 (kg) 3000 3.0 ORNL, 2008 

(Source 4) Source flux in 2005 (kg/d) 0.005 1.0 ORNL, 2008 

 Release date (y) 1980  - ORNL, 2008 

 Width (m) 45  - ORNL, 2008 

 Depletion exponent (-) 1.50 0.5  

Aquifer Darcy velocity (m/d) 0.02 0.5 USGS, 2000 

& AAB Porosity (-) 0.3 - USGS, 2000 

system Contaminant retardation (-) 1.20  - Estimate from literature 

 ED retardation (-) 1.20 0.5 Estimate from literature 

 AL (m) 30 0.5 Estimate from literature 

 AT/AL (-) 0.1 0.5 Estimate from literature 

 AV/AL (-) 0.01 0.5 Estimate from literature 

 TCE Decay (d-1), λTCE 0.0001 0.5 Estimate from literature 

 ED Decay (d-1), λED 0.00001 1.0 Estimate from literature 

 Fserial
3 0.5 0.5 Assumed 

 f’ED (kg/kg)3 0.16 0.1 Chapter 3 

 Saturated thickness (m) 10  - USGS, 2000 

1   Prior values are initial best estimates representing the geometric mean for all variables 
2   Standard deviations are for natural logarithms 
3  Post-ED calibrations only 
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Three different datasets were used to assess the effects of incremental model refinement using 

additional data available over time (Table 9.5):  

• Cal-1 uses data available through 2005 before commencing ED injection.  

• Cal-2 adds additional monitoring well data and actual ED-injection data through 2009. 

• Cal-3 adds additional monitoring well data and actual ED-injection data through 2016. 

Initially, a “progressive” calibration approach was used in which Cal-2 was executed using Cal-1 

posterior parameter estimates and uncertainties as Cal-2 priors, and Cal-3 was performed using 

Cal-2 posteriors as Cal-3 priors on the grounds that each calibration would progressively improve 

parameter estimates and narrow uncertainty. For reasons discussed below, this assumption proved 

doubtful and an additional set of calibrations was performed in which Cal-2 and Cal-3 used the 

same priors as Cal-1. 

 

Table 9.5. Data sets collected in Area 5 for model calibration. 

Calibration MW data period  # data points AAB status. 

Cal-1 1988 - 2005  46 not operating 

Cal-2 1988 - 2010  339 operating 

Cal-3 1988 - 2016  559 operating. 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

  

 

Figure 9.3. Observed versus calibrated contaminant concentrations for: (a) Cal-1, (b) Cal-2 

progressive, (c) Cal-3 progressive, (d) Cal-1, (e) Cal-2 fixed priors, and (f) Cal-3 fixed priors.  

  

b c a 
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Scatter plots of observed versus predicted concentrations, along with correlation coefficients and 

residual regression uncertainty for calibrations using progressively updated and fixed priors are 

shown in Figure 9.3. Relatively low scatter for Cal-1 results (Figure 9.3a) suggests Cal-1 

parameters are reasonably accurate. However, limited deviations between observed and predicted 

values for Cal-1 may be misleading because the number of calibration data points (46) is only 2.7 

times the number of calibrated parameters (17). Ratios of 5 or more are generally desirable for 

nonlinear regressions. Model deviations increase significantly as the number of data points 

increases to 339 for Cal-2 and 559 for Cal-3. In part, this may simply reflect an increase in outliers 

due to the much larger sample size. However, it may also reflect greater variability in 

measurements induced by ED injection in 12 injection galleries at rates that vary spatially and 

temporally.   

With progressive refinement of priors, the Cal-3 regression pegged the estimate for Source 1 

(OT51)  at its upper confidence limit (prior best estimate minus 3Sln), indicating prior estimates 

and/or Sln values are not accurate. This does not occur when initial prior estimates are used for all 

calibrations. Furthermore, the correlation coefficient for Cal-2 increases from 0.35 for 

progressively updated priors to 0.58 with fixed priors, and Cal-3 correlations increase from 0.39 

to 0.60. Therefore, we conclude that calibration results with fixed prior estimates are more reliable 

than those using progressive refinements for this data set. Parameter estimates and their uncertainty 

for calibrations with fixed priors are summarized in Table 9.6.  

 

Table 9.6. Summary of Area 5 calibration results using fixed prior estimates. “Best” values are 

calibration estimates and STD is the concentration ln standard error for the regression.  

Parameters Cal-1 Cal-2 Cal-3 

  Best STD Best STD Best STD 

Mcal1 (kg) 2151 1.00 7 0.13 2 0.27 

Mcal2 (kg) 497 0.88 509 1.00 453 1.00 

Mcal3 (kg) 436 0.98 22 0.75 27 0.55 

Mcal4 (kg) 209 0.87 111 0.76 28 0.75 

Jcal1 (kg/d) 1.93E-03 0.44 1.57E-03 0.27 2.25E-03 0.30 

Jcal2 (kg/d) 6.93E-02 0.48 2.16E-03 0.33 2.35E-03 0.23 

Jcal3 (kg/d) 1.67E-02 0.69 5.83E-03 0.34 7.52E-03 0.25 

Jcal4 (kg/d) 6.83E-02 0.61 2.39E-02 0.33 1.08E-02 0.39 

β1 1.66 0.50 1.47 0.11 0.99 0.03 

β2 1.00 0.46 1.38 0.50 1.51 0.50 

β3 1.48 0.50 1.02 0.33 1.13 0.23 

β4 1.00 0.32 1.00 0.35 1.00 0.21 

λTCE (1/d) 7.72E-04 0.21 5.25E-04 0.13 7.61E-04 0.07 

λED (1/d)            -            - 9.36E-06 1.00 9.75E-06 1.00 

qw (m/d) 0.006 0.26 0.0077 0.0878 0.0103 0.0907 

AL (m) 41 0.39 17 0.28 19 0.26 

AT/AL 0.254 0.22 0.099 0.31 0.062 0.29 

AV/AL 0.005 0.47 0.003 0.41 0.002 0.39 

Fserial            -            - 0.252 0.44 0.186 0.45 

f'ED            -            - 0.171 0.10 0.146 0.07 
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9.3 Remediation performance assessment and optimization 

There are 12 ED injection galleries (i.e., PICTs) in Area 5 located as shown in Figures 9.1 and 9.2. 

The remediation objective is to reduce dissolved plume concentrations below 500 g/L per 

regulatory agreement. For purposes of optimization, we designate five monitoring wells (DM3513, 

DM3515, MW214, DM3509, DM3315) distributed over the dissolved plume as compliance 

monitoring locations. Since there is large uncertainty in the contaminant mass remaining in the 

DNAPL sources, the duration that ED will need to be injected is uncertain. Therefore, we use an 

adaptive method based on real-time field data to make termination decisions for individual 

galleries. As discussed in Chapter 3, we assume each injection gallery and associated performance 

monitoring location immediately upgradient, and in some cases also downgradient. When the 

measured performance well contaminant concentrations are less than a specified value, CEDstop, 

further injection is terminated. This protocol allows each PICT to be terminated independently.  

In practice, ED injection will be intermittent to minimize pore clogging, e.g., injection may occur 

a limited number of hours per day or be cycled on and off for months at a time. Such operations 

will cause fluctuations in ED concentrations near the ED gallery, which will attenuate with 

distance depending on the cycle duration and groundwater velocity. With the low groundwater 

velocity in Area 5, such fluctuations will be minor, so we opt to model ED injection as a continuous 

process. Therefore, ED injection rates are regarded as time-averaged values taking into 

consideration cycling on and off.  Specifically, we assume each PICT will operate one month per 

year, so modeled average ED injection rates are 1/12th of the rate during actual operation.   

All 12 PICTs are assumed to have performance monitoring wells immediately upgradient (in 

practice, one or more of the actual injection wells can be monitored several months after the last 

injection period). For PICTs immediately upgradient of compliance monitoring wells, the 

downgradient compliance well is also regarded as a performance monitoring well.  

The specific criteria used to achieve site-wide “no further action” (NFA) status are (Chapter 3): 

1. The 95% upper confidence limits of current contaminant concentration for each 

compliance well, determined from a regression of measured concentration vs time over a 

5-year lookback period, must be less than the cleanup level (Cnfa = 500 g/L), and  

2. ED injection needs to have terminated for all galleries.  

During optimization, to achieve concentrations below 500 g/L at all compliance wells as soon as 

possible, we impose a “penalty cost” (Table 9.7) to any Monte Carlo realization for which 

condition 1 is not met after a penalty date tpenalty of 2021 (computed based on the max travel time 

from injection galleries to the nearest downgradient compliance well). The penalty cost is also 

applied if NFA criteria are not met by a maximum date taken as 2300.  

Individual galleries are allowed to terminate when 

1. The current contaminant concentration in a performance monitoring well immediately 

upgradient of the gallery is less than a specified value (CEDstop < Cnfa,), 

2. All galleries upgradient of the one in question have previously terminated injection, and  

3. For galleries that are the closest upgradient to a compliance well, the respective compliance 

well concentration must be less than Cnfa. 
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All simulations used an ED stochiometric coefficient (f’ED) of 0.156, estimated from Table 3.1 as 

the average of lactate and EVO, and a stochiometric coefficient for TCE (f’TCE) of 0.051, also from 

Table 3.1. Unit operating costs are summarized in Table 9.7. Total costs were computed using a 

discount rate of zero. 

 

Table 9.7. Summary of cost variables used in optimization. 

Cost                                  Description Value 

ED capital cost 

ED operating costs 

Construction cost per width $500/m 

Cost per gallery width $75/m/year 

Other op costs $120,000/year 

Site-wide op cost Monitoring and reporting $150,000/year 

Penalty cost “Cost” for non-compliance $109 

 

9.3.1 Simulations based on actual ED injection rates 

For comparison with optimized design results, performance of the actual system at the site was 

simulated using actual ED injection rates employed at the site from 2006 to 2016. Injection in all 

galleries was modeled with a constant injection rate corresponding to the time-average of actual 

rates over the period of record (Table 9.8). Unoptimized Monte Carlo simulations were performed 

using actual average injection rates with site parameters for each of the three model calibrations: 

• NoOpt-actual-1: actual injection rates with Cal-1 model parameters     

• NoOpt-actual-2: actual injection rates with Cal-2 model parameters     

• NoOpt-actual-3: actual injection rates with Cal-3 model parameters.     

Table 9.8. ED injection rates (JED) and injection gallery termination criteria (CEDstop) for                          

non-optimized and optimized cases. Opt-2 values apply after 2010 and Opt-3 values after 2016. 

 Actual NoOpt Opt1 Opt2 Opt3 

 JED CEDstop JED CEDstop JED CEDstop JED CEDstop JED CEDstop 

Gallery kg/yr g/L kg/yr g/L kg/yr g/L kg/yr g/L kg/yr g/L 

PICT01 4.0 500 7.7 500  -  -  -  -  -  - 

PICT02 6.9 500 77.0 500  -  -  -  -  -  - 

PICT03 7.3 500 46.0 500  -  -  -  -  -  - 

PICT03a 1.8 500 23.0 500  -  -  -  -  -  - 

PICT04 8.8 500 46.0 500 208.4 291 9.5 4 9.5 4 

PICT05 9.1 500 30.7 500 67.2 500 7.3 4 6.2 4 

PICT06 2.2 500 15.3 500 47.8 36 50.0 8 2.9 8 

PICT06f 8.0 500 15.3 500  -  -  -  -  -  - 

PICT07 3.7 500 30.7 500  -  -  -  -  -  - 

PICT08 5.8 500 15.3 500 20.1 177 13.1 16 3.7 12 

PICT09 4.7 500 61.7 500  -  -  -  -  -  - 

PICT10 8.4 500 2.9 500 0.7 225 1.1 20 1.1 16 

Total 71   372   344   81   23   
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9.3.2 Simulations based on contaminant flux-derived ED injection rates  

Again, for comparison with optimized design results, performance was evaluated for a system 

using ED injection rates estimated from a reaction mass balance as 

 
' '

max /= CH

ED TCE EDJ qAC f f  (9.1) 

where JED is the average darcy velocity, A is the vertical cross-section area of the plume estimated 

to be 689 m2,
max

CHC is the maximum measured total chlorinated solvent concentration near the ED 

gallery prior to initiating ED injection, and f’ED and f’TCE are as discussed above. Calculated JED 

values are summarized in Table 9.8. Unoptimized Monte Carlo simulations were performed using 

flux-based injection rates with parameters for each of the three model calibrations: 

• NoOpt-flux-1: flux-based injection rates with Cal-1 model parameters.     

• NoOpt-flux-2: flux-based injection rates with Cal-2 model parameters.     

• NoOpt-flux-3: flux-based injection rates with Cal-3 model parameters.     

All PICTs are assumed to operate in the same manner described for simulations using actual 

average injection rate.  

 

9.3.3 Optimized design simulations 

Optimization was performed to refine design variables with the objective of meeting remediation 

criteria with minimum expected (probability-weighted average) total cost. Design variables to be 

optimized were ED injection rates (JED) for each ED gallery and the termination criteria (CED stop) 

for each gallery at upgradient performance monitoring well locations subject to the constraint that 

CED stop cannot exceed the site cleanup requirement (500 g/L). CED stop values for PICTs with 

downgradient performance monitoring wells (corresponding to site-wide compliance wells) were 

fixed at 500 g/L (not optimized) to ensure that site-wide cleanup criteria were met. Any gallery 

with an optimized injection rate less than 0.36 kg/yr was assumed to be inactive, the rate set 

internally to zero, and no operating costs applied for that gallery. 

Three optimization simulations were performed corresponding to the three calibration analyses: 

• Opt-1 optimized JED and CED stop values for all PICTs using Cal-1 model parameter 

estimates and their uncertainty based on field data through 2005 for remediation to be 

initiated January 2006 and to operate until remediation criteria were met or tpenalty exceeded. 

• Opt-2 used Cal-2 model parameters and their uncertainty estimated using data through 

2009 and assumes the Opt-1 design was implemented January 2006 and operated through 

2009. New operating parameters were optimized for remediation to be initiated January 

2010 and to operate until remediation criteria were met or tpenalty exceeded. 

• Opt-3 used Cal-3 model parameters and their uncertainty estimated using data through 

2016 and assumes the Opt-1 design was implemented January 2006 and operated through 

2009, followed by the Opt-2 design from 2010 through 2016. New operating parameters 

were optimized for remediation to be initiated January 2016 and to operate until 

remediation criteria were met or tpenalty exceeded. 
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9.3.4 Results 

Expected (mean) cost-to-complete and date-to-complete with 5% and 95% cumulative probability 

values are shown in Table 9.9 and Figure 9.4 for each unoptimized and optimized remedial design 

and each set of calibrated parameters. For a given design, uncertainty in costs and completion dates 

decreased sharply with longer calibration data sets from Cal-1 to Cal-3. Expected costs and 

completion dates also decreased with longer calibration data sets for a given design. This 

emphasizes the importance of periodic recalibration, assessment and optimization to update 

performance estimates and evaluate the need for design adjustments.  

Although ED injection rates for the NoOpt-flux case averaged about five times higher than those 

for NoOpt-actual, the estimated cost-to-complete was only 1% lower and remediation duration 

only 2 years earlier based on the final calibration (Cal-3), which produced simulations with low 

uncertainty. Stochastic optimization, in contrast, predicted large performance improvements. 

Stepwise optimization yielded a 30% expected cost reduction and a 19-year shorter 

remediation duration compared to the actual site design. Most of this improvement was 

obtained with the first-stage optimization (Opt-1 design). However, Opt-2 and Opt-3 design 

adjustments added 3% to Opt-1 cost savings and decreased the expected remediation 

duration additional 6 years (Opt-1 with Cal-3 vs. Opt-3 with Cal-3). 

Optimization performance improvements were achieved by deploying only 5 of the 12 potential 

injection galleries, injecting at high rates initially, decreasing rates at later times, and shutting 

individual galleries off early when performance monitoring wells for the gallery met defined 

criteria (Table 9.8). 

 

Table 9.9. Expected cost-to-complete and date-to-complete with 5 and 95% cumulative 

probability confidence limits for each remedial design and set of calibrated parameters. Bold 

values are best design performance estimates for optimized and unoptimized cases.   

  Cost-to-complete, $million  Completion date 

Design Calibration  5% LCL Mean 95% UCL   5% LCL Mean 95% UCL 

NoOpt-actual Cal-1 59.8 85.2 168.5  2047 2089 2232 

NoOpt-actual Cal-2 62.8 68.3 89.2  2055 2070 2131 

NoOpt-actual Cal-3 62.8 63.4 66.5  2055 2057 2066 

NoOpt-flux   Cal-1* 58.4 83.0 166.9  2047 2087 2232 

NoOpt-flux Cal-2 62.8 63.2 65.0  2055 2056 2058 

NoOpt-flux Cal-3 62.8 62.8 63.0  2055 2055 2055 

Opt-1   Cal-1* 51.7 59.1 75.8  2027 2040 2054 

Opt-1   Cal-2* 50.4 51.5 52.3  2032 2036 2039 

Opt-1   Cal-3* 49.7 50.4 51.1  2030 2032 2034 

Opt-2 Cal-2 51.0 52.0 55.3  2037 2040 2052 

Opt-2 Cal-3 51.0 51.2 52.2  2037 2037 2042 

Opt-3 Cal-3 48.9 48.9 49.0   2038 2038 2038 

* PICT3a and PICT6f are not included (constructed after 2006) 
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Figure 9.4. Cost- and date-to-complete expected value and range                                                               

for each remedial design and set of calibrated parameters.  
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10. Application to Atlas Missile Site 11 

10.1 Overview 

Atlas 11 is a former Atlas E missile site in northeastern Colorado that was operated by the Air 

Force from 1960-1965 and was decommissioned in 1966 when ownership was transferred to 

Colorado Engineering Experiment Station, Inc. (USACE 2014). Operations at Atlas 11 involved 

use of TCE to clean up residual rocket fuel. Waste solvent was drained to a sump, which discharged 

to the ground surface. A site investigation in 1998 identified TCE to be the primary contaminant 

of concern (COC) contamination with concentrations up to 1000 g/L in a perched aquifer 

approximately 50-60 ft below grade in southern and southeastern portions of the facility and 

adjacent off-site property (Figure 10.1). No evidence of DNAPL was reported.  

Due to variations in the elevation of the underlying low permeability layer, the perched water 

thickness varies from 0-22 ft with flow generally towards the southeast at a velocity of about 40 

ft/yr. Contamination extends off site to the south and east of the property. Remediation 

investigations and feasibility studies have been conducted at the site resulting in selection of ISCO 

using sodium permanganate with pairs of injection and extraction wells. Additional 

characterization was undertaken to design and implement the ISCO system, including further soil 

and groundwater sampling, an aquifer pump test, and a bench-scale treatability study. A field pilot 

study was conducted in 2012 and expanded in 2013 with full-scale operations commencing in 2014 

(Arrowhead 2015a,b,c; USACE 2015).   

 

 

Figure 10.1. Distribution of TCE in perched aquifer at Atlas 11 site and well locations. 
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Average perched zone hydraulic conductivity was estimated to be 16.4 ft/d. With a natural gradient 

of 0.004 and an effective porosity of 0.2, the unretarded pore velocity under natural conditions is 

estimated to be about 0.33 ft/d. Planned oxidant injection rates were 2.0 - 2.5 gpm. The gradient 

between injection and extraction wells separated by 25-50 ft is estimated to be about 0.067, 

yielding an unretarded pore velocity of 5.5 ft/d during injection. Unretarded travel times over a 50 

ft distance are accordingly about 150 days under natural gradient conditions and 9 days during 

oxidant injection.  

Bench tests with various amounts of NaMnO4 added to soil samples from the site indicated the 

total oxidation potential to be less than 2000 mg NaMnO4 per kg soil, which may be fully oxidized 

by addition of one pore volume of 5000 mg/L NaMnO4 solution. NOD measurements do not appear 

to have been made, but total organic carbon in soil samples was determined to be 0.34%. The plan 

is to inject oxidant in an injection well at a concentration of about 5000 mg/L and to maintain 

recirculation until the system is shut down for winter, then restart as necessary in the spring.  

Oxidant injection has been undertaken with several well pairs in the most highly contaminated 

areas, which pushed aqueous concentrations below the MCL. However, some monitoring wells 

have rebounded by 100 to 300 g/L. This may reflect small isolated amounts DNAPL, or more 

likely aqueous or adsorbed contaminant in low permeability pockets.  

The Atlas site was identified in late 2015 as a potential demo site for the Stochastic Cost 

Optimization Toolkit (SCOToolkit). Objectives of the demo site exercise were two-fold: (1) to 

evaluate historical and projected performance of remedial actions at the site and provide 

suggestions to improve performance and/or reduce costs, and (2) to field test SCOToolkit to 

evaluate its practical application for ISCO design optimization. 

 

10.2 Historical ISCO Operations 

A pilot test conducted in 2012 involved sodium permanganate (NaMnO4) injection in application 

wells (AW) with concurrent groundwater extraction in downgradient extraction wells (EW). 

Effluent from EW was reinjected in AW with additional oxidant. Oxidant injection/recirculation 

was performed for about 2.5 months in late summer 2012 with quarterly monitoring under natural 

gradient conditions through the following summer.  

Oxidant was introduced in the original pilot test wells again in summer 2013 along with three 

additional injection-extraction well pairs (Table 10.1). Five new well pairs were operated in 2014, 

with no further injection in previous treatment zones. In 2015, two of the 2014 well pairs plus 13 

new well pairs were operated. Six previous well pairs and five new pairs were operated in 2016. 

The duration of summer injection-recirculation periods averaged about 3 months. A summary of 

injection-extraction well operating dates, fluid volumes, and oxidant mass are given in Table 10.1. 

To assess the magnitude of dissolved TCE attenuation at the site over the period from 2012 through 

2016, quarterly TCE concentration measurements from individual wells were fit to a simple first-

order (exponential) depletion function. For wells employed as ISCO injection or extraction 

locations, the function was fit to concentration data for dates after initiation of ISCO operations 

for the considered location. For wells not employed for ISCO, measurements for all sampled dates 

were used. Regression functions for individual wells are shown in Figure 10.2 for ISCO wells and 

Figure 10.3 for non-ISCO wells. The average correlation coefficient was 0.57 for ISCO well 

regressions and 0.60 for non-ISCO wells. 
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Table 10.1. Treatment zone information for ISCO operations at Atlas site through 2016. In cases where more than one injection well is 

associated with an extraction well or vice versa, fluid and oxidant quantities have been adjusted to avoid double counting. TZ 28-30 

are suggested additional locations for ISCO operation. 

