United States/ Environmental Protection Science and Technology (4305)

EPA-823-R-97-008 September 1997

The Incidence And Severity Of Sediment Contamination In Surface Waters Of the United States

Volume 3: National Sediment Contaminant Point Source Inventory

The Incidence And Severity Of Sediment Contamination In Surface Waters Of The United States:

Volume 3: National Sediment Containment Point Source Inventory

September 1997

Office of Science and Technology United States Environmental Protection Agency 401 M Street, SW Washington, DC 20460 The National Sediment Contaminant Point Source Inventory is a database of point source pollutant discharges that may result in sediment contamination, and a screening-level analysis of chemicals, geographic areas, and industries based on potential to cause sediment contamination. The data and information contained in this document could be used in various EPA regulatory programs for priority setting or other purposes after further evaluation using program-specific criteria. However, this document has no immediate or direct regulatory consequence. It does not in itself establish any legally binding requirements, establish