TZ Start date End date

Injection 

duration

Initial TZ 

concentration

2016 TZ 

concentration

TZ        

length

TZ sat 

thickness

 TZ pore 

volume

Total fluid 

extracted

Total fluid 

Injected

Total NaMnO4 

injected

Avg NaMnO4              

conc injected 

Injection Extraction days ug/L ug/L ft ft gal gal gal kg mg/L

1 AW EW 07/01/12 09/19/12 80 343 5 48.8 10.2 35,386 26,400 26,400 0.75 1,766 17,655

1 AW EW 05/16/13 08/01/13 77  -  - 48.8 10.2 35,386 9,415 9,415 0.27 313 8,768

2 MW-08 TW-08 05/16/13 08/01/13 77 650 1 37.1 4.4 11,596 8,672 8,672 0.75 288 8,768

3 MW-12 TW-19 05/16/13 07/19/13 64 590 10 98.6 12.7 89,020 11,355 11,355 0.13 377 8,768

4 TW-19 MW-02 07/19/13 08/01/13 13 510 129 79.5 12.8 72,552 2,259 2,259 0.03 75 8,768

5 TW-12 TW-19 07/14/14 09/12/14 60 640 10 123.8 10.8 95,766 25,328 25,328 0.26 678 7,062

6 TW-06 TW-12 09/12/14 11/10/14 59 860 1 94.0 6.6 44,222 20,749 20,749 0.47 555 7,062

6 TW-06 TW-12 07/20/15 10/14/15 86  -  - 94.0 6.6 44,222 26,287 26,287 0.59 575 5,778

7 MW-03 MW-04 07/14/14 11/10/14 119 145 83 115.8 19.7 162,388 16,826 16,826 0.10 450 7,062

7 MW-03 MW-04 04/23/15 11/04/15 195  -  - 115.8 19.7 162,388 36,839 36,839 0.23 806 5,778

7 MW-03 MW-04 05/16/16 08/01/16 77  -  - 115.8 19.7 162,388 41,519 8,805 0.05 387 11,609

8 TW-08 TW-11 07/14/14 11/10/14 119 550 7 95.0 6.6 44,693 26,749 26,749 0.60 716 7,062

9 TW-20 TW-23 07/14/14 11/10/14 119 217 11 141.0 11.2 112,264 2,190 2,190 0.02 59 7,062

10 TW-01 TW-28 04/23/15 07/20/15 88 502 1 70.5 2.7 13,626 36,620 36,620 2.69 802 5,778

11 TW-07 TW-11 04/23/15 07/20/15 88 141 18 33.7 7.4 17,760 39,606 39,606 2.23 867 5,778

11 TW-07 TW-11 05/16/16 08/01/16 77  -  - 33.7 7.4 17,760 48,208 22,040 1.24 969 11,609

12 TW-13 TW-20 04/23/15 07/23/15 91 222 11 93.2 14.8 98,188 22,596 22,596 0.23 495 5,778

13 TW-29 TW-12 04/30/15 07/23/15 84 760 172 167.9 7.3 87,616 25,038 25,038 0.29 548 5,778

14 MW-07 MW-10 07/20/15 11/04/15 107 31 15 139.0 6.1 60,488 42,954 42,954 0.71 940 5,778

14 MW-07 MW-10 05/16/16 08/01/16 77  -  - 139.0 6.1 60,488 33,647 21,693 0.36 954 11,615

15 TW-08 OW 08/05/15 10/19/15 75 565 45 126.8 9.0 81,189 32,797 32,797 0.40 718 5,778

16 TW-32 MW-04 08/05/15 10/19/15 75 84 28 118.0 22.6 190,258 66,645 66,645 0.35 1,459 5,778

17 OW TW-19 08/05/15 11/04/15 91 200 54 56.8 13.0 52,744 9,082 9,082 0.17 199 5,778

18 TW-35 TW-46 08/05/15 11/04/15 91 378 56 152.3 17.5 189,492 18,900 18,900 0.10 414 5,778

19 TW-26 TW-25 08/05/15 11/04/15 91 448 116 34.9 18.4 45,747 1,147 1,147 0.03 25 5,778

20 TW-23 MW-02 08/05/15 09/30/15 56 595 119 50.0 14.5 51,535 18,212 18,212 0.35 399 5,778

20 TW-23 MW-02 05/16/16 08/01/16 77  -  - 50.0 14.5 51,535 5,521 6,696 0.13 294 11,610

21 MW-20 TW-34 08/15/15 11/04/15 81 67 1 88.2 9.0 56,255 17,029 17,029 0.30 373 5,778

21 MW-20 TW-34 05/16/16 08/01/16 77  -  - 88.2 9.0 56,255 4,897 4,897 0.09 215 11,609

22 TW-27 TW-34 08/24/15 11/04/15 72 237 1 172.3 9.8 120,577 29,287 15,694 0.13 413 6,940

22 TW-27 TW-34 05/16/16 08/01/16 77  -  - 172.3 9.8 120,577 29,287 15,694 0.13 690 11,609

23 TW-29 MW-12 05/16/16 08/01/16 77 215 161 167.9 7.3 87,616 28,930 27,222 0.31 1,197 11,609

24 TW-35 MW-19 05/16/16 08/01/16 77 337 31 150.7 16.5 177,288 718 17,343 0.10 763 11,609

25 TW-23 TW-25 05/16/16 08/01/16 77 300 116 51.7 17.1 62,788 9,090 10,045 0.16 442 11,609

26 TW-24 TW-33 05/16/16 08/01/16 77 39 17 154.7 17.6 194,025 21,343 13,134 0.07 578 11,609

27 TW-44 TW-46 05/16/16 08/01/16 77 95 54 142.0 17.2 173,791 25,702 13,753 0.08 605 11,609

28 TW-37 TW-47 5/15/17 8/15/17 92 755 715 151 6.5 69,961  -  -  -  -  -

29 TW-54 TW-49 5/15/17 8/15/17 92 275 275 118 6.5 54,251  -  -  -  -  -

30 TW-38 TW-39 5/15/17 8/15/17 92 50 50 75 6.8 36,353  -  -  -  -  -

Well Pair

Total pore 

volumes 

injected
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Figure 10.2. First-order TCE attenuation functions fit to data from wells used for ISCO. 

 

 

 
Figure 10.3. First-order TCE attenuation functions fit to data from wells not used for ISCO. 

 

 

Slopes of the depletion functions represent the fractional rate of change in TCE concentration 

(“depletion rates”) observed for each well over the period analyzed. Minimum and maximum 

depletion rates, average depletion rates for each quartile, overall averages and median values for 

ISCO and non-ISCO wells are summarized in Table 10.2. The variability of inferred depletion 

rates is higher for non-ISCO (monitored natural attenuation, MNA) wells than for ISCO wells 

(max/min ratio is 3 times greater for MNA wells) and the ratio of ISCO to non-ISCO average 

depletion rates ranges from 4.4 for the lowest quartile to 1.7 for the highest quartile, with a ratio 

of 2.1 for overall averages and 2.5 for median values. Since the rate distribution is positively 

skewed, median values (which have an equal likelihood of being exceeded or not) is a more 

conservative value for use in making performance estimates.  
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Table 10.2. Average depletion rates by quartile and for all values 

for ISCO wells and non-ISCO wells. 

 

  Attenuation coefficients (d-1) ISCO vs. 

non-ISCO Ratio Statistics ISCO wells Non-ISCO wells 

Lowest value 0.00064 0.00014 4.7 

Avg 1st quartile 0.00109 0.00025 4.4 

Avg 2nd quartile 0.00315 0.00088 3.6 

Median value 0.00413 0.00167 2.5 

Avg 3rd quartile 0.00557 0.00265 2.1 

Avg 4th quartile 0.01207 0.00722 1.7 

Highest value 0.01594 0.00957 1.7 

Overall average 0.00547 0.00265 2.1 

 

While the foregoing results confirm our expectation that ISCO accelerates remediation compared 

to MNA, the relatively small difference in ISCO and MNA attenuation rates is somewhat 

surprising. The time to reach a TCE concentration of 5 g/L from various initial concentrations 

with and without ISCO was estimated using median depletion rates from the Atlas site data.  The 

results indicate that ISCO is likely to reduce time-to-completion from about 8.5 to 3.5 years with 

an initial concentration of 1000 g/L (approximate maximum observed at the Atlas site), from 4.8 

to 2.0 years with an initial concentration of 100 g/L, and from 1.1 to 0.5 years starting from 10 

g/L (Table 10.3). The time reduction for ISCO relative to MNA may not justify its cost for 

treatment zones having initial concentrations less than 10 g/L or perhaps higher unless critical 

receptors are present.  

 

Table 10.3. Estimated time to reach MCL based on median depletion rates for ISCO and non-

ISCO wells and time reduction achieved by ISCO for different initial TCE concentrations. 

 

  Years to reach 5 μg/L 

MNA–ISCO years Initial TCE (μg/L) ISCO MNA 

1000 3.5 8.5 5.0 

500 3.1 7.4 4.3 

250 2.6 6.3 3.7 

100 2.0 4.8 2.8 

50 1.5 3.7 2.2 

25 1.1 2.6 1.5 

10 0.5 1.1 0.7 
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10.3 Phase 1 SCOToolkit analyses  

10.3.1 Model formulation and calibration 

The SCOToolkit ISCO model is formulated to consider one or more DNAPL source zones, which 

may be subdivided into multiple “treatment zones” (TZ) with different quantities of contaminant. 

TZs may be terminated independently when “local” cleanup criteria are met or simultaneously 

when “global” criteria are met. Oxidant may be injected over short periods followed by a longer 

duration in which oxidant migrates under natural gradient conditions and reacts with natural 

oxidant demand (NOD) and dissolved contaminant. After oxidant is depleted by reactions or by 

advective movement out of the treatment zone, aqueous contaminant concentrations gradually 

rebound in response to DNAPL dissolution and/or mass transfer from lower permeability zones. 

A second ISCO operation mode may be simulated that involves continuous oxidant introduction 

in injection wells and withdrawal from extraction wells. Some or all effluent may be recirculated 

with additional oxidant added. For continuous recirculation, contaminant concentrations will be 

depressed by reactions and will not reflect equilibrium conditions. Termination decisions during 

continuous injection can only be reliably made based on soil sampling, unless injection is 

periodically terminated long enough to allow groundwater concentrations to rebound. 

ISCO operation at the Atlas site is a hybrid of the foregoing two operating modes, with injection 

and recirculation for approximately 3 months alternating with natural gradient conditions for 9 

months. The current model version includes an option to simulate this hybrid method. Another 

aspect of the Atlas site is that DNAPL does not appear to be present. However, we assume that 

part of the contaminant mass at the site and in individual treatment zones occurs in lower 

permeability zones, which interact with higher permeability zones by diffusive mass transport. 

This “mobile-immobile” mass transfer process is modeled using the same mathematical 

formulation employed to simulate DNAPL dissolution. Specifically, the net rate of contaminant 

mass entering the mobile aqueous phase within each treatment zone is described by  

 
( )

( ) ( ) ( ) i
i mt k oi

oi

M t
J t F t F t J

M


 

=  
 

 (10.1) 

where Ji(t) is the mass transfer rate in TZi at time t [MT-1], Joi is the rate prior to ISCO (Jan 2012) 

[MT-1], Mi(t) is the mass at time t [M], Moi is the mass in Jan 2012 [M], Fmt is a dimensionless 

mass transfer enhancement factor, and Fk is a mass transfer inhibition factor, and  is an empirical 

depletion exponent. For DNAPL sources,  is governed by the DNAPL “geometry” (e.g.,    

for pools or    for residual). For the present case involving diffusive mass transfer with no 

DNAPL, we assume =1.   

When permanganate is used as the oxidant, mass transfer inhibition due to pore clogging by MnO2 

precipitation is modeled following West et al. (2007) and West and Keuper (2012) as 

  
2MnO( ) 1  ( )k rindF t S C t= −  (10.2) 

where CMnO2
(t) is the mass of precipitated MnO2 per treatment zone pore volume [ML-3] as a 

function of time, and Srind = 4.6 x 10-6 L/mg. When a DNAPL is considered, mass transfer 

enhancement is estimated based on Reitsma and Dai (2001) as 
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where Cox(t) is the current aqueous oxidant concentration [ML-3], SCH is the effective solubility of 

DNAPL phase contaminant [ML-3], Wox is the molecular weight of oxidant [M mol-1], WCH is the 

molecular weight of contaminant [M mol-1], DOX is the aqueous diffusion coefficient of oxidant 

[L2T-1], DCH is the contaminant aqueous diffusion coefficient [L2T-1], and nox/CH is the 

stoichiometric ratio of oxidant to contaminant for the redox reaction. For the diffusion-limited 

aqueous phase contaminant source considered at the Atlas site, we retain the form of eq. (10.3), 

simplified as follows 

 1 aq

mt mt oxF f C= +  (10.4) 

with aq

mtf for the Atlas site estimated from previously discussed depletion rates. An initial estimate 

of aq

mtf  was estimated taking Fmt as the ratio of median ISCO versus MNA depletion rates (2.5 

from Table 10.2) and Cox as the average injected oxidant concentration (8,433 mg/L), yielding aq

mtf

= 1.78x10-4 L/mg. Since the quantity of oxidant available for reaction with contaminant is reduced 

by reactions with NOD, the effective value of aq

mtf is expected to be larger. We therefore calibrated 

the final aq

mtf value to obtain a simulated ratio of ISCO versus MNA depletion rates of 2.5. This 

yielded a final value for aq

mtf of 2.8x10-4 L/mg.  

Total initial contaminant mass across all TZs, Mo, and the corresponding site-wide mass transfer 

rate, Jo, are related to the individual TZ values, Moi and Joi respectively, as follows 

                                                        
1
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M M
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=   (10.5a) 

                                                        oi i oiM RV C=  (10.5b) 
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M
=  (10.5d) 

where Vi is the bulk volume of TZ i, Coi is the initial mobile dissolved contaminant concentration 

in TZ i taken as the average of injection and extraction well measurements prior to commencing 

ISCO,  is aquifer porosity, and R is a dimensionless ratio of total to mobile phase TCE mass. 

Values for Vi and Coi are tabulated in Table 10.1. Treatment zone widths for all TZs were taken as 

50 ft per USACE (2014) estimates. The porosity is assumed to be 0.2. Values of Mo and Jo, and R 

were calibrated to field data. 

Contaminant mass and aqueous concentration versus time in each TZ is computed by solving mass 

balance equations that consider the current mass transfer rate from eq. (1) and oxidant-contaminant 
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and oxidant-NOD reactions. Total NOD mass at the site (NODtot) is assumed to be distributed 

among TZs proportional to TZ bulk volume, Vi (Table1). Total NOD mass in each TZ (NODtot i) 

is divided into “fast” NOD, which is assumed to react instantaneously with oxidant, and “slow” 

NOD, which follows second-order reaction kinetics. The site-wide total NOD is allocated to 

individual TZs in proportion to TZ bulk volume. Since bench tests for aquifer material from the 

Atlas site indicate relatively low NOD levels, results are not expected to be sensitive to NOD 

parameters. We assume a typical ratio of “fast” NOD to total NOD of 0.12 and calibrated the total 

NOD content (NODtot, g/kg), and the “slow” NOD rate coefficient ( L mmol NaMnO4
-1 day-1). 

Note that contaminant reactions with oxidant will generally result in rapid decreases in aqueous 

contaminant concentrations, which will slowly rebound after oxidant injection ceases as the mass 

transfer rate described by eq. (10.1) gradually reestablishes a steady state. The last quarterly 

measurement before commencing a new round of injection is assumed to be close to full rebound. 

Treatment zones are assumed to meet termination requirements when the maximum of injection 

and extraction well rebound concentrations for the TZ are less than a specified termination criteria 

(Cstop). Each injection-extraction well pair at the Atlas site is regarded as a treatment zone. 

Model calibration was performed using a nonlinear regression method to minimize deviations 

between measured TCE concentrations in the spring following injection to simulated 

concentrations for a period starting in 2012 and extending through 2016. A total of 27 injection-

extraction well pairs, regarded as TZs, were treated with permanganate. Of these, 21 were treated 

for a single year only, five were treated two years, and one was injected for three years. Inspection 

of all monitoring well data indicated several additional locations with significant TCE 

concentrations. In order to treat these areas, we defined three additional TZs denoted 28, 29, and 

30 with wells and TCE concentrations in 2016. Measured fluid volume and oxidant mass injected 

and initial contaminant concentrations for each TZ as given in Table 10.1 were input to the model 

and measured contaminant concentrations versus time were employed for calibration. The 

resulting parameter estimates obtained were Mo = 8.9 kg and Jo = 0.014 kg/d in January 2012, R = 

3.40, aq

mtf = 2.8x10-4 L/mg, NODtot = 0.74 g/kg, and  = 0.073 L mmol NaMnO4
-1 day-1. 

 

10.3.2 Monte Carlo methods 

Since unit cost data was not available, in lieu of performing stochastic cost optimization 

simulations, we performed forward Monte Carlo simulations for a range of key operational 

parameters.  

All simulations are assumed to commence oxidant injection with recirculation May 2017 for 3 

months followed by 9 months under natural gradient conditions. Simulated monitoring data for 

each TZ at the end of the 9-month period are used to determine if the TZ meets the termination 

criteria. This process is repeated annually until stop criteria are met for all TZs, at which point the 

simulation terminates.  

Considering our earlier observation that TCE concentrations may attenuate significantly in a few 

years with MNA, we consider the effect of terminating oxidant injection at a stop criterion above 

5 g/L TCE assuming that MNA would continue after ISCO until the regulatory limit was met.  

We also consider the effect of the concentration of injected oxidant and the total volume of fluid 

injected per ISCO event. The average oxidant concentration injected historically at the Atlas site 
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is about 8000 mg/L and the average quantity of fluid injected annually per TZ represents about 0.4 

pore volumes (PV) of the TZ. Cases include all combinations of (a) maximum TCE concentration 

for ISCO termination (Cstop) values of 5 and 25 g/L, (b) injected oxidant concentration (Cox) 

values of 4000, 8000, and 16000 mg/L, and (c) injected fluid volumes per TZ per year (Vinj) of 0.4, 

1.0 and 2.5 PV. 

Initial TCE concentrations for each TZ were set equal the average of measured concentrations in 

injection and extraction wells within each TZ in late 2016 (last data available). Field data show 

that six TZs (1, 2, 6, 10, 21, 22) were equal or less than 5 g/L in late 2016 and an additional eight 

TZs (3, 5, 8, 9, 11, 12, 14, 26) were below 25 g/L. These TZs were eliminated from forward 

simulations for ISCO termination criteria corresponding to the respective levels. For each case 

considered, uncertainty in simulation results was evaluated by generating 100 Monte Carlo 

realizations with model parameters that exhibit joint statistical distributions of model parameters 

determined from the inverse solution as well as “noise” in simulated monitoring data used for 

termination decisions assuming a ln-standard deviation of 0.25.  

 

10.3.3 Monte Carlo results 

Results for Monte Carlo simulations are presented in Tables 10.4 and 10.5 as a percentage of the 

total TZs (30) that have reached the ISCO termination criterion of 5 or 25 g/L, respectively, 

versus time starting in 2017. Note that six TZs meet the 5 g/L criteria before commencing 

treatment in 2017 (20% of 30 TZs) and 14 meet the 25 g/L criteria (47%). In addition to the 

expected value (i.e., probability-weighted average) of percent completion shown as circles and a 

black line, dashed red lines indicate 95% upper and 5% lower confidence limits (central 90% 

confidence bands). Visual inspection indicates that remediation is accelerated by increasing the 

injected solution volume and oxidant concentration. And, of course, ISCO treatment duration is 

decreased significantly by increasing the termination criteria from 5 to 25 g/L, although the 

associated cost savings will be somewhat offset by continuing MNA costs. A relative measure of 

cumulative operating cost differences for each simulation case may be obtained by integrating the 

area under the percent completion curves versus time as 

 
max

,

1 1

TZt N

inj i t

t i

N H
= =

=   (10.6) 

where Hi,t is an indicator for TZ i at time t that is 1 if the treatment zone concentration is above the 

termination level and 0 if it is less. If time is discretized in months, eq. (10.6) yields the total TZ-

months of oxidant injection to reach the site-wide termination criteria. Ninj can be used to estimate 

total ISCO operating costs $tot-op as 

 tot-op inj$ $= injN  (10.7) 

where $inj the ISCO operating cost per month per active TZ. Expected values and reasonable worst 

case (95% upper confidence limit) of Ninj are given in Table 10.4 for all simulation cases. 
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For reference, the case with Cstop = 5 g/L, Cox = 8,000 mg/L and 0.4 PV of fluid injection per TZ 

for each injection event (bold values in Table 10.4) approximates average historical operating 

conditions at the Atlas site. We designate this the “base case.” With Cstop = 5 g/L, Ninj (hence total 

operating cost) is predicted to decrease with increasing oxidant concentration and injection 

volume. Both of the later variables result in an increase in total oxidant mass injected. However, 

increasing Cox produced a slightly greater operating cost decrease per unit oxidant mass than 

increasing injection volume. Normalizing the results to percent Ninj reduction per doubling of 

oxidant mass relative to the base case, we obtain results for the Cstop = 5 g/L simulations 

summarized in Table 10.5, which indicates that the largest cost reduction per unit oxidant mass is 

obtained with Cox = 16,000 mg/L and one PV injection. A slightly smaller reduction per mass was 

obtained with Cox = 16,000 mg/L and 0.4 PV.  While increasing injection volume from 1 to 2.5 PV 

produced the lowest Ninj values, the efficiency in terms of cost reduction per unit oxidant mass 

injected was poorer than the lower PV cases.   

 

 

Table 10.4. Expected values and 95% upper confidence limits of cumulative TZ-months oxidant 

injection for all cases. Bold values denote approximate average historical operating conditions. 

 

    Cumulative TZ-months of oxidant injection (Ninj) 

PVs injected Cstop (g/L) Cox = 4,000 mg/L Cox = 8,000 mg/L Cox = 16,000 mg/L 

  Expected values (most probable) 

0.4 5 124 116 98 

1.0 5 116 95 68 

2.5 5 100 78 51 

  

   

0.4 25 29 28 23 

1.0 25 27 23 17 

2.5 25 24 18 12 

     

  95% upper confidence limits (reasonable worst case) 

0.4 5 161 150 131 

1.0 5 148 127 101 

2.5 5 136 114 85 

  

   

0.4 25 39 39 35 

1.0 25 39 32 25 

2.5 25 32 25 22 
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Simulations with Cstop = 25 g/L were considered to evaluate the consequences of terminating 

ISCO at a value above the site cleanup target of 5 g/L to be followed by MNA until the cleanup 

target is reached. As noted previously, the higher termination criteria reduced the number of 

treatment zones at the 2017 start date from 24 that exceeded 5 g/L to only 16 in excess of 25 g/L 

(Figures 10.4 and 10.5, respectively). As expected, the duration of ISCO treatment decreased 

relative to corresponding cases with Cstop = 5 g/L. Somewhat less obvious, however, is the 

markedly different shape of the recovery curves with much steeper initial slopes for the Cstop = 25 

g/L curves. This causes a disproportionately greater reduction in cumulative ISCO operating cost 

(Ninj) relative to the reduction in remediation duration. Ninj values for the Cstop = 25 g/L cases are 

about 25% of the respective Cstop = 5 g/L case values (Table 10.5). This observation reflects 

decreasing ISCO efficiency as contaminant concentration decreases, which occurs because 

diffusion-limited contaminant mass transfer rates decrease with concentration and limit oxidation 

rates.   

 

 

Table 10.5. Expected values of percent operating cost reduction per doubling of oxidant mass 

injected for selected cases relative to the base case. 

 

Cstop (μg/L) Cox   (mg/L) Pore volumes %Ninj decrease per doubling 

oxidant mass 

5 8,000 1.0 14.8 

5 8,000 2.5 10.6 

5 16,000 0.4 15.7 

5 16,000 1.0 16.7 

5 16,000 2.5 9.0 

25 8,000 1.0 13.0 

25 8,000 2.5 10.8 

25 16,000 0.4 15.2 

25 16,000 1.0 16.1 

25 16,000 2.5 9.0 
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Figure 10.4. Monte Carlo simulations of ISCO from 2017 forward with a termination criterion of 

5 g/L. Symbols with dark line represent the probability-weighted average outcome. Red lines 

are lower 5% and upper 95% confidence limits. 
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Figure 10.5. Monte Carlo ISCO simulations from 2017 forward with a termination criterion of 25 

g/L. Symbols with dark line represent the probability-weighted average outcome. Red lines are 

lower 5% and upper 95% confidence limits.  

 

 

10.3.4 Phase 1 conclusions  

From the foregoing analyses, we draw the following conclusions. 

1. Recently added monitoring wells have identified off-site areas with TCE concentrations up 

to about 1,000 g/L. Additional ISCO treatment zones are needed to remediate these areas. 

We have identified three injection-extraction well pairs (TW37/TW47, TW54/TW49, 

TW38/TW39) that may be considered for this purpose.  

2. First-order attenuation rates at the site were estimated for untreated and ISCO treated wells. 

Median rates were 0.0041 d-1 for treated wells and 0.0017 d-1 for untreated wells. The 

median ISCO rate is only 2.5 times larger than that for natural attenuation. Spatial 

variations in attenuation rates are significant for both treated and untreated locations, with 

slightly higher variability for untreated wells, which exhibit a minimum rate equal to 8% 

of their median value compared to 16% for ISCO wells.  
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3. Considering the relatively small differences between ISCO and natural attenuation rates, 

we performed Monte Carlo simulations using the SCOToolkit program to compare relative 

performance and cost of (a) ISCO injection with recirculation for 3 months followed by 

natural gradient conditions for 9 months, repeating until groundwater TCE concentration 

is less than 5 g/L, or (b) treating with ISCO until TCE is less than 25 g/L followed by 

MNA until TCE <5 g/L. The results indicate that total ISCO operating costs for early 

ISCO termination cases (25 g/L) were less than 25% of the costs for terminating at 5 

g/L. This cost reduction will be offset only slightly by MNA costs. 

4. The median time for TCE to naturally attenuate from 25 to 5 g/L following ISCO 

termination is 2.6 years (50% probability of exceedance) while the 95% upper confidence 

limit is about 16 years based on rates computed for untreated wells at the site. To ameliorate 

this uncertainty, if the annual rate of TCE decrease for a well pair is less than about 50% 

(approximate median MNA rate), then ISCO injection should be employed. This would 

allow about half of the ISCO cost savings to be realized without increasing the remediation 

time more than 3 years.  

5. For each of the simulation cases mentioned in Point 2 above, we also evaluated effects of 

ISCO operations for a range of oxidant concentrations (4,000 to 16,000 mg/L) and injected 

fluid volumes (0.4 to 2.5 pore volumes per TZ per year). The results indicate that the 

cumulative count of TZ injection events (Ninj) required to meet site-wide termination 

criteria decreases with increasing pore volume of fluid injected and concentration of 

oxidant. The greatest reduction in Ninj per mass of oxidant was obtained with an oxidant 

concentration of 16,000 mg/L and fluid injection volume of 1 pore volume per TZ per year, 

followed closely by the same oxidant concentration with 0.4 pore volumes of fluid. If 

practicable, we recommend using these values for future ISCO operations.  

6. A more nuanced optimization of oxidant concentration and fluid injection volume may be 

performed by first estimating operating costs per TZ-month ($inj) for different 

combinations of oxidant concentration and fluid volume. Total ISCO operating cost        

($tot-op) can then be computed from eq. (10.7) and Ninj values for the relevant case from 

Table 10.4. If applicable, MNA and other costs may be added to $tot-op and the minimum 

total cost option identified for field implementation.  
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10.4 Phase 2 analyses 

10.4.1 Background  

A conference call with USACE personnel responsible for the site following Phase 1 completion 

raised the following issues. 

1. The current remediation contract specifies remediation at the site should be completed by 

the end of 2021. This is interpreted to mean completion of active remediation with a likely 

follow-on monitoring contract to confirm that remediation criteria have been met. A 

remediation strategy suggested in our May report was to inject oxidant in treatment zones 

(TZ) until the dissolved concentration was less than 25 g/L followed by monitored natural 

attenuation (MNA) until concentrations dropped below 5 g/L, with additional oxidant 

injection for well pairs with low MNA attenuation rates. Although this strategy promised 

to decrease total operating costs by about 75%, it had to be set aside due to the short time 

constraint. 

2. Simulations in Phase 1 assumed oxidant injection for only 3 months per year, based on 

historical operations. During the discussion with USACE, it was noted that modifications 

to the system were in progress that would enable oxidant to be injected for longer durations 

up to continuous injection throughout the year.  

3. Phase 1 simulations investigated effects of increasing the mass of injected oxidant per year 

by increasing the oxidant concentration and/or oxidant fluid injection rates. It was noted in 

the discussion, however, that as the current system utilizes passive gravity-fed oxidant 

delivery, higher oxidant injection rates would require injection under positive pressure. 

Although modifications for this purpose are possible, they would involve significant 

additional cost.  

4. Increasing the duration of oxidant injection, as discussed in Point 2, offers an alternative 

way to increase oxidant mass injected per year without system modification.  

Additional Monte Carlo simulations were performed subject to operational constraints noted above 

for comparison with a Base Case corresponding approximately to current operating practice at the 

site, and the previous best case subject to the noted operational constraints (denoted as Case 1), 

three additional cases were investigated with longer on-cycle durations of 6, 9 and 12 months. 

Since site data suggests that 6 months is needed between injection events to assess rebound, a 

minimum off-cycle duration of 6 months was employed. For all cases, an injection rate of 0.133 

pore volumes per month was assumed, corresponding to average gravity-fed field conditions. 

During periods without injection, oxidation reactions were simulated under natural groundwater 

gradient conditions. 

Total operating costs for oxidant injection were estimated assuming $5.5 per kg of oxidant, $20 

per m3 of fluid injected, plus $300 per day for other operating costs (Kim et al. 2018). The results 

were normalized to the base case defined to be 100. 

 

10.4.2 Phase 2 results and conclusions 

A summary of the Phase 2 results is given in Table 10.6. The Base Case is predicted to reach the 

95% upper confidence NFA date in January 2025 with 150 TZ-months of injection. Relative total 

operating cost for the Base Case is taken to be 100. Increasing the injection concentration from 
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8,000 to 16,000 mg/L with the on/off cycle at 3/9 (Case 1) was predicted to reduce the 

operating cost relative to the Base Case from 100 to 76, for a 24% savings with a 2.7 year 

earlier 95% NFA date (April 2022 vs. Jan 2025). There is a 10 to 15% probability that Case 1 

will not achieve the target cleanup level of 5 g/L by the end of 2021.  

Cases 2 through 4, with increasing on-time durations of 6, 9 and 12 months, respectively, are 

predicted to reach the cleanup criteria 44 to 47 months earlier than the Base Case (12 to 16 months 

earlier than Case 1), but with 44 to 71% higher cost than the Base Case (55 to 84% higher than 

Case 1). Therefore, Case 1 appears to be the best option to meet the cleanup level by late 2021.  

Nevertheless, it is worthwhile to note that Case 1a, which follows the same design as Case 1 but 

with a oxidant injection termination level 25 g/L, shows a high probability of reaching the interim 

cleanup level by early 2021 with a cost that is 80% less than the Base Case and 75% less than Case 

1. Given the high median natural decay rate at the site, MNA should bring most TZs below 5 mg/L 

within 3 more years, and selective use of ISCO in TZs with lower decay rates could avoid a 

protracted MNA period to reach 5 g/L. 

Considering the possible effects of spatial variability on performance uncertainty, it may be 

advisable to inject oxidant continuously in TZs within the lowest quartile of first-order attenuation 

rates as well as off-site well pairs with high concentrations through 2021 or until all other TZs 

have met termination criteria.  This will decrease the possibility of missing the 2021 target 

completion date. TZs that meet the suggested criteria for continuous injection are 7, 14, 16, 17, 19, 

21, and 26 (Table 10.1). 

 

Table 10.6. Results for Phase 2 cases. 

Case 

Cstop 

μg/L 

Cox 

mg/L 

Months 

on/off 

NFA Date 

95% UCL 

Relative 

operating cost 

Base 5 8,000 3/9 Jan 2025 100 

Case 1 5 16,000 3/9 Apr 2022 76 

Case 2 5 16,000 6/6 Apr 2021 118 

Case 3 5 16,000 9/6 Jan 2021 140 

Case 4 5 16,000 12/6 Jan 2021 128 

Case 1a 25 16,000 3/9 Jan 2021 20 

 

An additional point that should be noted is that the above simulations assume oxidant to be injected 

at the site-wide average rate of about 0.133 pore volumes per month in all injection wells. 

However, measured rates at the site vary widely from well to well from about 0.008 to 0.8 pore 

volumes per month. One would expect this to significantly affect ISCO performance for different 

TZs. Surprisingly, the correlation between oxidant injection rate and observed first-order 

contaminant attenuation rate for ISCO wells is essentially zero (r = −0.03). This suggests that 

factors other than oxidation reactions, which have not been identified, are significantly influencing 

ISCO effectiveness at the site. As such, uncertainty in remediation times may be greater than that 

estimated from the Monte Carlo simulations.   
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11. Conclusions and Implications 

11.1 Summary and Conclusions 

11.1.1 Overview of modeling approach 

Complex field sites with multiple groundwater contaminant sources, DNAPLs, back-diffusion, 

etc. invariably exhibit large prediction uncertainty, which often results in poorer than expected 

remediation performance and, typically, greater time-to-completion and cost-to-completion than 

planned or expected. Even relatively “simple” field sites can be prone to larger than expected 

prediction uncertainty, depending to a large degree on the quality and quantity of data available 

for calibration.   

The overarching objective of this project was to develop a practical methodology and associated 

computational tools to optimize remediation strategies that may involve multiple technologies 

applied serially or concurrently with relevant performance monitoring protocols for real-time 

decision making to minimize the expected (probability-weighted) cost to meet site cleanup 

objectives with explicit consideration given to uncertainty in future performance. Furthermore, the 

process should be applied iteratively over time to assess and refine the remediation strategy as 

necessary.  

The computational strategy proposed to solve this problem is as follows: 

1. Use all available quantitative and qualitative site data to develop a conceptual site model 

and quantify initial estimates of model parameters and their uncertainty.   

2. Refine model parameter estimates and their covariances using robust inverse modeling 

techniques. 

3. Use stochastic optimization methods to identify design strategies that minimize the 

probability-weighted cost while meeting remediation criteria with acceptable reliability. 

4. Iterate steps 1 to 3 periodically as additional monitoring and operational data become 

available.     

Step 1 is a deterministic optimization problem that requires on the order of 2NPNiter direct solutions 

of the site model, where NP is the number of calibrated parameters and Niter is the number of 

iterations required. For a problem with 5 to 10 parameters and 25 to 100 iterations, this yields 250 

to 2,000 direct simulations. This is a substantial, but not overwhelming, computational cost for a 

numerical model.  

The computational cost for step 3 is roughly 2NoptNmcNiter, where Nopt is the number of optimized 

design variables, Nmc is the number of Monte Carlo realizations, and Niter is the number of solution 

iterations. A stochastic remediation design problem with 5 to 10 design variables, 100 Monte Carlo 

realizations, and 25 to 100 iterations would total 25,000 to 200,000 direct simulations. The latter 

number of runs of a numerical model would be impractical for environmental consultants with a 

fast multiprocessor workstation. Faced with the foregoing arithmetic, most engineers and 

hydrologists opt for deterministic analyses using a numerical model perhaps with a few manual 

sensitivity analyses and very rarely using formal optimization. 

The approach used in this project is founded on the recognition that uncertainty in performance 

predictions will always be large, regardless of how sophisticated a model is used or how much site 

data is available. In fact, since more sophisticated models almost always require more parameters, 

greater prediction uncertainty will occur if it is calibrated to data of less than optimal quality and/or 
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quantity. Regardless, any model predictions based solely on “best estimates” of model parameters 

will augur optimistic (often grossly optimistic) performance. Precision gained from more 

sophisticated models can be more than off-set if prediction uncertainty is disregarded.  

The stochastic optimization toolkit (SCOToolkit) was developed on the principle that it is better 

to use simpler, more computationally efficient models that account for dominant physical 

processes coupled with explicit consideration of prediction uncertainty over more sophisticated 

but computationally expensive deterministic models. SCOToolkit employs an efficient 3-D semi-

analytical transport model to simulate dissolved phase transport of contaminants and injected 

electron donor species in steady-state, planar or mildly nonlinear flow fields with multiple 

contaminant sources (Parker et al. 2010).  

Contaminant discharge rate from each source is modeled as a power function of source mass 

remaining. The discharge rate can be enhanced by injection of electron donors or chemical 

oxidants within or upgradient of the source (Reitsma and Dai 2001). Forward- and back-diffusion 

between permeable and low permeability zones in an aquifer are modeled using a computationally 

efficient upscaled dispersion approach that distinguishes between resident and flux concentration 

solutions (Parker and Valocchi 1986, Parker and Kim 2015).   

The transport model is coupled with performance and cost models for DNAPL source remediation 

using electric resistance heating (ERH), thermal conduction heating (TCH), steam enhanced 

extraction (SEE), source zone electron donor (ED) injection, or in situ chemical oxidation (ISCO) 

with recirculation, and dissolved plume remediation or control using ISCO pulsed injection, 

dissolved plume ED injection, other reactive barriers, or groundwater extraction, as well as MNA. 

All methods may be performed concurrently or serially.  

Each remediation system or subsystem (e.g., individual ED injection galleries) may be terminated 

independently based on real-time performance monitoring data with rules specific to each type of 

remediation system. Furthermore, subregions within source zone treatment systems may be 

terminated early using spatially adjusted statistical criteria, which can produce significant 

operating cost savings.  

After all performance rules have been met (i.e., all active systems terminated), site-wide no-

further-action decisions are made based on compliance monitoring data and rules designed to 

prevent measurement “noise” from rendering erroneous decisions. Compliance rules include a 

target maximum concentration, a date by which all compliance wells should be under the target 

level, a maximum date by which compliance targets have been met and all active remediation 

systems have been terminated long enough to ensure no rebound above the target, as well as 

various means of dealing with noisy measurements.  

Compliance rules are assumed to be set by negotiation with regulatory personnel, while 

performance rules are treated as optimizable. This capability to optimize performance monitoring 

protocols is important, because it allows SCOToolkit to significantly reduce expected cost and 

because it removes subjectivity from decisions that must be made from inevitably noisy data 

enabling more reliable decisions to be made. 

Stochastic design optimization is performed using a robust optimization algorithm with Monte 

Carlo (MC) realizations to quantify uncertainty. Cost-to-complete for each realization is computed 

from unit capital and operating costs for each remediation technology and for site-wide 

monitoring. Penalty costs are added to realizations that fail to meet remediation criteria. The 
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average cost (including penalties) across all realizations is taken as the “expected” cost, which we 

seek to minimize.   

The handling of noisy data is a troublesome issue for compliance monitoring. Levine (2010) with 

the US EPA proposed to compute confidence limits on an N-year simple moving average (SMA) 

of measured concentrations to smooth noise. If the upper one-sided SMA confidence limit for a 

specified probability level (e.g., 95%) is less than the compliance concentration for each 

compliance well, regulatory closure criteria are deemed met. We have found that stochastic 

simulation-optimization analyses using Levine's and other "noise management" approaches 

improves performance reliability.  

Results show that increasing or decreasing monitoring frequency relative to an optimum value 

can increase the expected cost-to-complete. Fewer samples lead to wider confidence limits, which 

increase the duration of long-term monitoring, and hence operating costs for the longer duration, 

more than the savings from reduced frequency. Effectively, more conservative operation is 

required to compensate for greater measurement uncertainty associated with fewer samples. We 

have found that cost savings are generally achieved by simultaneously optimizing the moving 

average lookback period and monitoring frequency along with remedial system design variables. 

While typical long-term monitoring statistical methods may be useful for optimizing the number 

and location of monitoring wells, optimization of sampling frequency should be performed in the 

context of a more comprehensive stochastic optimization approach that considers cost tradeoffs. 

Furthermore, methods for handling measurement noise vis á vis compliance rules should be 

optimized to minimize cost to complete. 

A final factor that contributes to uncertainty in predicted performance, and hence to higher 

expected total remediation cost, is intrinsic uncertainty in the model used to make predictions. 

After we calibrate a model to field measurements, residual deviations remain that are attributable 

to a combination of sampling/measurement error and intrinsic model error. These cannot be 

practically distinguished, although model error will usually dominate. Intrinsic error can be 

reduced by refining the model to account for more details of the real system. However, to the 

extent that the "refined" model requires more parameters that are imperfectly known, the reduction 

in intrinsic error may be offset by an increase in parameter uncertainty when calibrated to the same 

data. The optimum model to minimize prediction uncertainty is ultimately limited by the data 

available for calibration. 

Estimates of site properties based on more data, collected over longer time periods, are generally 

more accurate and less uncertain. Thus, it is important to periodically evaluate and adjust the 

remediation plan. SCOToolkit is designed to do this by facilitating periodic recalibration of site 

properties as new data becomes available, reassessing projected system performance, and 

reoptimizing remediation system design and operation as needed to meet objectives with minimum 

cost. This protocol enables timely adjustments of operational variables for existing remediation 

systems, or adoption of alternative technologies, if necessary, to meet objectives in a timely 

manner with the least ongoing cost-to-complete.      

 

11.1.2 Enhanced reductive dechlorination model 

Enhanced biodecay of chlorinated hydrocarbons by injection of electron donor (ED) species, such 

as lactate or emulsified vegetable oil, in one or more ED injection galleries is modeled using a 
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superposition method based on extensions of the method described by Borden and Bedient (1986). 

The method employed involves (1) simulation of baseline contaminant transport without ED 

injection, (2) simulation of nonreactive ED transport using the same modeling approach used for 

contaminants, (3) adjustment of ED concentrations for reactions with natural electron acceptor 

(EA) species in groundwater assuming serial and/or parallel reactions with EA of different redox 

potential, (4) adjustment of net ED concentrations for reaction kinetics based on mean travel time 

to a given location and date and for reaction stoichiometry, and (5) superposition of the solutions 

from 1 and 4 to obtain post-reaction contamination concentrations.  

For ED galleries placed upgradient of DNAPL sources, enhanced dissolution of the DNAPL 

source is modeled using an empirical mass transfer enhancement coefficient, which can be 

calibrated from bench- or pilot-scale tests. Performance monitoring for galleries upgradient of 

DNAPL uses measurements of contaminants and all decay products (total concentration) 

downgradient of the source. Termination of injection is based on the total concentration to avoid 

rebound. Performance monitoring for other ED galleries utilize contaminant concentrations a short 

distance upgradient of the injection gallery for injection termination decisions. When multiple ED 

galleries are employed along a streamline, ED galleries are not allowed to terminate until all 

upgradient galleries terminate. 

While DNAPL source remediation technologies (thermal treatment and upgradient ISCO or ED 

injection) can reduce the duration of a DNAPL source, downgradient ED injection is most useful 

to meet compliance targets within specified times. Earlier meet-by dates may require multiple 

galleries to reduce the maximum ED travel time along the plume length.  

 

11.1.3 Thermal treatment model 

A thermal treatment model that assumes a lognormal recovery rate as a function of time was 

developed and field-verified. In addition to serving as a practical tool for simulating thermal 

treatment within the design optimization framework, the method provides a practical means of 

interpreting real-time performance monitoring data.  

Thermal system termination decisions are commonly made by comparing the average 

concentration computed from a round of soil samples directly with a cleanup target. However, 

averages from soil data are subject to large uncertainty even when the number of soil samples is 

large. An alternative method, which estimates average soil concentration from mass recovery 

measurements during thermal treatment using the lognormal recovery model, was found to exhibit 

less uncertainty and lower cost than soil sampling.  

To explicitly account for uncertainty in average soil concentrations estimated from soil and/or 

mass recovery data, the multi-level termination strategy stops treatment when an upper confidence 

limit of estimated mean concentration at a specified probability is below the target concentration. 

We employ a statistical methodology for computing confidence limits at site-wide, treatment zone 

and monitoring zone levels that allows termination decisions to be made at all scales with equal 

reliability.  

We allow target soil concentrations for regions smaller than the full site (local stop criteria) to be 

specified at a value less than the site-wide stop criterion. Cleaning up less recalcitrant regions to a 

lower average concentration enables more recalcitrant regions to be terminated at a higher average 

concentration to achieve the same site-wide average (or total mass). This offers the possibility of 
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reducing overall treatment duration and total operating cost. The multi-level monitoring and 

termination strategy allows for site-wide termination as well as early termination of subregions, 

resulting in decreased operating costs.  

Results for example problems indicated that the practice of using computed average soil 

concentration (as opposed to an upper confidence limit) cannot achieve a high probability of 

meeting the target average soil concentration. Optimizing the confidence limit probability, local 

scale cleanup level, number of monitoring zones per treatment zone, soil borings per monitoring 

zone for each sampling event, sample depths per boring, date for first sampling event, and time 

interval between sampling events for a site treated as a single treatment zone using only soil 

sampling data achieved cleanup objectives with a higher probability of success than a more 

conventional approach.  

Dividing the site into multiple treatment zones with different soil concentration ranges and 

optimizing the same variables reduced total cost by 6%. Optimizing the confidence limit 

probability, local-scale cleanup level, and number of monitoring zones per treatment zone with 

three treatment zones, using mass recovery data instead of soil data, achieved an additional 10% 

cost reduction. If confirmation of mass recovery-based results with soil sample data is desired or 

required, delaying each local termination decision until confirmed by soil sampling will increase 

cost. Therefore, if confirmatory soil sampling is required, we recommend waiting until all heating 

units have been stopped based on mass recovery data before performing site-wide soil sampling.  

In addition to computing the probability-weighted average cost for optimized designs, the method 

gives cost probability distributions that reflect uncertainty in measurements and calculations. An 

optimized example problem using only mass recovery data to make termination decisions had a 

16% lower expected total cost than a case that approximates typical industry practice, while the 

95% upper confidence limit of total cost for the former was 28% lower. Thus, the proposed 

methodology not only yields “expected” cost savings, but also sharply reduces the magnitude of 

potential cost overruns. 

 

11.1.4 In situ chemical oxidation model 

An efficient model for DNAPL source remediation using ISCO was developed that accounts for 

the important physical and chemical processes. A unique feature of the proposed ISCO operational 

methodology is the introduction of termination criteria that compare upper confidence limits of 

average measured concentrations at a specified probability level with the cleanup target to provide 

a margin of safety to termination decisions. Statistical termination criteria allow site-wide and 

treatment zone termination decisions to be made with equal reliability. In some cases, cleaning up 

less contaminated treatment zones (TZs) to more stringent criteria can allow site-wide average 

concentration targets to be met earlier and with lower costs.  

Optimization of TZ oxidant concentrations, treatment zone-level cleanup criteria, reinjection 

criteria, and performance monitoring variables yielded a failure-adjusted expected cost for an 

example problem about 11% lower than a non-optimized case approximating best engineering 

practice. Furthermore, the cost probability distribution for the optimized design eliminated positive 

skew evident in the “best practice” such that the worst case cost for the optimized design was 14% 

lower than that for the non-optimized design. Since the number of monitoring wells used for the 

best practice case was greater than is often available, and the number assumed fortuitously turned 
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out to be optimal, significantly larger cost savings are likely to be realized in many cases. Adoption 

of the proposed stochastic design method in conjunction with proposed real-time performance 

monitoring and decision-making protocols promises to yield more robust, reliable and cost-

effective ISCO applications to DNAPL sites with real-world uncertainty taken into account. 

 

11.1.5 Field applications 

Joint Base Lewis-McChord 

The East Gate Disposal Yard (EGDY) at JBLM was used as a waste disposal site for solvents 

between 1946 and the mid-1970s. A TCE plume extends over 4 km downgradient. Pump-and-treat 

systems were installed to control contaminant migration. Three DNAPL source areas were 

identified and thermal treatment of the sources was undertaken between 2003 and 2007. A step-

wide calibration-assessment-optimization was applied to the site. 

Model parameters were initially calibrated to data through 2003 before thermal treatment 

commenced. Re-calibration of the three-source model with actual mass recovery data and 

monitoring data through 2007 indicated a large amount of DNAPL remained, suggesting a 

probable fourth unidentified source. Date and cost to reach no-further-action (NFA) with and 

without treatment of the inferred fourth source treatment were determined using the final (most 

reliable) 2015 calibration with and without cost discounting. The 2007 calibration predicted that 

thermal treatment of the fourth source would decrease the NFA date from 2110 to 2035 with a 

slightly lower undiscounted total cost, but a substantially higher discounted cost. The decision to 

treat or not treat the fourth source based on cost is sensitive to the discount rate due to a tradeoff 

between the large present cost for thermal treatment (~$6 million) versus long-term pump-and-

treat costs (~$100k/year). In such cases, it is more conservative to use a lower discount rate, which 

suggests deferring treatment of the fourth source until the analysis is less ambiguous. 

With additional data through 2015, long-term prediction uncertainty decreased, resulting in a much 

earlier expected NFA date as well as discounted and undiscounted costs without thermal treatment 

of the fourth source, confirming the decision to defer treatment. The decision not to pursue thermal 

treatment of the fourth source resulted in a 46% undiscounted cost savings and a 67% discounted 

cost savings based on the 2015 calibration.  

Dover Air Force Base Area 5 

Several sources of chlorinated ethenes were present within the Dover AFB Area 5 in Dover, 

Delaware. From the northern part of the site, groundwater flowed south-southeasterly before 

gradually turning southwest. Twelve injection galleries for electron donor (EVO and lactate) began 

operating in 2006 to enhance reductive dechlorination. SCOToolkit was initially calibrated to site 

data from 1988 through 2005 prior to commencement of actual ED injection (Cal-1), and 

subsequently recalibrated with data through 2010 (Cal-2), and 2016 (Cal-3).  

Monte Carlo simulations were performed for three design scenarios: 

 Case 1. Actual average injection rates employed from 2006 to 2016 

 Case 2. Best practice injection rates based on estimates of field contaminant fluxes  

 Case 3. Optimized injection rates and monitoring parameters with incremental updating 
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Final best estimates of cost-to-complete for each of the three design approaches based on the final 

(most reliable) calibration parameters were $63.0, $62.8, and $48.7 million for the actual, best 

practice, and incrementally optimized designs, respectively. The actual design cost was very close 

to the estimated “best practice” cost, while the incremental stochastic optimization protocol 

yielded an expected cost savings of 29% and decreased the expected time-to-complete by 18–20 

years. 

These time and cost reductions were achieved by using only 5 of the 12 injection galleries, 

injecting at high rates initially, decreasing rates at later times, and shutting off individual galleries 

early when performance monitoring wells for each gallery met defined criteria.  

Stochastic optimization also sharply reduced cost uncertainty, especially for results based on the 

initial and most uncertain (Cal-1) parameter estimates (Figure 9.4). This is an important benefit of 

stochastic cost optimization, but it is not unexpected, since stochastic cost optimization explicitly 

seeks to reduce the likelihood of positive cost excursions, which mandate a more conservative (and 

costly) design. 

 

Atlas Missile Site 11 

Atlas 11 is a former Atlas E missile site in northeastern Colorado that was decommissioned in 

1966. Operations at Atlas 11 involved use of TCE to clean up residual rocket fuel. Waste solvent 

drained to a sump, which discharged to the ground surface. Dissolved phase TCE was detected on- 

and off-site in a shallow perched water table. No evidence of DNAPL was found at the site.  

Remediation investigations and feasibility studies resulted in a decision to employ ISCO using 

sodium permanganate in paired injection and extraction wells. A field pilot study was conducted 

in 2012 and expanded in 2013 with full-scale operations commencing in 2014. Oxidant injection 

and extraction was performed in coupled wells for about 3 months in the summer with natural 

gradient conditions otherwise. Through 2017, twenty-seven well pairs received oxidant injections, 

18 of which were injected only once, 7 were injected twice, and 2 were injected three times.  

Analyses with SCOToolkit were undertaken to optimize ongoing operations to meet the NFA 

target for TCE of 5 g/L by a target date of January 2021. All simulations assumed that each 

previously operated well pair plus three additional pairs with high off-site concentrations were 

injected with oxidant annually until the well pair met remediation criteria.  

Preliminary simulations indicated that increasing the mass of oxidant injected annually into each 

well pair by a factor of 2 (by increasing the oxidant concentration and/or the oxidant volume 

injected) would reduce the cost to reach the cleanup objective by about 13%.  

Monte Carlo simulations were performed for comparison with a base case corresponding to current 

operating practice at the site (3-month injection period with 8,000 mg/L oxidant concentration). 

Other cases assumed an oxidant concentration of 16,000 mg/L with on-cycle durations of 3, 6, 9 

and 12 months. All cases assumed an injection rate of 0.133 pore volumes per month, 

corresponding to average gravity-fed field conditions. During periods without injection, oxidation 

reactions were simulated under natural groundwater gradient conditions. 

Total operating costs for oxidant injection were estimated assuming $5.5 per kg of oxidant, $20 

per m3 of fluid injected, plus $300 per day for other operating costs (Kim et al. 2018).  
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The base case was predicted to have a 95% upper confidence NFA date of January 2025 with a 

low probability of meeting the January 2021 NFA date. Increasing the oxidant concentration to 

16,000 mg/L with the on-cycle duration of 3-months was predicted to reduce the expected 

operating cost by 24% with a 90% probability of meeting the NFA date. Increasing on-cycle 

duration to 6 months nudged the probability of meeting the NFA date to 95%, but pushed the cost 

to 18% above the base case. Increasing the on-cycle duration to 9 months pushed the probability 

of meeting the NFA date close to 100% at a cost 40% above the base case. However, it is 

questionable whether a 6-month off-cycle time is adequate to obtain full rebound, which would 

make termination decisions difficult. Considering the large cost to increase the probability of 

meeting the NFA from 90% to 95%, Case 1 appears to be the most cost-effective option with a 

24% cost savings of the base case.  

 

11.1.6 Other Tools 

A comprehensive User Guide was developed for SCOToolkit, which includes detailed instructions 

for the preparation of input files, program execution and interpretation of model results. A 

dedicated web site was also developed that includes download links for the SCOToolkit program, 

example data files, and related tools, including the Excel worksheets described below.   

The following Excel worksheets were developed to assist users in preparing input files for 

SCOToolkit and to track real-time field performance data for ISCO and thermal treatment that 

implement the multiscale statistical remediation termination protocols developed in this project 

and employed by SCOToolkit. 

ISCO treatment termination decisions using real time data 

This workbook implements real time termination decisions for ISCO source treatment using soil 

and/or groundwater sample data for multiple monitoring zones (MZ) within multiple treatment 

zones (TZ) using a rigorous statistical approach based on soil and/or groundwater sample data in 

a manner that provides consistent decision reliability at scales ranging from individual monitoring 

zones, to groups of monitoring zones (aka, treatment zones) to site-wide.  

ISCO unit cost calcs for continuous injection 

This worksheet computes unit cost parameters for the continuous injection ISCO source treatment 

model from cost sensitivity analysis results. 

ISCO unit cost calcs for pulsed injection 

This worksheet computes unit cost parameters for the pulsed injection ISCO source treatment 

model from cost sensitivity analysis results.  

Source function parameter estimation from field data 

The purpose of this workbook is to calculate prior estimates of source parameters Mcal, Jcal, and  

from measured source zone groundwater concentration data and soil data for input into the 

SCOToolkit calibration tool. These values and uncertainty estimates can be used as prior estimates 

for transport model calibration to monitoring well data over time.   
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Streamline calculations 

This worksheet fits linear or polynomial streamline functions to digitized streamline data for 

contaminant source locations, ED injection galleries, or reactive barriers.  

Thermal treatment model calibration 

This workbook calibrates thermal model parameters to measured mass recovery data for single or 

multiple recovery functions.  

Thermal treatment termination decisions using real time data 

This workbook enables real-time termination decisions to be made for thermal source treatment 

that allows for multiple monitoring zones (MZ) using a rigorous statistical approach based on soil 

and/or mass recovery measurements to provide consistent decision reliability at multiple scales. 

The worksheet also can be used to calibrate thermal model parameters to measured recovery data.    

Thermal treatment unit cost calcs 

This worksheet computes unit cost parameters for the source zone thermal treatment model from 

cost sensitivity analyses. 

  

11.2 Implications for Future Research and Implementation 

The current version of SCOToolkit has been thoroughly tested on several hypothetical problems 

and three field sites by ER-2310 personnel as well as on “virtual sites” generated with a high-

resolution numerical model by ER-2313 personnel as beta testers. The results of these studies have 

shown SCOToolkit to be very robust, despite the complexity of the problems that have been 

addressed involving incremental calibration, assessment and optimization over time with a wide 

range of remediation strategies involving multiple contaminant sources, multiple technologies 

(including source treatment with thermal, ISCO or enhanced DNAPL dissolution, and dissolved 

plume treatment with enhanced bioremediation, ISCO, or pump-and-treat) operated concurrently 

or serially.  

In addition to the large number of design variables associated with the range of remedial 

technologies, we have introduced a number of additional optimizable variables associated with 

compliance and performance monitoring protocols. Cost savings from optimization of monitoring 

variables can be as significant as those from design variables per se. Generalized guidelines for 

selecting variables to optimize and initial values and ranges would be helpful to users, but need 

further testing for a variety of conditions. 

Application of SCOToolkit to substantially more demo sites with most of the work being 

performed by personnel affiliated with the sites and SCOToolkit developers serving as advisors 

would have a number of benefits. It would increase the SCOToolkit user base enabling savings to 

be realized for DoD sites. It would also serve as a training ground for the trainers to develop videos 

or interactive tools to enable more users to be trained efficiently. Furthermore, if results from these 

studies were presented at stochastic cost optimization sessions at SERDP annual meetings, further 

waves of users would be encouraged to apply SCOToolkit to sites with attendant cost savings to 

DoD.  
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Currently, the Navy, Air Force and Army are conducting portfolio optimization evaluations with 

cost estimation as a technical component. If each of these identified a number of sites interested in 

using SCOToolkit, an initial training session could be held for all personnel with periodic 

conference calls and email as needed to provide individualized advice. Most of the cost would 

therefore be borne by the individual sites. 

A variety of enhancements to SCOToolkit are possible. Some that have been suggested include: 

• Consider the existence of co-contaminant with fuel hydrocarbons, which are common at 

many sites and can serve as electron donors for reductive dechlorination. Reactions could 

be modeled by superposition in the same manner as the current ED injection model. 

• Another common contaminant at many sites is 1,4-dioxane. A parallel solution could be 

implemented for this species. Modifications would be required in thermal, ISCO and 

enhanced bio modules to allocate reaction rates for two species.     

• Currently only one contaminant species is modeled. Daughter products of the primary 

chlorinated solvent are commonly present. We typically sidestep this problem by 

modeling the sum of primary and daughter products (e.g., PCE, TCE, DCE) as a pseudo-

species. However, a modification of the SCOToolkit analytical solution is possible to 

model the serial decay chain. 

• The current ISCO model includes stoichiometric and other variables that can be specified 

for different oxidant species. However, the model has only been tested for permanganate. 

Applications involving other oxidants may require modifications to quantify mass 

transfer enhancement and/or suppression. Further research may be needed. 

• Improvements in the user interface or web site. 

Before undertaking any of the above, input from users or potential users would be desirable to 

prioritize limited resources. 
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SCOToolkit Disclaimer and Terms of Use 

 
 

The program SCOToolkit, including various accessory Excel worksheets is provided the User 

“as is” without warranty, implied or otherwise on the following terms and conditions: 

1.  The University of Tennessee, Cleveland State University, Stanford University, and the U.S. 

Department of Defense (hereafter, the “Developers”) make no warranty of any kind, express 

or implied, with respect to the subject software products, and specifically make no warranty 

that said products shall be fit for any particular application. Furthermore, any description of 

said products shall not be deemed to create an express warranty that such products shall 

conform to the description.  

2.  The User assumes all risk and liability for loss, damage, claims or expense resulting from 

use, possession or resale of any of software products delivered subject to this agreement. 

3.  The User agrees to indemnify, defend and hold harmless the Developers and their agents and 

employees from and against any and all claims, liability, loss, damage or expense, including 

reasonable attorney's fees, arising from or by reason of receiver's use, possession or resale 

with respect to any of the software products furnished by the Developers pursuant to this 

agreement and such obligation shall survive acceptance of said products therefore by 

receiver. 

4.  This agreement constitutes the complete and final agreement of the parties hereto. 
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Preface 

This user guide provides documentation for operation of the Stochastic Cost Optimization 

Toolkit (SCOToolkit) v.3 developed as a part of the Strategic Environmental Research and 

Development Program (SERDP) project ER-2310, “Practical Cost-Optimization of 

Characterization and Remediation Decisions at DNAPL Sites with Consideration of Prediction 

Uncertainty.” 

The program enables periodic assessment and optimization of remediation-in-progress (RIP) 

sites to minimize expected total net present value (NPV) cost considering failure probability and 

measurement and prediction uncertainty and to facilitate early identification and correction of 

problems associated with remediation technologies and/or goals. Remediation technologies that 

may be considered with concurrent and/or sequential operation include: 

1.  Electric resistance heating (ERH) DNAPL source remediation 

2.  Thermal conduction heating (TCH) DNAPL source remediation  

3.  Steam enhanced extraction (SEE) DNAPL source remediation 

4.  DNAPL source excavation  

5.  In situ chemical oxidation (ISCO) with recirculation for DNAPL source remediation 

6.  ISCO with pulsed injection for DNAPL source remediation 

7.  Electron donor (ED) injection for enhanced DNAPL source remediation 

8.  Electron donor (ED) injection for enhanced dissolved plume remediation 

9.  Reactive barriers (RB) or groundwater extraction for dissolved plume control 

Aqueous phase transport associated with multiple DNAPL sources is modeled using an efficient 

semi-analytical 3-D solution that can account for mass transfer limitations associated with 

diffusion into and out of low permeability zones (aka, “back diffusion”). The solution leads to 

differences between volume-averaged soil concentrations and flux-averaged monitoring well 

concentrations, either or both of which may be used for model calibration. 

Stochastic cost optimization is a computationally intensive iterative process that requires 

hundreds of evaluations of expected cost for different design and operation variables. 

Furthermore, each expected cost evaluation requires multiple simulations (typically 100) to 

represent uncertainty in model predictions and measurements. As a result, tens of thousands of 

individual forward model simulations over a multi-decade time period are commonly required to 

solve a single optimization problem. Our overall objective has been to develop a practical tool to 

meet remediation objectives with the least possible cost. Due to uncertainty in future 

performance, this objective involves tradeoffs between the probability of successfully meeting 

remediation goals within a certain timeframe and the aggressiveness of the remediation strategy. 

Performance uncertainty arises from three sources. First, for a given model formulation, 

uncertainties in model parameters and boundary conditions over time produce prediction 

uncertainty. Second, field and lab measurements are subject to sampling and measurement 

uncertainty. And finally, there are inherent accuracy limitations associated with assumptions and 

simplifications – even for the most sophisticated models. SCOToolkit explicitly addresses errors 

from the first source. The last two sources or uncertainty are lumped together in the treatment of 

residual calibration error.  

The foregoing considerations require a performance simulation model that is very robust and 

computationally efficient. This requires giving up some degree of model complexity to enable 

practical application with typically available computer hardware. Our experience indicates that 
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the level of sophistication in the SCOToolkit performance models is adequate for most sites 

considering the magnitude of uncertainty from other sources.  

In the inverse modeling mode, historical site data is used to calibrate the simulation model and to 

estimate parameter covariances and residual prediction error. Forward predictions of remediation 

performance and cost are performed for defined remediation strategies, operating rules and 

remediation criteria. A Monte Carlo (MC) method is used to quantify uncertainty in performance 

and cost attributable considering uncertainty in model parameters, measurements employed for 

real-time decisions, and cost function variables.  

Design optimization is performed to determine values of design variables that minimize the 

expected value (average over MC realizations) of NPV, which may include “penalty costs” for 

failure to achieve defined remediation objectives within a specified time-period.  

This document describes the input structure and procedures for setting up and operating the 

program.  

The SCOToolkit web site can be found at http://scotoolkit.csuohio.edu/.  

 

The website provides an overview of the program, detailed technical information, tutorials, an 

interactive pre-processor, downloadable source code, executable files, example input files, and 

various Excel-based utilities to facilitate input file preparation, plus various other information 

and useful links. 

 

 
 

http://scotoolkit.csuohio.edu/
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A1. Model Parameters and Design Variables 

A main input file [*.inp] of SCOToolkit is an ASCII text file that defines the features of a 

project, site characteristics (e.g., DNAPL sources and aquifers), and the associated file names to 

be included the defined project. The input file consists of two parts, project definition (A1.1) and 

parameters (or variables) (A1.2~1.8). All variables (both numbers and strings) are separated by 

spaces (tabs). Multiple spaces or tabs are just treated as one delimitator. 

A1.1 Project Definition 

Table A1-1 lists the variables of a project to define line by line, followed by an example block. 

Note that the number inside (  ) used in the Explanation column is a sequential number. 

Table A1-1. Project definition in an input file [*.inp] 
Line Variable Explanation Comment 

1 run_mode (1) 1 = Parameter calibration, 2 = Design optimization using 

ENPV with a user-specified penalty value for failure, -2 = 

Design optimization using failure-adjusted ENPV, 3 = 

Forward simulation for given parameters,  

(2) Number of cores available for parallel computing 

(3) Dimension (2D or 3D) of transport solution. If two digits, first 

digit is for contaminant transport and second digit is for ED 

transport (2, 3, 23, or 32). 

(4) Minimum model concentration to truncate when calibrating 

Integer 

 

 

 

Integer 

Integer 

 

 

Real 

2 num_sources Number of DNAPL sources Integer 

3 num_complnc Number of compliance locations Integer 

4 num_pt Number of Pump and Treat system (P&T) locations Integer 

5 num_EDs Number of ED galleries including RBs Integer 

6 ED_types List all ED_types as many as ‘num_EDs’ Integers 

7 isSZR List the types of source removal (-1, 0, 1, 2) as many as 

'num_sources' 

Integers 

 

8 isCost (1) 1 = compute costs, 0 = do not compute costs 

   If isCost(1) = 1, define the following. 

(2) 1 = consider uncertainty, 0 = fixed costs 

(3:4) Reference year to discount and discount rate 

Integer 

 

Integer 

Real, Real 

9 SlnGW (1) a prior or best estimate of log standard deviation of 

groundwater samples 

Real 

10 randset Random number seeding Integer 

11 param_MC (1) Number of MC sets to evaluate (max = 1000) 

(2) File name containing parameter realizations 

(3) Flag for creating each MC output file 

Integer 

String 

Y or N 

12 file_CON (1) Flag for use of dissolved concentration data 

(2) Flag for generating a concentration curve for each well 

(3) File name containing concentration data 

Y or N 

Y or N 

String 

13 file_FLX (1) Flag for use of source flux data 

(2) File name containing source flux data 

Y or N 

String 

14 file_MAS (1) Flag for use of source mass removal data 

(2) File name containing mass removal data 

Y or N 

String 

15 Name     Prior     STD     Log     Tune     isSync     LB     UB String 

 



A-2 

 

The model reads a [*.inp] file based on a space- or tab-separated format. Instruction to write each 

line is provided as follows. Note that Lines 1-18 are mandatory even though some of them may 

not be used during simulation. 

Line 1: Example of ‘run_mode’ is ‘3˽1˽3’ (1=forward simulation, 1=number of computer cores, 

3=dimension of transport solution). Note that parallel computing is only implemented 

when Matlab source codes are run directly in a Matlab command window and hyper-

threading is not considered. The minimum concentration simulated by SCOToolkit can 

be added as ‘run_mode(4) if calibration is performed, i.e., ‘run_mode(1)=1’. If not 

defined, 0.05 is assigned internally for the calibration mode. A value 2-52 (a numerically 

zero value inside Matlab) is internally used for other simulation modes. 

Line 2: num_sources (default = 1). Note that although there is no limitation of maximum number 

of sources, the maximum is recommended as 5 in calibration and optimization for time-

efficient computing. 

Line 3: num_complnc (default = 0) can be defined up to 5 locations. 

Line 4: num_PT (default = 0) can be defined up to 5 locations. 

Line 5: num_EDs (default = 0) can be defined as many as needed. Note that when ‘num_EDs’ = 

0, then Line 6 ‘ED_type’ will be read but ignored internally. 

Line 6: List the types of ED injection defined as ‘num_EDs’. EDs should be ordered from 

upstream to downstream. For example, ‘ED_types’ can be ‘3 ˽3 ˽3 ˽3’ when ‘num_EDs’ 

= 4, indicating 4 ED galleries with Type 3. ‘ED_types’ is defined as follows. 

1 = aqueous phase ED injection via wells (Type 1): assigned to RB currently 

2 = non-aqueous phase ED injection via wells (Type 2): not used currently 

3 = aqueous phase ED injection via galleries (Type 3): most common 

4 = non-aqueous phase ED injection via galleries (Type 4): not used currently 

Line 7: List the types of source removal methods defined as ‘num_sources’. The methods used in 

this program is as follows. 

-1 = no removal (i.e., natural depletion) 

0 = instant or progressive source zone removal, SZR 

1 = thermal source removal (TSR) or electrical resistant heating (ERH) 

2 = In-situ chemical oxidation (ISCO) 

Line 8: Example of ‘isCost’ is ‘1˽0 ˽2014˽0.05’. If ‘isCost(1)’ = 1 and cost uncertainty is 

considered (i.e., ‘isCost(2)’ = 1), use should provide uncertainty range in a related cost 

file that is defined in SCOToolkit remedial practices. To consider discount rate (e.g., 0.05 

which is 5%), a reference year for discount ‘isCost(3)’ should be specified. Note that any 

cost incurred in the model before the reference year is disregarded (i.e., zero). Note that 

‘Y’, ‘T’, and ‘1’ are treated as ‘True’ internally. 

Line 9: Log uncertainty of groundwater measurement (SlnGW). ‘SlnGW’ listed in this line is 

used as the default uncertainty in individual GW sample measurements. 

Line 10: ‘randset’ (default = 1) can be an integer from 1 to 5. 

Line 11: If param_MC(1) >0, user should provide a set of parameter realizations generated from 

calibration in a previous step. Note that the realized parameters should be corresponding 

to the parameters marked as ‘Tune = 1’ in the column of ‘Tune?’. If param_MC(1) = 0, 

the remaining of Line 11 is skipped. It is should be noted that a [*.rlz] file is 

automatically generated from previous calibration using covariance matrix and Jacobian, 

where * is the input file name taken from [*.inp] used in calibration. 
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Line 12: If ‘file_CON(1)’ = Y, user should determine whether to generate a plot for 

concentration vs. time for each well by entering ‘file_CON(2)’ = Y or N. If 

‘file_CON(1)’ = Y, user should also provide the file name with ‘file_CON(3)’ that 

contains monitoring locations and other required information (see the format of 

concentration file in Table A2.3) 

Line 13: If ‘file_FLX(1)’ = Y, user should provide the file name with ‘file_FLX(2)’ that contains 

source identifications and other required information (see the format of flux file in Table 

A2.4) 

Line 14: If ‘file_MAS(1)’ = Y, user should provide the file name with ‘file_MAS(2)’ that 

contains source identifications and other required information (see the format of mass file 

in Table A2.5) 

Line 15: One line of eight column heading definitions should be inserted as a placeholder (i.e., 

Line 15 is read but ignored internally). The suggested heading names are: 

 

‘Name Prior  STD  Log?  Tune?  SyncID  LB  UB’ 

 

Format of each column in Line 15 is as follows. 

(1)  Name: a string to name a parameter or variable (user can name any length of a word 

without space) 

(2)  Prior: a real number (without transformation) to define a prior value (mean or best 

estimate) of the parameter 

(3)  STD: a real number to define a standard deviation of ‘Prior’ (ln-standard deviation should 

be entered when the ‘Log’ column is 1 for that parameter) 

(4)  Log? (0 or 1):  0 for normal distribution and 1 for log-normal distribution 

(5)  Tune? (0, 1, 2, or 3): 0 for the fixed value without any calibration or optimization, 1 for 

parameter calibration, 2 for variable optimization, and 3 for random generation. The 

parameters indexed as 1 in ‘Tune?’ are realized after calibration, and those parameters are 

used in Monte Carlo (MC) simulation when ‘run_mode(1)’ = 2 or 3. Therefore, the 

parameters to consider for MC simulation in these two options should have the same 

‘Tune?’=1 for those parameters that have been realized in a previous calibration step. 

Note that the parameters indexed as ‘Tune’ =3 in ‘run_mode(1)’ = 2 or 3 will be 

randomly generated based on user-specified values for the columns in ‘Prior’, ‘STD’, 

‘Log?’, ‘LB’, and ‘UB’. 

(6)  SyncID (integer): 0 for no synchronization. A group number can be assigned for the 

parameters or design variables to be synchronized during calibration or optimization. The 

first parameter or variable in the same group should have a non-zero value (1, 2, or 3) in 

the ‘Tune?’ column. 

(7)  LB: a real number (without a transformation) to define a lower bound (LB) of a 

parameter or variable 

(8)  UB: a real number (without a transformation) to define an upper bound (UB) of a 

parameter or variable 

The Input file demonstrated in this user guide is based on the following source structure and 

downstream plume. Note that the groundwater is at the top of Source 1. 
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An example of project definition (Lines 1 to 15) is as follows (File name: XXX.inp). 

 
1_run_mode   2 28 3 % 2=optimization, 28 cores, 3D transport 
2_num_sources  2  % 2 DNAPL sources 
3_num_complnc  1  % 1 compliance points 
4_num_PT    0  % no Pump & Treat 
5_num_EDs    2  % 2 ED locations 
6_ED_type    3 3 % 2 aqueous ED injection galleries (type 3) 
7_isTSR     1 1 % 2 TSR operation in two defined sources 
8_iscost   Y N 2012 0 % compute cost: Y, uncertainty: N, y_ref=2012, r=0 
9_Sln    0.5 % GW monitoring uncertainty for system moni 
10_randset  1  % random number seeding 
11_param_MC  100 Cal1st.rlzh  N % 100 Monte Carlo sets from Cal1st.rlzh 
12_CONC    Y N conc_test.dat % Compute conc. for MWs in conc_test.dat 
13_FLUX    N % flux is not computed as output 
14_MASS    N % mass is not computed as output 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
 

 

Note that the file extensions used in this document are listed as follows for demonstration 

purpose. User can define any file extension. 

(1)  [*.inp]: Main input file 

(2)  [*.rlz]: Parameter realizations based on a parameter covariance matrix. 

(3)  [*.gen]: Non-correlated parameter generation (i.e., random generation) based on mean, 

std, and pdf. 

(4)  [*.dat]: Measurements of contaminant concentrations (μg/L), source mass flux (kg/d), 

and source mass removal (kg) to be used for calibration or forward simulations. 
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After defining the project information and required files described above, a set of parameters and 

variables are immediately listed as follows in order. It should be noted that the ‘variable’ names 

in a parameter matrix used in this document are for demonstration only. User may define any 

meaningful ‘variable’ name when creating an input file because it does not have any value. 

 

A1.2 Domain Coordinates and Groundwater Flow Field Specification 

Although the analytical transport model explicitly assumes a uniform planar groundwater flow 

field, SCOToolkit considers mildly nonlinear flow fields using a coordinate transformation to 

map nonlinear streamlines described by a 3rd order polynomial to “equivalent” planar 

coordinates. Field coordinates are usually specified by survey data in Northing and Easting 

values relative to a from a reference location. However, any Cartesian coordinate system may be 

adopted, provided the units are in meters.  

If a planar flow field model is employed, the user must specify field coordinates for the center of 

a vertical plane at the downgradient edge of the source or ED gallery and the flow direction (in 

degrees positive counterclockwise or negative clockwise from the field X-axis). If the nonlinear 

model is adopted, in addition to source coordinates (Xo,Yo), coefficients a, b and c of the 

polynomial Y = Yo+a(XXo)+b(XXo)2+c(XXo)3 must be specified.  

An important constraint on the polynomial streamline model is that X-axis values of the 

streamline must increase or decrease monotonically along the streamline. An example of a non-

monotonic streamline is illustrated in Figure A1.1a below. Note that from northernmost end of 

the streamline the flow is initially to the southeast. But this gradually shifts south and then 

southwest resulting in multiple Northing values for single Easting values. However, if the 

coordinates are simply reversed as illustrated in Figure A1.1b, the function becomes monotonic 

with respect to the X-axis, now taken as Northing.  

 

 

Figure A1.1. Streamline that is (a) non-monotonic with respect to the X-axis (easting), and (b) 

same data with axes swapped giving a monotonic function versus northing on the X-axis. 
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Unless the streamline is non-monotonic with respect to both the Easting and Northing, this 

simple axis swap resolves the problem. All that is required is to fit parameters with the reversed 

coordinates and to input Northing values for all X-axis inputs and Easting values for all Y-axis 

inputs in SCOToolkit (e.g, well locations, etc.). When plotting model results on a map view (e.g., 

plume contours or posted values), it will simply require remembering to switch the coordinates 

back for a normal map view (i.e., north up).  

The process of fitting linear or polynomial model parameters can be performed easily using the 

SCOToolkit Excel tool Streamline calulations.xlsx, which includes detailed instructions and 

automatically checks for and performs axis swapping as necessary (Appendix A4). 

 

A1.3 DNAPL Source Parameters 

The ‘paramSource’ matrix stores the characteristics of sources. The matrix dimension is 

[num_sources, 9] where ‘num_sources’ is the number of DNAPL sources to analyze (Table 

A1.2). Multi-biodecay zone and source geometry is described in Figure A1.2 for example. 

Table A1.2. Parameters for Source Definition 
Variable Matrix Definition Unit 

ts_i paramSource(i,1) Initial deposition date (decimal year) for source i year 

t0_i paramSource(i,2) Final deposition date (decimal year) for source i year 

tcal_i paramSource(i,3) Calibration date for Jcal and Mcal (decimal years) of 

source i 

year 

Jcal_i paramSource(i,4) Mass discharge rate from source i at specified tcal 

(internally converted to J0, flux at t0, if needed) 

kg/d 

Mcal_i paramSource(i,5) DNAPL mass in source i at the time of calibration 

(internally converted to M0, mass at t0, if needed)  

kg 

beta_i paramSource(i,6) Depletion exponent for source i - 

L1_i paramSource (i,7) Distance from source i to the downstream boundary of 

Zone 1 (enter a big number like 1E+6 if one decay zone). 

If either L1 or L2 <=0, it is one decay zone. 

m 

L2_i paramSource(i,8) Distance from source i to the downstream boundary of 

Zone 2 (enter a big number like 1E+6 if one decay zone). 

If either L1 or L2 <=0, it is one decay zone. 

m 

AL_i paramSource(i,9) Longitudinal dispersivity specified for source i. If AL_i is 

negative, a global AL value computed in paramAquifer 

will be used (see Table A1-4). 

m 

 

Note that ‘tcal’ may be set as an arbitrarily year at the user’s discretion, which is logically later 

than ‘t0’ and earlier than the date when the remaining mass is zero. However, if source mass 

removal data is available for a date later than ‘tcal’, the user should set a lower boundary of 

‘Mcal’ accordingly, i.e., ‘Mcal’ > M_removed. To calculate prior estimates of source parameters 

Mcal, Jcal,  and tcal from measured source zone groundwater concentration data and soil data, the 

SCOToolkit Excel tool Source function parameter estimation from field data can be used 

(Appendix A4). 
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An example of source parameters is as follows (File name: XXX.inp). 

 

 

Figure A1.2. Multi-biodecay zones (top) and DNAPL source geometry (bottom). 

 

 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
paramSource1 
ts1    1965   7    0   1   0    1950  1984.9 
t01    1985   7    0   0   0    1980  2004.9 
tcal1   2005   0    0   0   0    0.00  0.00 
Jcal1   0.5   0.5   1   1   0    0.11  2.24 
Mcal1   3000   0.5   1   1   0    700  13000 
beta1  1.3   0.25   0   1   0    1.01  2.05 
L1(m) 10000   0    0   0   0    0.00  0.00 
L2(m) 10000   0    0   0   0    0.00  0.00 
AL1  -999    0    0   0   0    0.00  0.00 
paramSource2                                                 
ts1    1965   7    0   1   0    1950  1984.9 
t01    1985   0    0   0   0    1980  2004.9 
tcal2   2005   0    0   0   0    0.00  0.00 
Jcal2  0.3   0.5   1   1   0    0.06  1.3 
Mcal2   750   0.5   1   1   0    200  3000 
beta2  0.5   0.25   0   1   0    0.2  0.95 
L1   10000   0    0   0   0    0.00  0.00 
L2   10000   0    0   0   0    0.00  0.00 
AL2  -9999   0    0   0   0    3   300 
 ~ 

Note: When ‘run_mode(1)’=2 or 3, the indicator ‘1’ in the ‘tune?’ column means this parameter was calibrated in 

the previous step and generated as a stochastic variable based on covariance. Generated parameters (showing ‘tune?’ 

=1) were saved in ‘Cal1st.rlz’ in a previous calibration step for example. 
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The ‘paramSourceGeom’ matrix defines the geometry of sources and has the dimension of 

[num_sources, 10] as shown in Table A1.3. 

Table A1.3. Parameters for Source Geometry. 
Variable Matrix Definition Unit 

Lx_i paramSourceGeom(i,1) Source i length parallel to the flow direction  m 

Ly_i paramSourceGeom(i,2) Source i width perpendicular to the flow direction m 

X0_i paramSourceGeom(i,3) Model X-axis coordinate at center of downgradient 

face of source i 

m 

Y0_i paramSourceGeom(i,4) Model Y-axis coordinate at center of downgradient 

face of source i 

m 

a_i paramSourceGeom(i,5) 1st order coefficient of the streamline from source i  

b_i paramSourceGeom(i,6) 2nd order coefficient of the streamline from source i  

c_i paramSourceGeom(i,7) 3rd order coefficient of the streamline from source i  

alpha_i paramSourceGeom(i,8) Angle measured to tangent of the streamline toward 

the flow direct at Source i (negative to clockwise).  

deg 

Lztop_i paramSourceGeom(i,9) Depth to the top of source i measured from a water 

table 

m 

Lzbtm_i paramSourceGeom(i,10) Depth to the bottom of source i measured from a 

water table 

m 

 

An example of source geometry parameters is as follows (File name: XXX.inp). 

 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
paramSource1 
 ~ 
paramSource2 
 ~ 
 
paramSourceGeom1 
Lx   24.44   0    0   0   0    0   0 
Ly   45     0    0   0   0    0   0 
E0   995    0    0   0   0    0   0 
N0   994    0    0   0   0    0   0 
a   -0.0787   0    0   0   0    0   0 
b   0     0    0   0   0    0   0 
c   0     0    0   0   0    0   0 
alp  -4.5    0    0   0   0    0   0 
Lztop 0     0    0   0   0    0   0 
Lzbtm 10     0    0   0   0    0   0 
paramSourceGeom2 
Lx   19.52   0    0   0   0    0   0 
Ly   17.93   0    0   0   0    0   0 
E0   997    0    0   0   0    0   0 
N0   985    0    0   0   0    0   0 
a   -0.0787   0    0   0   0    0   0 
b   0     0    0   0   0    0   0 
c   0     0    0   0   0    0   0 
alp  -4.5    0    0   0   0    0   0 
Lztop 18     0    0   0   0    0   0 
Lzbtm 19     0    0   0   0    0   0 
 ~ 
 

Note) the streamline equation from each source (local coordinate = (0,0)) is -0.0787X+0*X2+0*X3. This equation 

represents groundwater flow toward SE with an angle of 4.5 degree (‘alpha’ = -4.5). 
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A1.4 Aquifer Parameters 

The ‘paramAquifer’ matrix defines the aquifer properties and has the dimension of 

[num_layers, 18] as shown in Table A1.4. The retardation factor for a contaminant, ‘R’, is 

internally computed based on a soil bulk density, d_m or d_im, (kg/m3) and distribution 

coefficient, k_m or k_im, (aka Kd) (m3/kg) of the contaminant to analyze. 

 

Table A1.4. Parameters for Aquifer 
Variable Matrix Definition Unit 

qw paramAquifer(i,1) Groundwater darcy velocity. If mobile-immobile transport is 

modeled, this is the average across mobile and immobile 

regions – i.e., qw = Fm*qm, where qm is mobile zone 

velocity and Fm is mobile volume fraction. 

m/d 

Fm paramAquifer(i,2) Mobile zone fraction to the total aquifer volume  - 

geom paramAquifer(i,3) Geometry factor for porous media (15=spherical, 5=planar) - 

phi_m paramAquifer(i,4) Aquifer porosity for the mobile zone - 

d_m paramAquifer(i,5) Dry bulk density for the mobile zone kg/m3 

k_m paramAquifer(i,6) Absorption coefficient for the mobile zone m3/kg 

phi_im paramAquifer(i,7) Aquifer porosity for the immobile zone - 

d_im paramAquifer(i,8) Dry bulk density for the immobile zone kg/m3 

k_im paramAquifer(i,9) Absorption coefficient for the immobile zone m3/kg 

L_im paramAquifer(i,10) Effective diffusion path length (average thickness of the low 

permeability layers). See Eq. 19 of Parker and Kim (2015) 

m 

Dim paramAquifer(i,11) Molecular diffusion coefficient for immobile zones m2/d 

AL_m paramAquifer(i,12) Longitudinal dispersivity for a mobile zone or a whole zone. 

If Fm=1, AL_m is used for a whole aquifer. 

If Fm<1, effective AL is internally computed for mob-

immob zone. See Eq. 19 of Parker and Kim (2015). 

m 

AT paramAquifer(i,13) Transverse dispersivity ratio to AL (=AT/AL)  

AV paramAquifer(i,14) Vertical dispersivity ratio to AL (=AV/AL)  

Laq paramAquifer(i,15) Saturated aquifer thickness m 

lambda1 paramAquifer(i,16) First-order decay coefficient for Zone 1 for a contaminant day-1 

lambda2 paramAquifer(i,17) First-order decay coefficient for Zone 2 for a contaminant 

(enter 0 if not used) 

day-1 

lambda3 paramAquifer(i,18) First-order decay coefficient for Zone 2 for a contaminant 

(enter 0 if not used) 

day-1 
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An example of aquifer parameters is as follows (File name: XXX.inp). 

 
 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1, paramSource2, paramSourceGeom1, paramSourceGeom2 
 
paramAquifer 
qw    0.08    0.2  1   1   0  0.04  0.15 
Fm    1          0      0      0     0       0      0 
geom      5           0      0     0     0       0     0 
phi_m     0.30        0      0      0     0       0   0 
d_m   1890        0      0     0     0       0   0 
k_m       1.6E-4     0.2    1     1     0   8.78E-5  2.92E-4 
phi_im    0.40        0      0     0     0       0      0 
d_im      1620        0      0     0      0       0      0 
k_im      1.6E-4   0   0     0     0       0      0 
L_im      5     0   0   0   0    0   0 
D0        3.9E-5   0.3  1   0   0   1.6E-5  9.6E-5 
AL      15     1   1   1   0   1   300 
AT/AL    0.1    1   1   1   0  0.005  1 
AZ/AL  0.01    1   1   1   0  0.0005  0.2 
Laq   30     0   0   0   0   0   0 
lambda1  1E-4    1   1   1   0   5E-6  2E-3 
lambda2  0     0   0   0   0   0   0 
lambda3  0     0   0   0   0   0   0 
 ~ 
 

Note: ‘lambda1’, ‘lambda2’, and ‘lambda3’ are defined for Zone1, Zone2, and Zone3, respectively (see 

‘paramSource’ in Table A1.2). 
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A1.5 Basic Information for Electron Donors and Acceptors 

The ‘paramED0’ matrix with dimension [11, 1] defines one set of basic information of ED 

injection well galleries as summarized in Table A1.5. ‘alp_ED’, which represent a rate coefficient 

for ED reaction with EA, may be estimated by calibrating to pilot test data or set to a value determined 

from prior experience. ‘Fmt_max’ is an upper limit for a mass transfer enhancement factor, Fmt(t), 

which can be an experimental or user-specified maximum value (e.g., 10) to avoid an 

unrealistically high Fmt(t) value during simulation. Fmt(t) is internally computed from ED 

concentrations for galleries upgradient of a DNAPL source as designated by the variable 

‘CED_locs’ in Table A1.11. More details on enhancing mass dissolution rate by ED injection are 

found in Chapter 3 of the ER-2310 final report. Note that the 3rd and 4th parameters are only 

relevant for ED injection upgradient of a DNAPL source (i.e., source bio-enhancement). 

Table A1.5 and Table A1.6 are mandatory input parameters even though there is no ED 

injection. User may enter all zero values for holding places or real analytical value for natural 

background ED and EA when they substantially affect plume degradation. 

 

Table A1.5. Parameters for ED injection 
Variable Matrix Definition Unit 

f_c paramED0(1) H-equivalent (kg) required per mass (kg) of NAPL 

degraded 

- 

alp_ED paramED0(2) Rate coefficient for ED reaction with EA. day-1 

Fmt_max paramED0(3) Maximum of Fmt(t), a factor describing the degree to 

which DNAPL dissolution rate is enhanced by ED 

injection. 

- 

fmt paramED0(4) DNAPL mass transfer enhancement coefficient - 

lambda_ED paramED0(5) Decay coefficient for ED /d 

km_ED paramED0(6) Adsorption coefficient for ED in the mobile zone m3/kg 

kim_ED paramED0(7) Adsorption coefficient for ED in the immobile zone m3/kg 

Dim_ED paramED0(8) Molecular diffusion of ED in the immobile zone m2/kg 

AL_ED paramED0(9) Longitudinal dispersivity of ED for a mobile zone 

• If negative, same as AL used for contaminant. 

• If Fm = 1 and AL_ED>0, AL_ED is used. 

• If Fm <1, effective (i.e., upscaled) AL_ED is 

internally computed for mob-immob zone. See Eq. 

19 in Parker and Kim (2015). 

m 

W_ED paramED0(10) Molecular weight of ED injected to a DNAPL source kg/mol 

S_CH/W_CH paramED0(11) Maximum molar concentration of DNAPL (Solubility/ 

Molecular weight) 

mol/m3 

Note) See Chapter 3 of the ER-2310 final report. 

 

The ‘paramEDEA’ matrix of dimension [num_layers, 4] as shown in Table A1.6 defines natural 

ED and EA background concentrations, which are used in the serial, parallel, or combined 

reaction pathways (see Chapter 3 of the ER-2310 final report). Even if there are no ED injection 

galleries, ‘paramED0’ and should be defined for each aquifer layer. Unless ED injection is 

implemented in the upgradient of a DNAPL source, the values of ‘Fmt_max’, ‘fmt’, ‘W_ED’, 

and ‘S_CH/W_CH’ do not affect simulation results (i.e., entered values are simply 

“placeholders”). It should be noted that background ED/EA will react with contaminant and 
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other injected ED species only when a user defines at least one ED gallery described in Table 

A.11. Therefore, if natural attenuation should be modelled, a user can set up an ED gallery with 

zero injection rate. 

Uncertainty in parameters in Tables A1.6 can be considered using random numbers (normal or 

log-normal) in Monte Carlo simulations by specifying ‘PriorSD’, ‘Log’, and ‘IsSync’. In this 

case, zero correlation with other parameters will be assumed. 

 

Table A1.6. Definition of background ED/EA concentration and biodecay pathway. 
Variable Matrix Definition Unit 

natEA paramEDEA(i,1) H-equivalent natural EA concentration in aquifer i, 

a weighted sum of all EAs. See Chapter 3 of the 

ER-2310 final report for stoichiometirc 

coefficients. 

H-eq μg/L 

natED paramEDEA(i,2) H-equivalent natural ED concentration in aquifer i H-eq μg/L 

fo2Co2 paramEDEA(i,3) Bio-available H-equivalent O2 concentration in the 

aquifer (fO2*O2 concentration in μg/L) 

H-eq μg/L 

Fs paramEDEA(i,4) Serial fraction (1 for 100% serial and 0 for 100% 

parallel, 0.5 for equally combined reaction) 

 

 

An example of basic ED/EA parameters is as follows (File name: XXX.inp). 

 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1, paramSource2, paramSourceGeom1, paramSourceGeom2, 
paramAquifer 
 ~ 
paramED0 % This block can be entered zeros if there is no ED injection. 
fc     0.05    0   0   0   0   0   0 
alp_ED   0.01    0   0   0   0   0   0 
Fmt_max   100    0   0   0   0   0   0 
fmt    5.5E-6   0   0   0   0   0   0 
lamb_ED   0     0   0   0   0   0   0 
kdm_ED   3E-4    0   0   0   0   0   0 
kdim_ED   5E-4    0   0   0   0   0   0 
D0_ED   3.5E-5   0   0   0   0   0   0 
AL_ED  -9999    0   0   0   0   0   0 
W_ED    0     0   0   0   0   0   0 
S_CH/W_CH  0     0   0   0   0   0   0 
 
paramEDEA1 % This is to define natural background EA and EA if significant. 
C_natEA  2390     0   0   0   0   0   0 
C_natED  0      0   0   0   0   0   0 
fo2Co2  490     0   0   0   0   0   0 
Fs    0.5     0   0   0   0   0   0 
 ~ 
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A1.6 Source Zone Reduction 

In addition to DNAPL source mass depletion computed from the power function mass transfer 

function described in Chapter 2 of the ER-2310 final report, source mass reduction can be 

specified by one or more of three methods in SCOToolkit: (1) user-specified mass removal 

versus time, (2) application of the thermal treatment model, and/or (3) application of the in-situ 

chemical oxidation (ISCO) model. Note that one source can have only one type source zone 

reduction. 

A1.6.1 Source zone mass removal 

The ‘paramSZR’ defines the variables for source mass reduction implemented by any source 

mass removal technology. Note that ‘paramSZR’ should be defined for the sources that has 

‘isSZR’=0 in Line 7. Users may utilize this option to model measured historical mass removal 

via excavation or any other method (e.g., for calibration runs). A set of variables listed in Table 

A1-7 needs to be defined for each DNAPL source i. 

 

Table A1.7. Variables for Source Zone Reduction 
Variable Matrix Definition Unit 

SZRbeg paramSZR(i,1) SZR beginning date for source mass removal 

(mm/dd/yyyy) 

 

SZRend paramSZR(i,2) SZR ending date for source mass removal  (mm/dd/yyyy 

or a negative number for internal computing) 

• If ‘SZRend’ = ‘SZRbeg’, the model assumes this case as 

instant source removal and user should define ‘Mrmv’ in 

the following line. 

• If ‘SZRend’ is not same as ‘SZRbeg’, in next three lines 

user should define the number of steps, elapsed days, 

and cumulative mass removed at each step. SZRend will 

be internally computed using the cumulative days. 

 

Mrmv 

or Nsteps 

paramSZR(i,3) When ‘SZRend’ = ‘SZRbeg’, it is ‘Mrmv’ indicating the 

DNAPL mass removed from a source zone instantly, or it 

is ‘Nsteps’ that is the number of time steps at which 

cumulative mass removal (recovery) was measured. 

kg or 

- 

Days varSZR(i,Nsteps) If ‘Nsteps’ is used, list the cumulative days at which mass 

recovery data is measured. Define this as many as 

‘Nsteps’. 

days 

Mrmv varSZR(i,Nsteps) If ‘Nsteps’ is used, list the cumulative mass recovered at 

the defined time steps. 

kg 

CostSZR path\file name When ‘isCost(1)’=1, a cost file should be defined. If the 

cost file is in the same directory, the path can be omitted 

(see the example cost file) 
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For clarity, two examples for ‘paramSZR’ are presented as follows. If ‘isCost(1)’ = 1 (i.e., 

TRUE), a line to define cost variables should be followed. 

 

Example (1) - SZR input to consider instant source removal when isCost(1)=1. 
~ 
paramSZR   This line is skipped internally. 
SZRbeg  2005 
SZRend  2005 
Mrmv(kg) 100 
CostSZR  F:\DNAPL\cost_szr.dat  This line is skipped when isCost(1)=0. 
~ 

 

Example (2) - SZR input to consider progressive source removal when isCost(1)=1. 
~ 
paramSZR    This line is skipped internally. 
SZRbeg  2005 
SZRend  -999 % SZRend is computed internally (i.e., 2005+200/365 = 2005.55) 
Nsteps  5 
Days   50  85  120 150 200 
Mrmv_acc 10  70  100 120 130 
CostSZR  F:\DNAPL\cost_szr.dat  This line is skipped when isCost(1)=0. 
~ 

 

A cost file for SZR, [cost_szr.dat] in ‘F:\DNAPL\’, may be written as follows. 
 
Item    Cost($K) Unc. Comment    This line is skipped internally. 
Capital   500   0  % capital cost 
Monitoring 100   0  % monitoring cost 
Penalty   1E6   0  % penalty cost 
 

Note: All ‘Comments’ after the ‘Unc.’ column will be skipped. Therefore, it can be used to record user notes. 
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A1.6.2 Thermal Source Reduction (TSR) 

TSR may include all type of heating methods such as electrical resistant heating (ERH), thermal 

conduction heating (TCH), or stream enhanced extraction (SEE), etc. Table A1.8 defines the 

parameters, variables, and costs for most general TSR practice. A set of parameters and variables 

listed in Table A1.8 should be defined as many as the sources indicated as “isSZR’ = 1. 

 

Table A1.8. Variables for TSR 
Variable Matrix Definition Unit 

TSRbeg paramTSR(i,1) TSR beginning date (numeric year such as 2005.7) year 

TSRend paramTSR(i,2) TSR ending date (numeric year) 

• If unknown, enter a negative number (like -999) to be 

computed internally. If ‘TSRend’ is specified, TSR 

will be forced to terminate at ‘TSRend’. 

year 

Wsoil 

 

paramTSR(i,3) Weighting factor for soil concentration (0~1) only 

when monitoring both soil concentration and mass 

recovery data. If negative, it is determined internally. 

- 

Ntz paramTSR(i,4) Number of treatment zones divided into the source to 

treat (see Chapter 4 of the ER-2310 final report) 

- 

dtmon1 paramTSR(i,5) Vapor monitoring interval or the first soil concentration 

monitoring time counted since commencing TSR 

(therefore, it is always required even if vapor is not 

monitored) 

days 

dtmon2 paramTSR(i,6) Soil monitoring interval after waiting ‘dtmon1’. If both 

vapor and soil are monitored, first soil sample will be 

taken when vapor monitoring indicates Csoil ≤ 

Cstop_TZ with a ‘dtmon2’ interval after that. 

days 

Fmiss paramTSR(i,7) Fraction of missing mass of the source not captured by 

TSR (0~1) 

- 

alpha paramTSR(i,8) Significant level of t-distribution (0<alpha ≤ 0.5), e.g., 

t(1-alpha, dof), to define a upper confidence limit 

(UCL) of measured concentrations at a level of (1-

alpha) and a degree of freedom (dof). Note it is one-

sided. 

- 

Cgw_all paramTSR(i,9) Criterion of groundwater concentration averaged for 

the entire TZs (e.g., the entire treatment zone) to 

terminate TSR (if negative, it is computed from 

‘Csoil_all’) 

µg/L 

Csoil_all paramTSR(i,10) Criterion soil concentration averaged for the entire TZs 

to terminate TSR (if negative, it is computed from 

‘Cgw_all’). 

µg/kg 

Cgw_TZ paramTSR(i,11) Criterion of groundwater concentration to terminate 

heating a monitoring zone (MZ) in a TZ. 

µg/L 

Csoil_TZ paramTSR(i,12) Criterion of soil concentration to terminate heating a 

MZ in a TZ (‘Csoil_TZ’ is not allowed to be higher 

than ‘Csoil_all’. ‘Csoil_TZ’ = 

min[‘Csoil_TZ’,’Csoil_all’] internally) 

µg/kg 

Table A1.8 continued 
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TZ_vars_j Repeat the block below with this head line ‘TZ_vars’ as many as ‘Ntz’ in ‘paramTSR’ 

tpeak TSR-TZ(j,1) Time to reach the peak of recovery rate while heating days 

Nmz TSR-TZ(j,2) Number of MZs to be divined in the TZ ea 

Ngp TSR-TZ(j,3) Number of geoprobe locations (or bore holes) in a MZ ea 

Nsmp TSR-TZ(j,4) Number of samples per geoprobe location ea 

Z_const Treatment zone constants (define ‘Ntz’ columns followed by this comment line) 

Area VarTSR(1,1~Ntz) Horizontal area of the TZ m2 

Thickness VarTSR(2,1~Ntz) Treatment thickness of the TZ m 

Width VarTSR(3,1~Ntz) Width of the TZ for computing flux m 

SL_avg VarTSR(4,1~Ntz) Average soil centration of the TZ µg/kg 

SL_min VarTSR(5,1~Ntz) Minimum soil concentration of the TZ µg/kg 

SL_max VarTSR(6,1~Ntz) Maximum soil concentration of the TZ µg/kg 

Nhw* VarTSR(7,1~Ntz) Number of heating wells in the TZ (not used) - 

Nvw** VarTSR(8,1~Ntz) Maximum number of vapor monitoring wells in the TZ 

(not used) 

- 

MONtype VarTSR(9,1~Ntz) Monitoring type of the TZ (0 = vapor only, 1 = soil 

only, 2 = Both) 

- 

SlnVW VarTSR(10,1~Ntz) Log standard deviation of vapor data (0.01~0.05) - 

SlnGP VarTSR(11,1~Ntz) Log standard deviation of geoprobe data (0.5~5) 

If less than or equal to zero, it is computed internally 

using soil concentration data (i.e., SL_min and 

SL_max). 

- 

SlnM0 VarTSR(12,1~Ntz) Log uncertainty of DNAPL mass estimation (~0.7) 

If less than or equal to zero, it is computed internally 

using soil concentration data (i.e., SL_min and 

SL_max). 

- 

dura_max VarTSR(13,1~Ntz) Maximum allowed time duration of TZs days 

CostTSR path\file name When isCost(1)=1, a cost file should be defined. If the 

cost file is in the same directory, the path can be 

omitted (see the example cost file) 

 

Note: *  Nvw is not current used in the model but assigned as a placeholder for future use. 

** Nhw does not affect optimizing expected cost but is used to compute a global energy 

usage factor after simulation (i.e., post-processing). 

 

An example of TSR parameters and variables is as follows (File name: XXX.inp). It is 

recommended to utilize the SCOToolkit Excel tool Thermal treatment model calibration.xlsx 

in calibrating thermal model parameters to the actual mass recovery data. To implement real time 

termination decisions that allow for multiple monitoring zones using a rigorous statistical 

approach, the SCOToolkit Excel tool Thermal treatment termination decisions using real 

time data.xlsx can be used. 

 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1 ~ paramEDEA1 
 ~ 
paramSZR for Source 1: this line is a place holder and skipped. 
1t_beg  2007 
2t_end  -999 
3Nsteps  8 
4days  1    40    80     120    160    200    240     266 
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5Mrmv  0.03 310.86 1142.06  1505.37  1629.40  1680.26  1703.66  1712.1 
costSZR  costSZR.dat 
 
paramTSR for Source 2 with Ntz=1: this line is a place holder and skipped. 
1t_beg  2011  0   0  0  0  0  0 
2t_end  -9999 0   0  0  0  0  0 
3Wsoil  -999  0   0  0  0  0  1 
4Ntz   1   0   0  0  0  0  0 
5dtmon1* 2   0   0  0  0  68  180 
6dtmon2* 14   0   0  0  0  6.9 29 
7Fmiss  0   0   0  0  0  0  0 
8SigPer* 0.5  0   0  0  0  0.01 0.5 
9Cavg_gw 50   0   0  0  0  0  0 
10Cavg_sl 1000  0   0  0  0  5  5000 
11Ctz_gw 50   0   0  0  0  0  0 
12Ctz_sl 750  0   1  2  0  100  1000 
%TZ_1 (1=A, 2=B.., Nvw=Nmz), 7 param for each TZ 
1tpeak  65   0   0  0  0  50  200 
2Nmz/tz* 3   0   0  2  0  1  9 
3Ngp/mz* 4   0   0  2  0  1  8 
4Nsmp/gp* 2   0   0  2  0  1  4 
% Zone   TA1   TZ2 (if Ntz=2): This line is a place holder and skipped. 
1Area  350 
2Thick  10 
3Width  15 
4SL_avg  1.13E6 
5SL_min  2.53E5 
6SL_max  5.08E6 
7Nhw   33 
8Nvw   9 
9montype 2 
10Slnvw  0.4 
11SlnGP  2.0 
12SlnM0  0.7 
13duramax 730 
costTSR1 costTSR1.dat 

 

If a cost data file is in the same path as main input file, the path name can be omitted. An 

example cost data file (e.g., ‘costTSR3TZ.dat’) for TSR with 3 treatment zones (TZ) is presented 

as follows. To estimate unit cost parameters for the source zone thermal treatment model, the 

SCOToolkit Excel tool Thermal treatment unit cost calcs.xlsx can be used (Appendix A4). 

 
Cost_name TZ1  TZ2  TZ3  Unc. Comment % this line is skipped internally 
Ccap=  116.0 262.5 262.5 0   paramCost(1)  all unit=$K 
Cenergy= 2.77  6.27  6.27  0  paramCost(2) 
Cother=  0.995 2.252 2.252 0  paramCost(3) 
Cmzcap=  0.024 0.053 0.053  0  paramCost(4) 
Cmzday=  0.008 0.008 0.008 0   paramCost(5) 
Cgp=   2.18  2.18  2.18  0   paramCost(6)  
Cgpsmp=  0.28  0.28  0.28   0   paramCost(7)  
Cmass=  0.1  0.1  0.1   0   paramCost(8) 
Cpen=  1E6  1E6  1E6  0   paramCost(9) It applies once 

Note: The column head line ('Cost name TZ1 TZ2… Unc.  Comments') is skipped while loading the cost file. All 

comment after the ‘Unc’ column will be skipped. Therefore, it can be used as user’s note. 
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A1.6.3 In Situ Chemical Oxidation (ISCO) 

ISCO is a popular source mass reduction practice. Two types of oxidant injection methods were 

identified; 1) intermittent (aka, pulse) injection and 2) continuous injection, defined in Table 

A1.10a and Table A1.10b, respectively. The current version of SCOToolkit includes both 

methods. Either method should be indicated in the first two lines before defining their parameters 

and variables (see the example file listed next). Historical injection events can be also simulated 

for various purposes (parameter calibration, design reoptimization, etc.). Table A1.9a, Table 

A1.9b, or Table A1.9c (historical injection events) should be defined as many as the number of 

‘isSZR = 2’ listed in Line 7 in Table A1.1. 

 

1) Pulse ISCO injection 

ISCO systems can be terminated by stop criterion based on groundwater concentrations (gw), 

soil concentrations (soil), or both. Users must define ‘Cgw_all’ and/or ‘Csoil_all’ for global 

decision (i.e., terminate ISCO when average concentration is less than ‘Cxx_all’) and ‘Cgw_TZ’ 

and/or ‘Csoil_TZ’ for local decision (i.e., terminate a TZ when a TZ concentration is less than 

‘Cxx_TZ’). If either ‘Cgw_xxx’ or ‘Csoil_xxx’ is entered as -999 (or any negative number), the 

other value is internally computed (see Chapter 5 of the ER-2310 final report). 

Although user can optimize both ‘Nmw’ and ‘Ngp’ or ‘Nbg’ simultaneously, the minimum 

search range for both should be bigger than 1 to use both water and soil data. Therefore, if ‘Ngw’ 

or ‘Nsoil’ is zero, the corresponding ‘Cgw_xxx’ or ‘Csoil_xxx’ cannot be utilized as a stop 

criterion. 

When the oxidant concentration (‘C_OX’) is to be optimized, the lower and upper search bound 

generally ranges from 2000 mg/ L to up to 50% ~ 80% of its solubility (e.g., 50% for KMNOP4 

and 80% for NaMNO4). It should be noted that continuous injection uses lower concentrations 

but longer durations than intermittent injection. 

The parameter ‘Srind/k0’ representing the pore clogging effect by MnO2 precipitation on 

permeability can be defined as follows. For a general Srind value, Srind = -5.5E-16 m2 L/mg was 

taken from West and Kueper (2012). For example, Srind/k0 = 4.58E-7 L/mg when k0 = 1.2E-9 

m2 (West, M.R. and Bernard H. Kueper (2012) Numerical simulation of DNAPL source zone 

remediation with in situ chemical oxidation (ISCO). Adv. Water Res. 44:126-139). 

When ‘ISCOtype’ = 0 in ‘Fixed [1,1]’, SCOToolkit will read Table A1-9a for pulse 

(intermittent) ISCO injection. ‘Fixed [2×10]’ values are defined followed by two lines of header 

(line holders for variable names, not used internally) in Table A1.9a (see the example file 

below).  

 

Table A1.9a. Variables for ISCO intermittent injection 
Variable Matrix Definition Unit 

Fixed [2×10] ISCOtype Aiw  Q_OX  Nsplt  ttx  SlnGWmw  SlnGWgp  SlnSLgp SlnSLbg SlnOX 
Fgwmin  OX2O2 O22CH Cl2CH  S_CH W_CH     W_Cl     Avtot   t0   duramax 

NODtot paramISCO(i,1) Natural Oxygen Demand, 0.2~200 /kg soil (g 

oxidant/kg soil) 

g/kg 

f_fast paramISCO(i,2) NOD fast (instant) fraction to ‘NODtot’, 0.02~0.7 g/g 

r_slow paramISCO(i,3) Rate coefficient of slow NOD, 0.01~1 (L/mmol 

KMmnO4/day) 

L/mmol/day 
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Ntz paramISCO(i,4) Number of Treatment Zones ea 

fmt paramISCO(i,5) Mass transfer enhancement factor 

(=Dox/(nox/CH*DCH). See Chapter 5 of the ER-2310 

final report. 

- 

Fover paramISCO(i,6) Well overlap factor (≥1)  

Ninj_min paramISCO(i,7) Number of minimum injections ea 

Ninj_max paramISCO(i,8) Number of maximum injections ea 

Lx_tt paramISCO(i,9) Length from upstream to downstream of a TZ to 

compute travel distance of oxidant 

m 

Coxdmin paramISCO(i,10) Minimum oxidant concentration below which 

contaminant monitoring starts when the number of 

injections ≥ Ninj_min. When monitoring soil only, 

user can optimize this to initiate first soil 

monitoring since a prior injection. 

mg/L 

Fsl/gw paramISCO(i,11) A multiplier to groundwater monitoring interval 

(‘dtgw’) indicating the frequency of soil sampling. 

 

dtgw  paramISCO(i,12) Groundwater monitoring interval (e.g., 90 days = 

quarterly) 

days 

Nsmp_gp       paramISCO(i,13) Number of samples along a geoprobe vertical section 

per geoprobe hole per event (‘Nsmp_gp’ for water = 

‘Nsmp_gp’, when water sample option is active) 

ea 

Nsmp_bg         paramISCO(i,14) Number of soil samples along a vertical section per 

bore hole per event 
ea 

Srind/k0  paramISCO(i,15) Ratio of Srind to k0, where Srind is the slope between 

permeability k (m2) and MnO2 concentration (mg/L) 

and k0 (m2) is the intrinsic permeability before 

injection. 

L/mg 

Cgw_all paramISCO(i,16) Groundwater concentration averaged for the entire 

TZs to terminate ISCO_i (if negative, ‘Csoil_all’ 

should be defined) 

µg/L 

Csoil_all paramISCO(i,17) Soil concentration averaged for the entire TZs to 

terminate ISCO_i (if negative, it is computed from 

‘Cgw_all’) 

µg/kg 

Cgw_redo  paramISCO(i,18) Groundwater concentration of a TZ to initiate oxidant 

reinjection for that TZ 
µg/L 

Cgw_stop  paramISCO(i,19) Groundwater concentration of a TZ to terminate the 

ISCO system for that TZ 
µg/L 

Csoil_redo  paramISCO(i,20) Soil concentration of a TZ to initiate oxidant 

reinjection for that TZ 
µg/kg 

Csoil_stop  paramISCO(i,21) Soil concentration of a TZ to terminate the ISCO 

system for that TZ 
µg/kg 

alpha paramISCO(i,22) Significant level of t-distribution to define a UCL of 

measured concentrations (0<alpha ≤ 0.5), 

 

TZ_j Repeat the block below with this head line as many as ‘Ntz’ defined in ‘paramISCO’ 

Ftz paramTZ(j,1) Treatment area safety factor (≥1)  

Nmw0         paramTZ(j,2) Number of existing monitoring wells for TZ_j per 

event (these wells are not counted for cost). 

 

Nmw         paramTZ(j,3) Number of new monitoring wells for TZ_j per 

event (these wells are counted for cost). 
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Ngp         paramTZ(j,4) Number of geoprobe locations per event for TZ_j 

(horizontal locations) 

 

Nbg         paramTZ(j,5) Number of bore holes for TZ_j (horizontal 

locations) 

 

C_OXD         paramTZ(j,6) Oxidant concentration for TZ_j (horizontal 

locations) per event 

mg/L 

TZchar Treatment zone characterization (define ‘Ntz’ columns followed by this comment line) 

Not_used VarISCO(1,1:Ntz) Reserved for future update  

Area VarISCO(2,1:Ntz) Planar area of TZs m2 

Thickness VarISCO(3,1:Ntz) Thickness of TZs m 

Width VarISCO(4,1:Ntz) Width of TZs m 

SL_avg VarISCO(5,1:Ntz) Average soil centration of TZs µg/kg 

SL_min VarISCO(6,1:Ntz) Minimum soil concentration of TZs µg/kg 

SL_max VarISCO(7,1:Ntz) Maximum soil concentration of TZs µg/kg 

CostISCO path\file name When ‘isCost(1)’=1, a cost file should be 

defined. If the cost file is in the same directory, 

the path can be omitted (see the example file) 

 

 

It should be mentioned that if groundwater is monitored, user should provide the criteria of 

groundwater concentration (‘Cgw_redo’ and ‘Cgw_stop’) for reinjection and termination, 

respectively. Real time termination decisions for ISCO source treatment using soil and/or 

groundwater sample data can be implemented using the SCOToolkit Excel tool ISCO treatment 

termination decisions using real time data.xlsx (Appendix A4). An example of ISCO 

parameters and variables for pulse injection is as follows (File name: XXX.inp). 

 
Lines 1~14  
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
Omitted: paramSource1 ~ paramEDEA1 
 ~ 
paramISCO % Source 1 with Ntz=3, Srind/k0 = 4.58E-6, GW only 
iType Aiw  Q_OX Nsplt ttx SlnGWmw SlnGWgp SlnSLgp SlnSLbo SlnOX 
Fgwmin OX2O2  O22CH Cl2CH S_CH W_CH  W_OXD  Avtot  t_beg  duramax  
    0 72.7     16.35 4     0     0.5  1.15     1.15     2.0    0.3 
    2 0.211    1     4     0.15  0.166  0.158  412.5  2014  360 
1NODtot   2   0.3   1   3   0    0.6  6.64 
2f_fast   0.15  0.3   1   3   0    0.045 0.5 
3r_slow   0.02  0.3   1   3   0    6E-3  0.066 
4Ntz    3   0    0   0   0    0   0 
5fmt    1.35  0    0   0   0    0   0 
6Fover   1.25  0    0   0   0    0   0 
7Ninjmin   1     0    0   0   0    0   0 
8Ninjmax   20     0    0   0   0    0   0 
9Lxtt   20   5    0   3   0    10   30 
10Coxdmin   50    0    0   0   0    0   0 
11Freqqsl  0   0    0   0   0    0   0 
12dtmon2    90    0    0   0   0    0   0 
13Nsmp_gp  0   0    0   0   0    0   0 
14Nsmp_bg  0   0    0   0   0    0   0 
15Srind/k0 4.58E-6 0    0   0   0    0   0 
16GWglo   100  0    0   0   0    0   0 
17SLglo   -999  0    0   0   0    0   0 
18GW_redo1  200    0         1     2       0        150    500 
19GW_stop1  50     0         1     2       0        10     100 
20SL_redo1  -999    0         0     0      0        100    1000 
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21SL_stop1  -999    0         0     0       0        10     200 
22alpha   0.5  0    0   0   0    0.05  0.5 
% TZ1 
Ftz    1.1  0    0   0   0    0   0 
Nmwo1   4   0    0   0   0    0   0 
Nmw1        2     0         0       2       0        0      4.4 
Ngp1        0     0         0       0       0        0   0 
Nbg1    0   0    0   0   0    0   0 
C_OX1   10000 0    1   2   0    5E3  30E3 
% TZ2 
Ftz    1.1  0    0   0   0    0   0 
Nmwo2   4   0    0   0   0    0   0 
Nmw2        2     0         0       2       0        0      4.4 
Ngp2        0     0         0       0       0        0   0 
Nbg2    0   0    0   0   0    0   0 
C_OX2   10000 0    1   2   0    5E3  30E3 
% TZ3 
Ftz    1.1  0    0   0   0    0   0 
Nmwo3   4   0    0   0   0    0   0 
Nmw3        2     0         0       2       0        0      4.4 
Ngp3        0     0         0       0       0        0   0 
Nbg3    0   0    0   0   0    0   0 
C_OX3   10000 0    1   2   0    5E3  30E3 
%ISCOvar  TZ_A  TZ_B  TZ_C 
Not_used  2   2   2 
Area    200  460  465 
Thick  5.5   5.5   5.5 
Width  25    60    75 
SL_avg  30875  6179   949 
SL_min  1E4   1E3   1E2 
SL_max  1E5   1E4   1E3 
 
costISCO costISCOgw.dat 
 

 

An example cost file (‘costISCOgw.dat’) is as follows. Unit cost parameters for the pulsed 

injection ISCO source treatment model from cost sensitivity analysis results can be computed 

using the SCOToolkit Excel tool ISCO unit cost calcs for pulsed injection. xlsx (Appendix A4, 

Chapter 5 of ER-2310 main report). 

 
Item Cost($K) Unc Comments 
Cbase 108.163 0  % Base fixed cost 
Ciw 0 0  % IW installation/IW 
Cmw 2.97 0  % new MW installation 
Cmass 0.0055  0  % cost per kg 
Cvol 0.02076 0 % cost per m^3 
Cinj 0  0  % cost per injection event 
Cevnt 0  0  % cost per monitoring event 
Cgpsl0 0.9  0  % first GP soil sample $K/sample 
Cgpsl1 0.3  0  % from second GP soil sample $K/sample 
Cbgsl0 0.0 0  %  
Cbgsl1 0.0 0  %  
Cgwgp0 0.0 0  %  
Cgwgp1 0.0 0  %  
Cgwmw0 0.55  0  % cost per MW sample for first 
Cgwmw1 0.0  0  %  
Coxd 0.0  0  % cost per Oxidant monitoring 
Cday 0.30 0  % cost per day 
Cpen 1E6  0 % cost per penalty (one time for all TZs) 

Note: The column head line ('Item Cost($K) Unc Comments') will be skipped internally (but required). From 

line 2, any space or tab will be recognized as a delimiter. All text after the ‘Unc’ column will be skipped and thus it 

does not affect results. 
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Definitions of fixed variables for ISCO intermittent injection 
1) ISCOtype: Index for ISCO type; 0 = pulse injection, 1 = continuous injection, 2 = historical 

 injection 

2) Aiw:  Area of influence per one injection well (m2) – not used in continuous ISCO 

3) Q_OX: Oxidant injection rate (m3/d) – not used in continuous ISCO 

4) Nsplt: Number of split injections per TZ– not used in continuous ISCO 

5) ttx: travel time multiplier (≥1) – not used in continuous ISCO 

6) SlnGWmw: Log uncertainty (standard deviation) of water samples from monitoring wells 

7) SlnGWgp: Log uncertainty (standard deviation) of water concentration from geoprobe samples 

8) SlnSLgp: Log uncertainty (standard deviation) of soil concentration from geoprobe samples 

9) SlnSLbg: Log uncertainty (standard deviation) of bore hole samples 

10) SlnOXD: Log uncertainty (standard deviation) of oxidant samples 

Note) If a concentration is averaged from multiple vertical samples, user must reduce the 

uncertainty of measurement (i.e., SlnSL = SlnSL0/sqrt(Ngp_v), where SlnSL0 = log 

uncertainty of one single measurement and Ngp_v is the number of soil samples 

collected vertically for that location. 
11) Fgwmin: Minimum number of groundwater sampling rounds following injection before 

   termination or reinjection decision can be made (2 or 3 is recommended) 

12) OX2O2: Oxidant mass per O2 equivalent moles (0.211 kg/mol O2eq of KMnO4 for PCE and 

0.316 for TCE) 

13) O22CH: O2 equivalent moles per mole contaminant (1.5 for TCE and 1 for PCE) 

14) Cl2CH: Chloride equivalent moles per mole contaminant (3 for TCE and 4 for PCE) 

15) S_CH: Solubility of contaminant (kg/m3, 1.1 for TCE and 0.15 for PCE) 

16) W_CH: Molecular weight of contaminant (kg/mol, 0.13 for TCE and 0.166 for PCE) 

17) W_OXD: Molecular weight of oxidant (kg/mol) 

18) Avtot: Source flux transect area (m2) – total vertical area covering all TZs. If entered as 

zero or negative, it will be internally computed based on the width and thickness of 

each TZ. 

19) t0: ISCO beginning year (numeric year) – it is important when computing cost or 

calibrating ISCO parameters. 

20) duramax:  ISCO maximum operation period (months) 
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2) Continuous ISCO injection 

When ‘ISCOtype’ = 1, SCOToolkit will read Table A1.9b for continuous ISCO injection. Fixed 

[2×10] values are defined followed by two lines of header in Table A1.9b. 

 

Table A1.9b. Variables for ISCO continuous injection 
Variable Matrix Definition Unit 

Fixed [2×10] 

 

ISCOtype TypeCir dummy OXmin  ttx  SlnGWmw  SlnGWgp  SlnSLgp SlnSLbg SlnOX 
Foxd     OX2O2   O22CH Cl2CH  S_CH  W_CH    W_OXD    Avtot   t0      duramax 

NODtot paramISCO(i,1) Natural Oxygen Demand ranging, 0.2~200 (g oxidant/kg 

soil) 

g/kg 

f_fast paramISCO(i,2) NOD fast (instant) fraction to ‘NODtot’, 0.02~0.7 g/g 

r_slow paramISCO(i,3) Rate coefficient of slow NOD, 0.01~1 (L/mmol 

KMmnO4/day) 

L/mmol/ 

day 

Ntz paramISCO(i,4) Number of Treatment Zones ea 

fmt paramISCO(i,5) Mass transfer enhancement factor (=Dox/(nox/CH*DCH). 

See Chapter 5 of the ER-2310 final report. 

- 

Fox  paramISCO(i,6) Multiplier of oxidant concentration reduction to the prior 

injection concentration 

 

Fsl/gw  paramISCO(i,7) A multiplier to groundwater monitoring interval (dtmon) 

indicating the frequency of soil sampling. 

 

dtmon  paramISCO(i,8) Groundwater monitoring interval if groundwater is 

monitored and soil sampling interval when only soil is 

monitored. 

day 

Nsmp_gp       paramISCO(i,9) Number of samples per geoprobe location per event 

(Nsmp_gp for water = Nsmp_gp, when water sample 

option is active) 

ea 

Nsmp_bg         paramISCO(i,10) Number of soil samples per bore hole per event ea 

Srind/k0  paramISCO(i,11) Ratio of Srind to k0, where Srind is the slope between 

permeability k (m2) and MnO2 concentration (mg/L) and 

k0 (m2) is the intrinsic permeability before injection. 

L/mg 

Cgw_all paramISCO(i,12) Groundwater concentration averaged for the entire TZs 

to terminate ISCO_i (if negative, Csoil_all should be 

defined) 

µg/L 

Csoil_all paramISCO(i,13) Soil concentration averaged for the entire TZs to 

terminate ISCO_i (if negative, it is computed from 

Cgw_all) 

µg/kg 

Cgw_TZ  paramISCO(i,14) Groundwater concentration of a TZ to terminate the 

ISCO system for that TZ 

µg/L 

Csoil_TZ  paramISCO(i,15) Soil concentration of a TZ to terminate the ISCO system 

for that TZ 

µg/kg 

alpha paramISCO(i,16) Significant level of t-distribution to define a UCL of 

measured concentrations (0<alpha ≤ 0.5), 

 

TZ_vars Repeat the block below as many as ‘Ntz’ followed by this head line 

Ftz paramTZ(j,1) Treatment area safety factor (‘Ftz’ ≥ 1)  

Nmw0         paramTZ(j,2) Number of existing monitoring wells for TZ_j per 

event (these wells are not counted for cost). 

ea 

Nmw         paramTZ(j,3) Number of new monitoring wells for TZ_j per event 

(these wells are counted for cost). 

ea 

Ngp         paramTZ(j,4) Number of geoprobe locations for TZ_j (horizontal 

locations) per event 

ea 
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Nbg         paramTZ(j,5) Number of soil bore holes for TZ_j (horizontal 

locations) per event 

ea 

C_OXD         paramTZ(j,6) Oxidant concentration for TZ_j (horizontal locations) 

per event 

mg/L 

TZchar Treatment zone characteristics (define ‘Ntz’ columns followed by this comment line) 

frac_lost VarISCO(1,1:Ntz) Fraction of oxidant lost by advection for TZs (0 to 1)  

Area VarISCO(2,1:Ntz) Planar area of TZs m2 

Thickness VarISCO(3,1:Ntz) Thickness of TZs m 

Width VarISCO(4,1:Ntz) Width of TZs m 

SL_avg VarISCO(5,1:Ntz) Average soil centration of TZs µg/kg 

SL_min VarISCO(6,1:Ntz) Minimum soil concentration of TZs µg/kg 

SL_max VarISCO(7,1:Ntz) Maximum soil concentration of TZs µg/kg 

q_in VarISCO(8,1:Ntz) Injection velocity (m/d) to compute a target oxidant 

injection flow rate of a TZ. Injection rate will be then 

q_in*(net width)*(thickness) for each TZ internally. 

m/d 

C_add VarISCO(9,1:Ntz) Oxidant concentration to add to recirculated effluent 

for TZs 

g/m3 

M_max VarISCO(10,1:Ntz) User specified maximum oxidant utilization for TZs 

(used for Option 2) 

kg 

Fcapture VarISCO(11,1:Ntz) Capturing ratio (= Effluent volume/influent volume) 

of TZs 

 

CostISCO path\file name When isCost(1)=1, a cost file should be defined. If the 

cost file is in the same directory, the path can be 

omitted (see the example cost file) 

 

 

Definitions of fixed variables for ISCO continuous injection 
1) ISCOtype: Index for ISCO type; 0 = pulse injection, 1 = continuous injection, 2 = historical 

injection 

2) TypeCirc: Option for a recirculation type (0, 1, or 2) if ISCOtype = 1. 

3) On-month: number of active injection months 

4) Off-month: number of inactive months 

5) OXmin: Minimum oxidant concentration to trigger groundwater monitoring. 

6) SlnGWmw: Log uncertainty (standard deviation) of water samples from monitoring wells 

7) SlnGWgp: Log uncertainty (standard deviation) of water concentration from geoprobe samples 

8) SlnSLgp: Log uncertainty (standard deviation) of soil concentration from geoprobe samples 

9) SlnSLbg: Log uncertainty (standard deviation) of bore hole samples 

10) SlnOXD: Log uncertainty (standard deviation) of oxidant samples 

Note) If a concentration is averaged from multiple vertical samples, user must reduce the 

uncertainty of measurement (i.e., SlnSL = SlnSL0/sqrt(Ngp_v), where SlnSL0 = log 

uncertainty of one single measurement and Ngp_v is the number of soil samples 

collected vertically for that location. 
11) Ngwmin: Minimum number of groundwater sampling rounds following injection before 

termination or reinjection decision can be made (2 or 3 is recommended) 

12) OX2O2: Oxidant mass per O2 equivalent moles (0.211 kg/mol O2eq of KMnO4 for PCE and 

0.316 for TCE) 

13) O22CH: O2 equivalent moles per mole contaminant (1.5 for TCE and 1 for PCE) 

14) Cl2CH: Chloride equivalent moles per mole contaminant (3 for TCE and 4 for PCE) 

15) S_CH: Solubility of contaminant (kg/m3, 1.1 for TCE and 0.15 for PCE) 

16) W_CH: Molecular weight of contaminant (kg/mol, 0.13 for TCE and 0.166 for PCE) 
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17) W_OXD: Molecular weight of oxidant (kg/mol, 0.158 for KMnO4) 

18) Avtot: Source flux transect (m2) – total vertical area of TZs. If entered as zero or negative, it 

will internally be computed based on the width and thickness of each TZ. 

19) t0: ISCO beginning year (numeric year) – it is important when computing cost or 

calibrating ISCO parameters 

20) duramax:  ISCO maximum operation period (months) 

 

Continuous ISCO injection generally recirculate effluents to increase the efficiency of operation. 

Two options of ‘TypeCirc’ are defined in this version. Option 1 maintains the total injected mass 

per time as a constant ‘C_OXD*(q_in*Avert)’ by adding additional oxidant (C_add) to 

recirculated effluent from the extraction wells. In Option 1, user will enter ‘C_OXD’, ‘C_add’, 

and ‘q_in’. ‘C_OXD’ can be fixed or optimized. 

Option 2, on the other hand, assumes the added mass per time is constant as 

‘C_OXD*(q_in*Avert)’. As ‘C_OXD*(q_in*Avert)’ is regardless with the oxidant concentration 

of effluent, ‘Cadd’ is not required (not used). 

 

An example of ISCO parameters and variables for continuous injection is as follows (File name: 

XXX.inp) 

 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1 ~ paramEDEA1 
 ~ 
paramISCO continuous for Source 1 with Ntz=2, Srind/k0 = 4.58E-6, GW & SL 
iType iCirc Onmon Offmon OXmin SlnGWmw SlnGWgp SlnSLgp SlnSLbo SlnOX 
Ngwmin OX2O2 O22CH Cl2CH  S_CH W_CH  W_OXD  AVtot  t0  duramax  
    1 1  4  6        500   0.5  2.0      2.0      2.0    0.25 
    2 0.211 1  4       0.15  0.166  0.158  800  2014  36 
1NODtot   2   0.3   1   3   0    0.6  6.64 
2f_fast   0.15  0.3   1   3   0    0.045 0.5 
3r_slow   0.02  0.3   1   3   0    6E-3  0.066 
4Ntz    2   0    0   0   0    0   0 
5fmt    1.35  0    0   0   0    0   0 
6Fox    0.7  0    0   0   0    0   0 
7Fsl/gw    2     0    0   0   0    0   0 
8dtmon    90     0    0   0   0    0   0 
9Nsmp_gp  0   0    0   0   0    0   0 
10Nsmp_bg  0   0    0   0   0    0   0 
11Srind/k0 4.58E-6 0    0   0   0    0   0 
12GW_all  100  0    0   0   0    0   0 
13SL_all  -999  0    0   0   0    0   0 
14GW_TZ   100  0         1     2       0        10     100 
15SL_TZ    -999    0         0     0       0        0   0 
22alpha   0.5  0    0   2   0    0.05  0.5 
 
% TZvar1 
Ftz    1   0    0   0   0    0   0 
Nmwo1   2   0    0   0   0    0   0 
Nmw1        0     0         0       0       0        0      0 
Ngp1        4     0         0      2       0        0.5  4.4 
Nbg1    0   0    0   0   0    0   0 
C_OX1   5000  0    1   2   0    1E3  30E3 
% TZvar2 
Ftz    1   0    0   0   0    0   0 
Nmwo2   2   0    0   0   0    0   0 
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Nmw2        0     0         0       2       0        0      4.4 
Ngp2        4     0         0      2       0        0.5  4.4 
Nbg2    0   0    0   0   0    0   0 
C_OX2   5000  0    1   2   0    1E3  30E3 
 
% ISCOvar  TZ1  TZ2 
1f_lost   0   0   
2Area   1600  800  
3Thick   10   10   
4Width   80   40   
5SL_avg   30875 5000  
6SL_min   1E4  1E3   
7SL_max   1E5  1E4   
8q_in(m/d) 5   4   %based on XX PV for 4 months: this comment is skipped 
9C_add(ppm) 20000  20000 
10Mmax(kg) 8E5    4E5 
11Fcap   1   1 
 
costISCO1  Cost_gpsl_cont.dat 
~ 

 

 

Example of a cost file (‘costISCOgw.dat’) is as follows. See Chapter 5 of the ER-2310 final 

report for the cost function. Unit cost parameters for the continuous injection ISCO source 

treatment model from cost sensitivity analysis results can be computed using the SCOToolkit 

Excel tool ISCO unit cost calcs for continuous injection. xlsx (Appendix A4). 

 
 
Item Cost($K) Unc Comments 
Cbase 176 0  % Base fixed cost 
Ciw 0 0  % IW installation/IW 
Cmw 2.97 0  % new MW installation 
Cmass 0.0055  0  % cost per kg 
Cvol 0.02076 0 % cost per m^3 
Cinj 0.04  0  % cost per m3/d (continuous injection) 
Cevnt 0  0  % cost per monitoring event 
Cgpsl0 0.9  0  % first GP soil sample $K/sample 
Cgpsl1 0.3  0  % from second GP soil sample $K/sample 
Cbgsl0 0.0 0  %  
Cbgsl1 0.0 0  %  
Cgwgp0 0.0 0  %  
Cgwgp1 0.0 0  %  
Cgwmw0 0.55  0  % cost per MW sample for first 
Cgwmw1 0.0  0  %  
Coxd 0.0  0  % cost per Oxidant monitoring 
Cday 0.30 0  % cost per day 
Cpen 5  0 % penalty cost per ppb exceeding 
 

Note: The first line is for user information only and is not used by the program (but is required). From 

line 2 forward, spaces or tabs will be recognized as a delimiter. All text after the uncertainty column is for 

user comments and is not required. 
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3) Historical ISCO injection 

Historical ISCO injection is a special module to consider periodic site reassessment. This module 

reads the concentrations and total liquid volume of oxidant that has been injected to each TZ by 

time. When ‘ISCOtype’ = 2 in ‘Fixed [1,1]’, SCOToolkit will read Table A1.9c for historical 

ISCO injection. Fixed [2×10] values are defined followed by two lines of note in Table A1-9c. 

All variables are defined in previous ISCO sections. 

 

Definitions of fixed variables for ISCO historical injection 
1) ISCOtype: Index for ISCO type; 0 = pulse injection, 1 = continuous injection, 2 = historical 

 injection 

2) dummy: Reserved for future ISCO update 

3) dummy: Reserved for future ISCO update 

4) dummy: Reserved for future ISCO update 

5) dummy: Reserved for future ISCO update 

6) dummy: Reserved for future ISCO update 

7) dummy: Reserved for future ISCO update 

8) dummy: Reserved for future ISCO update 

9) dummy: Reserved for future ISCO update 

10) dummy: Reserved for future ISCO update 

11) iCal: Flag for calibrating parameters to ISCO effluent concentration (0 = no, 1 = yes). 

Concentration file name is listed in Line 13 in the project definition block. 

12) OX2O2: Oxidant mass per O2 equivalent moles (0.211 kg/mol O2eq of KMnO4 for PCE and  

  0.316 for TCE) 

13) O22CH: O2 equivalent moles per mole contaminant (1.5 for TCE and 1 for PCE) 

14) Cl2CH: Chloride equivalent moles per mole contaminant (3 for TCE and 4 for PCE) 

15) S_CH: Solubility of contaminant (kg/m3, 1.1 for TCE and 0.15 for PCE) 

16) W_CH: Molecular weight of contaminant (kg/mol, 0.13 for TCE and 0.166 for PCE) 

17) W_OXD: Molecular weight of oxidant (kg/mol) 

18) Avtot:  Source flux transect (m2) – total vertical area of TZs. If entered as zero or negative, it 

will internally be computed based on the width and thickness of each TZ. 

19) dummy: Reserved for future ISCO update 

20) duramax:  ISCO maximum operation period (months) 

It should be noted that if a calibration is performed for historical ISCO injection, a regular 

calibration (using transport solution) is not performed, and vice versa. 

 

Table A1.9c. Variables for ISCO historical injection 
Variable Matrix Definition Unit 

Fixed [2×10] iscoType dummy  dummy  dummy  dummy dummy dummy  dummy  dummy dummy 
iCal     OX2O2  O22CH  Cl2CH  S_CH  W_CH  W_OXD  Avtot  dummy duramax 

NODtot paramISCO(i,1) Natural Oxygen Demand, 0.2~200 /kg soil (g 

oxidant/kg soil) 

g/kg 

f_fast paramISCO(i,2) NOD fast (instant) fraction to NODtot, 0.02~0.7 g/g 

r_slow paramISCO(i,3) Rate coefficient of slow NOD, 0.01~1 (L/mmol 

KMmnO4/day) 

L/mmol/day 

Ntz paramISCO(i,4) Number of Treatment Zone ea 

fmt paramISCO(i,5) Mass transfer enhancement factor 

(=Dox/(nox/CH*DCH). See Chapter 5 of the ER-2310 

final report. 

- 
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Srind/k0  paramISCO(i,6) Ratio of Srind to k0, where Srind is the slope 

between permeability k (m2) and MnO2 

concentration (mg/L) and k0 (m2) is the intrinsic 

permeability before injection. 

L/mg 

ISCOinfo path\file name File name that contains historical injection and TZ 

information. If the information file is in the same 

directory, the path can be omitted (see the example 

cost file) 

 

CostISCO path\file name When isCost(1)=1, a cost file should be defined. If 

the cost file is in the same directory, the path can 

be omitted (see the example cost file) 

 

 

Example of historical ISCO input (5 TZs) is as follows (File name: XXX.inp). 

 
~ 
Line 12 should be like: CONC  Y  N  Atlas_cal1.dat 
~ 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1 ~ paramEDEA1 
 
paramISCO historical – This line is internally skipped 
iType dummy dummy dummy dummy dummy dummy dummy dummy dummy 
iCal  OX2O2 O22CH Cl2CH S_CH  W_CH  W_OXD Cl0  dummy  duramax  
    2 0   0   0   0   0   0   0   0   0 
    1 0.213 1.5  4   1.1  0.13  0.142 0   0   54 
1NODtot   1    0.5  1  3  0  0.2  4 
2f_fast   0.15   0   0  0  0  0   0 
3r_slow   0.02   0.3  1  3  0  6E-3  0.066 
4Ntz    5    0   0  0  0  0   0 
5fmt    1.35   0   0  0  0  0   0 
6Srind/k0  4.58E-6  0   0  0  0  0   0 
Inj_His_info:  Atlas_history.dat 
ISCO_Cost_file: ISCOcost_hist.dat 
 
 

Format for historical injection data and TZ information (‘Atlas_history.dat’) 

TZ_j Repeat the block below with this head line ‘TZ_j’ as many as ‘Ntz’ in ‘paramISCO’ 

Ninj paramTZj(1) Number of injection periods (events) to read for TZ_j  

1 

2 

~ 

Ninj 

paramTZj(1:Ninj,1:4) (1) Start date (mm/dd/yyyy), (2) end date 

(mm/dd/yyyy), (3) average liquid injection rate (m3/d) 

during injection period, and (4) average oxidant 

concentration (mg/L) during injection period. and 

Write (1)~(4) ‘Ninj’ lines. 

 

 

TZvar Include this head line (e.g., TZvar) before defining TZ variables below. 

Area VarISCO(1,1:Ntz) Planar area of TZs m2 

Thickness VarISCO(2,1:Ntz) Thickness of TZs m 

Width VarISCO(3,1:Ntz) Transverse width of TZs perpendicular to 

groundwater flow direction 

m 

Effluent VarISCO(4,1:Ntz) TZ effluent concentration from the extraction wells µg//L 

Eff/Inf VarISCO(5,1:Ntz) Average ratio of TZ effluent concentration to influent - 
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Example file for historical injection and TZ information (‘Atlas_history.dat’) is as follows. 
 
TZ1  % This line is read but will be ignored internally. 
Ninj 2 
1  7/1/2012  9/19/2012  100 17667 
2  5/16/2013  8/1/2013  36  8774 
TZ2  
Ninj 1 
1  5/16/2013  8/1/2013  33  8774 
TZ3 
Ninj 1 
1  5/16/2013  7/19/2013  43  8774 
TZ4 
Ninj 3 
1  7/19/2013  8/1/2013  9  8774 
2  5/1/2014  8/1/2013  9  8774 
3  7/19/2013  8/1/2013  9  8774 
TZ5 
Ninj 1 
1  7/14/2014  9/12/2014  96  7066 
 
TZvar  TZ1  TZ2  TZ3  TZ4  TZ5 -> This line is internally skipped. 
Area  219.6  167.0  443.7  357.7  557.2  
Thick  3.1  1.3  3.8  3.8  3.3 
Width  15.2  15.2  15.2  15.2  15.2  
Effppb 250.3  898.7  495.7  423.8  714.9  
Eff/inf 1.7  1.7  1.7  1.7  1.7 
 

 

Example of calibration data file (‘Atlas_cal1.dat’) defined in Line 12 is as follows. 
 
TZid  Date    TCEppb  SlnC  Weight % This line is ignored internally. 
1  7/12/2012   480.00  0.75  1 
1  12/12/2012  2.00   0.75  1 
1  3/6/2013   360.00  0.75  1 
1  5/16/2013   610.00  0.75  1 
1  9/18/2013   350.00  0.75  1 
2  12/13/2013  430.00  0.75  1 
2  2/28/2014   410.00  0.75  1 
2  6/18/2014   400.00  0.75  1 
2  9/16/2014   1.00   0.75  1 
2  12/10/2014  1.00   0.75  1 
3  6/24/2015   1.00   0.75  1 
3  9/23/2015   1.00   0.75  1 
3  12/18/2015  1.00   0.75  1 
3  4/6/2016   1.00   0.75  1 
3  6/29/2016   1.00   0.75  1 
3  7/13/2012   570.00  0.75  1 
3  12/12/2012  680.00  0.75  1 
4  3/6/2013   380.00  0.75  1 
4  5/16/2013   660.00  0.75  1 
4  9/18/2013   820.00  0.75  1 
4  12/12/2013  680.00  0.75  1 
5  2/28/2014   480.00  0.75  1 
5  6/18/2014   560.00  0.75  1 
5  9/16/2014   820.00  0.75  1 
5  12/12/2014  840.00  0.75  1 
5  3/25/2015   450.00  0.75  1 
 

 

Example of a cost file (‘ISCOcost_hist.dat’) is as follows. 
Item Cost($K) Unc Comments 
C_all 108.163 0  % cost already paid 
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A1.7 Electron Donor Injection 

A1.7.1 Reactive Barrier 

The ‘paramED1’ defines the parameters for reactive barriers that is usually installed immediate 

downgradient of contaminant sources. See Chapter 3 of the ER-2310 final report for detail 

description. Parameter sets should be defined as many as RBs (i.e., defined as ‘EDtype’ = 1) 

from upstream to downstream (Table A1.10). 

 

Table A1.10. Parameters for Reactive Barrier (RB) 
Variable Matrix Definition Unit 

RBsrc_num RBvar{1} Number of sources upgradient of RB through which they 

flow.  If ‘RBsrc_num’ = -999 (or negative), the candidate 

sources will be identified internally based on the location of 

sources user defined. 

- 

RBsrc_ids RBvar{2}(1, 

RBsrc_num) 

List of source IDs counted in ‘RBsrc_num’. If 

‘RBsrc_num’<0, the source IDs will be internally found. 

- 

ttRB 

 

RBvar{3}(1, 

RBsrc_num) 

- reserved for 

future use 

Maximum travel times from ‘RBsrc_ids’ to the monitoring 

well location of RB (waiting time to stop RB to consider 

the latest upstream source remediation. If ‘RBsrc_num’<0, 

travel times will be internally computed). 

years 

CRB_locs RBvar{4}(1:4) 

- reserved for 

future use 

CRB_locs(1): location of a monitoring well for RB (1 = 

upgradient of the gallery, -1 = downgradient of the 

gallery, 0 = No monitoring) 

CRB_locs(2:4): Easting, northing, and depth of a 

monitoring well 

- 

 

 

m 

ERB paramED1(i,1) Efficiency of RB (from 0 to 1)  

t0 paramED1(i,2) Starting date of RB year 

dtRB paramED1(i,3) Duration of operation in months (but days will be used 

internally). 

months 

xRB paramED1(i,4) Easting of the mid-point of RB  m 

yRB paramED1(i,5) Northing of the mid-point of RB m 

LxRB paramED1(i,6) Length of RB measured toward the streamline m 

LyRB paramED1(i,7) Width of RB measured perpendicular to the streamline m 

Lztop paramED1(i,8) Distance to the top of RB from the water table m 

Lzbtm paramED1(i,9) Distance to the bottom of RB from the water table m 

a paramED1(i,10) 1st order coefficient of the streamline of RB - 

b paramED1(i,11) 2nd order coefficient of the streamline of RB - 

c paramED1(i,12) 3rd order coefficient of the streamline of RB - 

alpha paramED1(i,13) Angle of initial flow direction for Gallery i (negative to 

clockwise). See Figure A1-1 

deg 

GridRB path\file name A file containing the grid points (E,N,Z) of computing 

contaminant flux pass a transect of RB. If the grid file is in 

the same directory of an input file, the path can be omitted. 

 

CostRB path\file name When isCost(1)=1, a cost file should be defined. If the cost 

file is in the same directory of an input file, the path can be 

omitted. 
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An example of RB parameters and variables is as follows (File name: XXX.inp) 

 

 
 
Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
omitted: paramSource1 ~ paramEDEA1 
 
paramRB 
RBsrc_num  2 
RBsrc_ids  1 2 
ttRB    not used currently 
CRB_locs  not used currently 
1ERB   0.5    0.3   0   1   0    0.1  0.99 
2tRB0  2005.21   0    0   0   0    0   0 
3dtRB  120    0    0   0   0    0   0 
4E0_RB  57430.51  0    0   0   0    0   0 
5N0_RB  503669.15  0    0   0   0    0   0 
6LxRB  0.1    0    0   0   0    0   0 
7LyRB  38     0    0   0   0    0   0 
8RBtop  0     0    0   0   0    0   0 
9RBbtm  4.88    0    0   0   0    0   0 
10aRB  -0.0787   0    0   0   0    0   0 
11bRB  0     0    0   0   0    0   0 
12cRB  0     0    0   0   0    0   0 
13alpRB  -4.5    0    0   0   0    0   0 
GridRB  RB_grid.dat 
costRB  costRB.dat 
~ 

 

Example of ‘RB_grid.dat’ to define grid points of a RB is as follows. Each line indicates (E,N,Z) 

of a grid point. Note the location of grid points should use the same coordinate system used for 

other locations (sources, EDs, MWs, etc). 

 

57424.81  503676.75 1.00 

57430.51  503669.15 1.00 

57436.21  503661.54 1.00 

57424.81  503676.75 3.00 

57430.51  503669.15 3.00 

57436.21  503661.54 3.00 

 

Efficiency is calibrated in 

this example. 
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Example of ‘costRB.dat’ is as follows. Note that cost values are site-specific. 

 
Name   Cost($K) Unc. Comments % This line is internally skipped. 
Cfix_len 5    0.1 % fixed cost per width of RB ($K/m) 
Cfix_etc 60    0.1 % other fixed cost per one ED site ($K/site) 
Cfix_MW  10    0.1 % fixed cost per ED MW construction ($K/well) 
Cop_yr  60    0.1 % general RB operating cost per RB ($K/yr) 
Cop_etcS 0    0.1 % other RB operating cost ($K/yr/RB) 
Cop_lenS 0.7   0.1 % annual operating cost per width ($K/m/yr) 
Cop_matS 0.01   0.1 % oper. cost per kg injected material ($K/kg) 
Cop_smp  2.5   0.1 % Monitoring cost per sample ($K/sample) 
 

 

 

A1.7.2 Electron Donor Injection Gallery 

The ‘paramED3’ matrix summarized in Table A1.11 defines the properties and decision 

variables related to the operation of aqueous phase ED injection galleries. ED introduction is 

simulated as a soluble material. Injection of an ED gallery is assumed to commence on or after 

the date ‘tWEDs’ in field practices and simulations. If simulated injection rate is below a 

minimum injection rate (‘MEDmin’), the ED gallery is inactive and cost is not counted. 

Injection may be terminated at the earlier of (a) a specified elapsed duration, ‘dtWEDs’, or (b) 

when the annual average contaminant concentration in the ED gallery monitoring well (and 

specified compliance monitoring wells when defined in ‘EDlag(2)’) is less than ‘CEDstp’. To 

determine termination of ED, the longest travel time from upstream EDs should be considered as 

‘EDtt_ij’ that defines the estimated travel time (years) of injected ED from EDi to EDj, where 

EDi is always upgradient of EDj. 

The number of sampling events per year for ED gallery monitoring wells, ‘CEDsams’, is used to 

adjust the level of noise for averaged measurements (noise diminishes linearly with CEDsams-1/2). 

Table A1.11 should be defined as many as ED galleries (i.e., defined as ‘EDtype’ = 3) from 

upstream to downstream. 

 

Table A1.11. Parameters for ED injection Gallery. 
Variable Matrix Definition Unit 

EDlag(1:2)  EDlag(1): Total number of upgradient ED galleries to 

monitor to determine termination of the current ED 

injection 

EDlag(2): Total number of compliance locations to 

monitor to determine termination of the current ED 

injection 

- 

 

 

- 

EDids  Gallery ED IDs defined in ‘EDlag(1)’ - 

EDtt_ij  Travel times from ‘EDids’ to the monitoring location 

(=’CED_locs(3:4)’) of ED 

years 

CED_locs(1:7 

+EDlag(2)) 

 CED_locs(1): location of a monitoring well for the ED 

gallery (1 = upgradient of the gallery, -1 = 

downgradient of the gallery, 0 = No monitoring, 

3*=ED injection for historical or date-specific 

events) 

- 
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CED_locs(2): DNAPL source ID to which the ED gallery 

is injected to increase mass transfer (If 0, no 

enhanced source dissolution is simulated) 

CED_locs(3:5): Easting, northing, and depth of a 

monitoring well (depth measured from the water 

table) ) – not required if ED is not monitored, i.e., 

‘CED_locs(1)’=0. 

CED_locs(6): ED transport solution type in 3D solution 

(1 = Flux, 0 = Resident). ). If 2D solution is 

preferred, attach 2 for each option, e.g., 12 = 2D flux 

concentration, 02=2D resident concentration. 

CED_locs(7): Concentration below which waiting time is 

zero for the coupled compliance wells. 

CED_locs(8:7+EDlag(2)): ID numbers of compliance 

locations to monitor for terminating the current ED 

injection. Define as many as ‘EDlag(2)’. 

- 

 

 

m 

 

 

 

- 

 

 

 

μg/L 

 

- 
 

JWEDs paramED3(i,1) Mass of injected aqueous phase ED per day kg/d 

fWEDs paramED3(i,2) Bio-available H-equivalent (kg) per mass (kg) of aqueous 

phase ED injected 

- 

tWEDs paramED3(i,3) Starting date of injection for the ED gallery, numeric year 

like 2017.5. If negative, ‘tWEDs’ is replaced by the 

earliest date listed in an external ED injection event file 

(see ‘CostED/Hist’ the last line of ‘pareamED3’). 

year 

dtWEDs paramED3(i,4) Duration of injection in months (but days will be used 

internally). Enter a negative number when injection 

terminates based on monitoring concentration (‘CEDstp’ 

in ‘paramED3(i,16)’) or past (or fixed) injection date). 

months 

xWEDs paramED3(i,5) Easting of the center of the ED gallery m 

yWEDs paramED3(i,6) Northing of the center of the ED gallery m 

LyWEDs paramED3(i,7) Width of The ED gallery measured perpendicular to the 

streamline 

m 

Lztop paramED3(i,8) Depth to the top of the ED gallery from the water table m 

Lzbtm paramED3(i,9) Depth to the bottom of the ED gallery from the water 

table 

m 

a paramED3(i,10) 1st order coefficient of the streamline of the ED gallery - 

b paramED3(i,11) 2nd order coefficient of the streamline of the ED gallery - 

c paramED3(i,12) 3rd order coefficient of the streamline of the ED gallery - 

alpha paramED3(i,13) Angle of initial flow direction for the ED gallery 

(negative to clockwise). See Figure A1-1. 

deg 

MEDmin paramED3(i,14) Minimum injection rate per width to initiate the ED 

gallery. See Chapter 3 of the ER-2310 final report. 

kg/d 

CEDstp paramED3(i,15) Target concentration of a contaminant measured at a 

monitoring well to terminate the ED gallery (if dtWEDs 

is a decision variable, CEDstp will be disregarded and 

vice versa). 

μg/L 

CEDsmp paramED3(i,16) Number of samples per well per year for the ED gallery 

monitoring 

ea 

CostED/Hist path\file name When ‘isCost(1)=1’, a cost file name should be defined. 

If the cost file is in the same directory of an input file, the 

path can be omitted (see the example cost file) 
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- If ‘CED_locs(1)’ =3 and ‘run_mode(1)’=1, i.e., 

calibration, it is a file name for historical injection events. 

See an example of gallery injection history. 

- If ‘CED_locs(1)’ =3 and ‘run_mode(1)’=2, -2, or 3, 

user should define both a cost_file name and an injection 

event file. Any dummy string is needed for cost_file 

although cost is not simulated. 
Note) *: This option may not be available in a web-based preprocessor. 

 

An example format of ‘EDids’ is as follows. When ‘EDlag(1)’ = 3 for designated upstream ED 

galleries 1, 2, and 4, ‘EDids’ will be ‘21˽ 22˽24’ where the first digit ‘2’ denotes that the 

upgradient remedial practice is ED injection (remedial actions are discriminated by 1 for source 

zone treatment, 2 for ED injection, and 3 for P&T), the second digit (1, 2, and 4) denotes the ID 

for the upgradient ED gallery, and ‘˽’ denotes a space or tab. 

An example of ED parameters and variables is as follows (File name: XXX.inp) 

 

Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
Omitted: paramSource1 ~ paramEDEA1 
paramSZR, paramTSR, or paramISCO - omitted if defined 
paramED1 
~ 
paramED2 
ED_lag1  1 0 (consider one upstream remedial practice and no compliance) 
ED_id1  21  (consider upgradient ED1)  
ED_tt1  15  (wait 15 years after ED1 terminates to determine ED2 status) 
CED_locs1  1   0  1423.4 962.96 5  1  5 
1J_WEDs1  100   0   1   2   0   0.01  300 
2f_WEDs1  0.26   0   0   0   0   0   0 
3t_WEDs1  2007   0   1   2   0   2006.99  2015 
4dt_WEDs1  -999   0   0   0   0   0   0 
5x_WEDs1  1448.3  0   0   0   0   0   0 
6y_WEDs1  960.78  0   0   0   0   0   0 
7Ly_WEDs1  200   0   0   0   0   0   0 
8Lztop   0    0   0   0   0   0   0 
9Lzbtm   30    0   0   0   0   0   0 
10a    -0.0787  0   0   0   0   0   0 
11b    0    0   0   0   0   0   0 
12c    0    0   0   0   0   0   0 
13alp   4.5   0   0   0   0   0   0 
14MEDmin1  0.01   0   0   0   0   0   0 
15Num_MWs1 1    0   0   0   0   0   0 
16CEDstps1 5    0   1   2   0   1   100 
17CEDmin1  5    0   0   0   0   0   0 
18CED_sams1 3    0   0   2   0   0.5  4.5 
costED  costED2.dat 
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Example of ‘costED2.dat’ file is as follows. 

 
Name   Cost($K) Unc. Comments 
Cfix_len 3.3   0.1 % fixed cost per length of gallery ($K/m) 
Cfix_etc 55    0.1 % other fixed cost per one ED site ($K/site) 
Cfix_MW  10    0.1 % fixed cost per ED MW construction ($K/well) 
Cop_yr  61.1   0.1 % general ED operating cost per ED ($K/yr) 
Cop_etcS 0    0.1 % other ED operating cost ($K/yr/gallery) 
Cop_lenS 0.733  0.1 % annual operating cost per length ($K/m/yr) 
Cop_matS 0.0074  0.1 % oper. cost per kg injected material ($K/kg) 
Cop_smp  2.5   0.1 % ED monitoring cost per sample ($K/sample) 
 

Note: As the ‘Unc.’ column is specified as 0.1, each cost will be randomly generated between 0.9 and 1.1 times 

‘Cost($k)’ for MC simulations.  

When ‘CED_locs(1)’ = 3, users should define a historical event file. In this case, the last line of 

‘paramED’ is defined as ‘costED/Hist  event-EDs.dat’ when ‘run_mode(1)’=1 for calibration 

and ‘costED/Hist   costED2.dat  event-EDs.dat’ for other run modes requiring cost 

calculation or just forward run. An example of ‘event-EDs.dat’ file is as follows 

 
t_beg   t_end   JED(kg/d)  %it is PICT1. This line is skipped. 
7/27/2006  7/30/2006  0.329 
4/9/2008  4/29/2008  0.365 
10/22/2009 11/20/2009 0.401 
4/26/2011  5/13/2011  0.789 
9/12/2014  11/3/2014  0.090 
3/7/2016  5/10/2016  0.015 
6/1/2017  -999*   -999** 
 

Note: 1) The first line is skipped internally but required; 2) *: ‘t_end’ is determined by performance monitoring or 

user- defined ‘dt_WEDs’ internally; and 3) **: ‘JED(kg/d)’ is determined by user input or optimization. However, ‘-

999’ is not allowed for JED when ‘run_mode(1)=1’ for calibration. 
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A1.8 Dissolved Plume Monitoring for Compliance 

The matrix ‘paramMonitor’ with dimension [num_complnc, 10] in Table A1.12 defines 

protocols for compliance monitoring. Note that the locations of compliance wells are not 

necessarily same as P&T monitoring wells. More than one compliance wells may be defined. 

 

Table A1.12. Variables for compliance monitoring 
Variable Matrix Definition Unit 

monLAG  Number of upgradient remediation actions to consider 

lag time for starting/stopping compliance monitoring i 

- 

monLAGids  Remediation types (1=source removal (SZR, TSR, 

ISCO), 2 = ED (RB or ED gallery), and 3 = P&T) and 

their sequential IDs to consider lag time (e.g., second 

TSR =12, third ED gallery =23, first P&T= 31) 

- 

monTT  Travel time from each remediation type to compliance 

location i 

years 

monLAY monLay(1:4) monLAY(1): solution type (0 = resident concentration, 

1 = flux concentration) 

monLAY(2): compliance rule (type ‘RCL’ or ‘EXV’) 

monLAY(3): confidence limit when using ‘RCL’ (e.g., 

95) 

monLay(4): dimension of transport solution for 

compliance (optional). If not entered, it follows 

‘run_mode(3)’. This option may not be available in 

the web-based preprocessor. 

- 

 

- 

% 

 

- 

Emon paramMonitor(i,1) Easting of the compliance location m 

Nmon paramMonitor(i,2) Northing of the compliance location m 

Zmon paramMonitor(i,3) Depth of the compliance location m 

monstart paramMonitor(i,4) Monitoring start date as a numeric year year 

monstop paramMonitor(i,5) Maximum monitoring date (= simulation termination) 

as a numeric year 

year 

MCL paramMonitor(i,6) Target cleanup level for the compliance location g/L 

lookback paramMonitor(i,7) Lookback period to confirm no further action (NFA) or 

non-compliance (typically 5 years of lookback) 

years 

dtavg paramMonitor(i,8) Averaging period for concentration values (annual 

average is widely used, i.e., ‘dtavg’ = 1) 

years 

monFRE paramMonitor(i,9) Monitoring frequency (quarterly = 4 events/year) events/year 

t_pnlty paramMonitor(i,10) The date by which compliance criteria must be met 

(penalty date) 

year 

CostMon path\file name When ‘isCost(1)’=1, a cost file should be defined. If the 

cost file is in the same directory, the path can be omitted 

(see the example cost file) 

 

 

To achieve the “no further action (NFA)” status, all compliance wells must achieve their target 

levels and maintain below these levels before the date computed by MAX[remediation 

termination dates + their travel time to compliance locations+ user-specified lookback period for 

regression]. If non-compliance criteria for one or more wells occur at any time after a specified 

penalty date (‘t_pnlty’), the simulation still continues but a penalty cost is accrued to that 
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simulation. If MAX[‘monLAGids’ ending date + ‘monTT’ + ‘lookback’] exceeds the maximum 

simulation date (‘monstop’), the penalty cost will be incurred when 1) MAX[‘monLAGids’ 

ending dates] exceeds ‘monstop’ or 2) the modeled non-reacted concentration at 

MAX[‘monLAGids’ ending date + ‘monTT’] is greater than the target level. 

One of two compliance rules can be selected: (1) the regression confidence limit (‘RCL’) rule, 

which requires the upper confidence limit (UCL) of measured concentrations over a lookback 

period (lookback) to be less than a specified target level (e.g., MCL) for compliance, or (2)  the 

extreme value (‘EXV’) rule, which  requires the maximum annual average of measured values 

over a lookback period to be less than MCL for compliance. For the ‘RCL’ method, the 

confidence limit probability level (‘monLAY(3)’) is also specified as percent (%). Details on 

compliance rules are found in Chapter 7 of the ER-2310 final report. 

An example of compliance monitoring parameters and variables is as follows (File name: 

XXX.inp). 

 

Lines 1~14 
15_name  prior  prior_sd log?  tune? synch?  LB   UB  % header 
Omitted: paramSource1 ~ paramEDEA1 
Omitted: paramSZR1, paramED1, paramED2 
 
paramMon1 
num_lag1 3 
lag_src1 11  21  22 
lag_tt1  30  20  5 
lay_mon1 1   RCL  95 
1X_mon1   1996.2  0   0   0   0   0   0 
2Y_mon1    912.84  0   0   0   0   0   0 
3Z_mon1   5    0   0   0   0   0   0 
4monstart1 2007   0   0   0   0   0   0 
5monstop1  2050.99  0   0   0   0   0   0 
6MCL1   5    0   0   0   0   0   0 
7lookback1 5    0   0   0   0   0   0 
8dtavg1   1    0   0   0   0   0   0 
9monfre1  4    0   0   0   0   0   0 
10t_pnlty1  2015.99   0   0   0   0   0   0 
costMON  costMON.dat 
 

 

Compliance monitoring costs (e.g., ‘costMON.dat’) can be defined as follows. 

Cost name Cost($K) Uncertainty  Comments 
Ccap_well 2.97   0 %Cost.MON(1); % $K/MW (one time charge) 
Ccap_etc 0    0 %Cost.MON(2); % $K for misc capital cost 
Csamp  0.55   0 %Cost.MON(3); % $K/sample 
Cann   2.5   0 %Cost.MON(4); % $K/year (annual cost) 
Cpnlty  1E6   0 %Cost.MON(5); % Penalty cost ($K) 
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The model internally finds a monitoring start date for compliance location i using 

MIN[ ‘monSRC’ ending date + ‘monTT’, ‘EDids’ ending date’+’EDtt’] if ‘monstart’ is negative.  

For computational efficiency, the model starts evaluating a decision-making when the current 

date is on or later than [‘t_penalty’ – ‘lookback’ – ‘dtavg’ + 1]. This is meaningful because no-

decision cannot be made before ‘t_penalty’ and decision need at least [‘lookback’+‘dtavg’] years 

of data. 

The last monitoring date is determined by MIN[‘monstop’, NFA date if present]. The 

compliance rule allows the model to wait until MAX[‘t_pnlty’, ‘monSRC’ ending date + 

‘monTT’ + ‘lookback’] before determining compliance status as far as a monitored statistics 

(‘RCL’ or ‘EXV’ value) meets a target level before or on ‘t_penalty’. 

 

A1.9 Pump and Treat (P&T) Systems 

The ‘paramPT’ matrix with dimension [‘num_pt’, 10] as shown in Table A1.13 defines P&T 

systems. Since the model does not explicitly simulate P&T systems, the P&T systems defined in 

‘paramPT’ do not affect computed contaminant concentrations. P&T system are assumed to be 

initiated to control downgradient plume migration. It is assumed that no other remediation 

systems and no compliance wells are located downgradient of the P&T systems, and that the 

effects of the P&T system on upstream concentrations are negligible. The location of a P&T 

monitoring well upgradient of the potential P&T system is specified to control implementation 

(commencement) and/or termination of the P&T system. Also, any other potential remediation 

systems that are upgradient of the P&T system and their travel times to the P&T monitoring well 

should be specified if they need to be considered.  

‘PTstart’ is user specified and effective in counting capital cost into net present value when 

‘PTstart’ is later than earliest ‘monstart’.  This means that existing P&Ts were already in 

operation (e.g., capital cost paid or financed) before the date of current remediation system. If 

PTstart is entered as negative, ‘PTstart’ is determined internally by MAX[termination dates of 

upstream remediation to consider + their travel times to the P&T(ptTT)]. 

The decision information is first reported after ‘lookPT’ years since ‘PTstart’ and the P&T 

system is operated until the P&T termination criteria is met, which is based on ‘EXV’ or ‘RCL’ 

method. Monitoring data is averaged over ‘tavgPT’ years and monitoring uncertainty is reduced 

by 1/sqrt(‘ptFRE’). 

Table A1.13. Variables for P&T monitoring 
Variable Matrix Definition Unit 

ptLAG  Number of upstream remediation actions to consider lag 

time for starting/stopping P&T system 

- 

ptLAGids  Remediation types (1=source removal (SZR, TSR, 

ISCO), 2 = ED (RB or ED gallery), and 3 = P&T) and 

their sequential IDs to consider lag time (e.g., second 

TSR =12, third ED gallery =23, first P&T= 31) 

upstream of the P&T system 

- 

ptTT_ij  Travel time from each lag source j to monitoring well years 

ptLAY ptLAY(1:3) ptLAY(1): solution type (0 = resident concentration, 1 = 

flux concentration) 

ptLAY(2): compliance rule (‘RCL’ or ‘EXV’) 

- 

 

- 
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ptLAY(3): confidence limit when using RCL (e.g., 95) 

ptLAY(4): dimension of transport solution for 

compliance (optional). If not entered, it follows 

‘run_mode(3)’. This option was not coded in the 

web-based preprocessor 

% 

- 

Ept paramPT (i,1) Easting of the P&T monitoring well for P&T system m 

Npt paramPT (i,2) Northing of the P&T monitoring well for P&T system m 

Zpt paramPT (i,3) Depth of the P&T monitoring well for P&T system m 

PTstart paramPT (i,4) Start date of P&T as a numeric year year 

PTstop paramPT (i,5) End date of P&T as a numeric year year 

MCLpt paramPT (i,6) Target concentration at P&T monitoring location to 

terminate P&T system 
g/L 

lookPT paramPT (i,7) Lookback period to make P&T start/stop decisions years 

tavgPT paramPT (i,8) Duration for averaging concentration years 

ptFRE paramPT (i,9) Monitoring frequency per year events/year 

CostPT path\file name When ‘isCost(1)’=1, a cost file should be defined. If the 

cost file is in the same directory, the path can be 

omitted (see the example cost file) 

 

 

The parameters and variables of P&T are identical to ‘paramMonitor’ except ‘paramPT’ does not 

have ‘t_penalty’. P&T system operation and monitoring costs (e.g., ‘costPT.dat’) may be, for 

example, as follows. 

 
Cost name Cost($K) Uncertainty  Comments 
CPT_cap  200.97  0 % $K (one time charge) 
CPT_ann  10    0 % $K/year operating cost 
 

  



A-40 

 

A2. How to Install/Run 

A2.1 Installation of a standalone compiled executable file 

1. Make a new folder with your preferred name. 

2. Download the following two files in the folder created in Step 1. 

(1) Download Matlab Runtime (a set of libraries to run a complied standalone Matlab 

file) ‘MCR_R201Xb_win64_installer.exe’ (or 2014 later version) directly from 

Mathworks https://www.mathworks.com/products/compiler/mcr.html. 

(2) Download ‘SCOToolkit_exe.zip’ from http://scotoolkit.csuohio.edu/download.php 

and unzip. 

3. Install Matlab Runtime (‘MCR_R201Xb_win64_installer.exe’). 

4. Run ‘SCOToolkit.exe’. 

 

A2.2 Use of source codes 

1. Make a new folder using your preferred name and location. 

2. Download ‘SCOToolkit_codes.zip’ from http://scotoolkit.csuohio.edu/download.php and 

unzip into the folder in Step 1. 

3. Run ‘main.m’. 

Note: Parallel computing is implemented only when the source codes were executed in the 

Matlab Command directly. 

 

  

https://www.mathworks.com/products/compiler/mcr.html
http://scotoolkit.csuohio.edu/download.php
http://scotoolkit.csuohio.edu/download.php
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A2.3 Input Preparation 

The model reads space- or tab- delimited ASCII files for input file and data. The model requires 

several files depending on the specific problem considered. It is efficient to manage projects by 

assigning meaningful names to input files. The main input file [*.inp] specifies which files 

should be loaded to simulate the defined project as shown in Tables A1.1 and A2.1. An output 

file [*.out] will be automatically generated with the same name as the main input file. 

Table A2.1. Example of input files.  
Input files Contents Remark 

*.inp A main input file that defines the project, model parameters, decision 

variables, and other auxiliary files (see Table A1.1). 

Required 

*.rlz Includes parameter realizations generated based on parameter covariance. 

A [*.rlz] file is usually generated after calibration and its file name is same 

as the main input file. User can modify the file name after that. 

Optional 

*.gen Includes parameter realizations generated randomly based a probability 

distribution function. A [*.gen] file is usually generated when user 

specified as ‘Tune’ = 3 for specific parameters, and its file name is same 

as the main input file. If it is generated by setting ‘Tune’=3, it follows 

normal distribution when ‘Log’=0 and log-normal distribution when 

‘Log’=1. 

Optional 

*con.dat Includes observed concentration data for calibration or list of well 

locations and dates to simulate. See the file format in Table A2.3. 

Optional 

*flx.dat Includes observed source flux data for calibration or list of source numbers 

and dates to simulate. See the file format in Table A2.4. 

Optional 

*mas.dat Includes observed source mass removal data for calibration or list of 

source numbers and dates to simulate. See the file format in Table A2.5. 

Optional 

Note: User can define any file extension for any input file. 

 

The first block of the [*.inp] file includes problem definition (see Table A1.1) followed by 

parameters and decision variables as shown Table A2.2. 

Table A2.2. Order of modules of parameters and remediation in [*.inp]. 
Order Name Number of blocks Remark 

0 Project_Define 1 Project definition (Table A1-1) 

1 paramSource num_sources  

2 paramSourceGeom  num_sources  

3 paramAquifer 1  

4 paramED0 1  

5 paramEDEA 1  

6 paramSZR num_SZRs Define only when ‘isSZR’ = 0, 1, or 2 

7 paramED num_EDs  

8 paramMonitor num_complnc  

9 paramPT num_PT  
Note: Shaded blocks are mandatory and required for any simulation. 

 

Measured contaminant concentration, source flux, and source mass removal data are entered as 

shown in Tables A2.3 to 2.5. FORTRAN expression formats are presented for clarity. When real 

measured data are entered, the model uses them as observed values during calibration. However, 

when they are set to -999, the model will ignore the values and simply generate predictions for 
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the specific dates and locations listed in [*.dat]. Mass remaining data will be automatically 

generated for the dates and sources specified in the mass removal data file. Note that all columns 

should have headers and all values in rows should be separated by space(s) or tab(s). Therefore, 

‘Well_ID’ and ‘mm/dd/yyyy’ should not include a space, except ‘Note’ which is optional and 

skipped internally. The header line will be internally skipped while loading. 

Table A2.3. Format of concentration data. 
Well_ID 

 

E 

 

N 

 

Z 

 

mm/dd/yyyy Conc 

 

SlnC0 Navg Weight Type Note 

(option) 

string real real real string real real real real real string 

Note:  Weight: 1 for non-weighted observation (default). The weight is a numeric value to represent 

relative importance compared to 1, which is used to compute the revised SlnC = 

SlnC0/{Weight*sqrt(Navg)} internally, where Navg is the number of data used in averaging Conc. 

See Chapter 6 of the ER-2310 final report for further detail. 

Type: 0 and 1 is for the groundwater concentration of resident and flux, respectively (unit:  μg/L). 

Type: 2, 3, and 4 is for the soil concentration of average, mobile, and immobile zone, respectively (unit: 

μg/kg) 

Example of concentration file is as follows (File name: XXX.dat). 
 

IDW  E(m)   N(m)   Z(m)  Date    TCEeq SlnC N W  T Note 

DM329D 125401.83 193972.0 4.72  11/10/1995 28.06 0.75 1 1.00 1 before ED 

DM329D 125401.83 193972.0 4.72  3/1/1996  56.42 0.75 1 1.00 1  

DM329D 125401.83 193972.0 4.72  7/23/1996  38.71 0.75 1 1.00 1  

 

Note:  1) The header line (1st line) will be skipped internally (but required). 

2) Any comment written in the ‘Note’ column will be skipped internally (not required). 

Table A2.4. Format of source flux data. 
Source_ID mm/dd/yyyy Flux 

 

SlnJ Weight Note 

(option) 

real string real real real string 

Note:  The unit of ‘Flux’ is kg/day. 
 

Example of flux file is as follows (File name: XXX.flx). 
 

src_id date    flux(kg/d) Sln Weight Note 

1   11/01/2003 0.754   0.1  1  source 1 

2   11/01/2003 0.323   0.1  1  source 2 

3   04/01/2006 0.420   0.1  1  source 3 passive 

 

Note:  1) The header line (1st line) will be skipped internally (but required).  

2) Any comment written in the ‘Note’ column will be skipped internally (not required). 
 

Table A2.5. Format of source mass removal data. 
Source_ID mm/dd/yyyy Mass_removal SlnM Weight Note 

(option) 

real string real real real string 

Note:  The unit of ‘Mass_removal’ is kg. If actual mass removal data are written, they will be used as 

calibration data for source mass, requiring proper ‘SlnM’ and ‘Weight’ valuses. 

 



A-43 

 

Example of mass removal file is as follows (File name: XXX.mas). 
 

IDsrc Date    Mass_rmv  SlnM  W Note 

1   6/30/2000  -999.00   0   0  

1   6/30/2005  -999.00   0   0  

1   6/30/2010  -999.00   0   0 Ignore this note & next empty line. 

 

2   6/30/2000  -999.00   0   0  

2   6/30/2005  -999.00   0   0  

2   6/30/2010  -999.00   0   0  

 

3   6/30/2000  -999.00   0   0  

3   6/30/2005  -999.00   0   0  

3   6/30/2010  -999.00   0   0  

 

Note: 1) The header line (1st line) will be skipped internally (but required).  

2) This example is just to print the accumulated amount of mass removed. Therefore, ‘Mass_rmv’ 

is -9999 and thus ‘SlnM’ and ‘W’ are not used although read. 

3) Any comment written in the ‘Note’ column will be skipped internally (not required). 
 

The possible outputs after simulating SCOToolkit are presented in Table A2.6. The generated 

output files are dependent of on the tasks defined in the [*.inp] files. Examples of Table A2-6 are 

presented later. Mass removal is accumulated after the first source removal date and thus mass 

remaining data is the mass which remains after source removal for the specified dates and 

sources. Note that plots for source flux, mass removal, and mass remaining will add up all 

sources for each defined time step and the plots are exported as [*.png] and [*.eps] files. Note that 

the output file name (‘*’) is taken from the main input file name excluding its extension ‘*.inp’. 

The column “Note” in Table A2.5 will be skipped while loading. User may write one line note 

with unlimited length. 

Table A2.6. List of generated output files. 
Output files Contents Remark 

*.out Results after the model runs Default 

*.rlz and *.rlzh Results for parameter realization after calibration Default in calibration 

*.gen Results for uncorrelated (random) parameter 

generation 

User-request 

*_flx.out Results for mass flux when specified in the [*.inp] User-request 

*_rmv.out Results for mass removal specified in the [*.inp] User-request 

*_rmn.out Results for mass remaining specified in the [*.inp] User-request 

*_corr.png (and .eps) Correlation plot between the observed and 

simulated concentration 

Default in calibration 

*_con.png (and .eps) Concentration curve from single or multiple runs 

with 95 and 99% confident limits 

User-request 

*_flxsum.png (and .eps) Total summation of mass fluxes curve from single 

or multiple runs with 95 and 99% confident limits 

User-request 

*_rmv.png (and .eps) Total mass removal curve from single or multiple 

runs with 95 and 99% confident limits 

User-request 

*_cost.png (and .eps) Cost histogram from single or multiple runs with 

median and average 

Default in computing 

cost 
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A2.3 Contact Information 

1) Users may send questions or error messages to scodnapl@gmail.com.  

2) If errors are encountered, it will be helpful to send the input files used. 

 
A3. Example Input and Output Files 

Example files for parameter calibration, design optimization, and simple forward runs are posted 

in http://scotoolkit.csuohio.edu/download.php. Examples include the demonstration remediation 

methods such as ED, TSR, and ISCO. 

 

  

http://scotoolkit.csuohio.edu/download.php
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A4. Provided Excel Worksheets to Facilitate Estimation of SCOToolkit 
Inputs 

The following Excel worksheets, which facilitate estimation of SCOToolkit inputs and real-time 

decision making, may be downloaded at http://scotoolkit.csuohio.edu/download.php. 

 

ISCO treatment termination decisions using real time data.xlsx 

This workbook implements real time termination decisions for ISCO source treatment using soil 

and/or groundwater sample data for multiple monitoring zones (MZ) within multiple treatment 

zones (TZ) using a rigorous statistical approach based on soil and/or groundwater sample data in 

a manner that provides consistent decision reliability at scales ranging from individual monitoring 

zones, to groups of monitoring zones (aka, treatment zones) to site-wide.  

 

ISCO unit cost calcs for continuous injection.xlsx 

This worksheet computes unit cost parameters for the continuous injection ISCO source treatment 

model from cost sensitivity analysis results. 

 

ISCO unit cost calcs for pulsed injection.xlsx 

This worksheet computes unit cost parameters for the pulsed injection ISCO source treatment 

model from cost sensitivity analysis results.  

 

Source function parameter estimation from field data.xlsm 

The purpose of this workbook is to calculate prior estimates of source parameters Mcal, Jcal,  and 

tcal from measured source zone groundwater concentration data and soil data for input into the 

SCOToolkit calibration tool. These values and uncertainty estimates can be used as prior estimates 

for transport model calibration to monitoring well data over time.   

 

Streamline calculation.xlsx 

This worksheet fits linear or polynomial streamline functions to digitized streamline data for 

contaminant source locations, ED injection galleries, or reactive barriers.  

 

Thermal treatment model calibration.xlsx 

This workbook calibrates thermal model parameters to measured mass recovery data for single or 

multiple pdf recovery functions.  

 

Thermal treatment termination decisions using real time data.xlsx 

This workbook enables real time termination decisions to be made for thermal source treatment 

that allows for multiple monitoring zones (MZ) using a rigorous statistical approach based on soil 

and/or mass recovery measurements to provide consistent decision reliability at multiple scales. 

The worksheet also calibrates thermal model parameters to measured recovery data.    

 

Thermal treatment unit cost calcs.xlsx 

This worksheet computes unit cost parameters for the source zone thermal treatment model from 

cost sensitivity analyses. 

  

http://scotoolkit.csuohio.edu/download.php
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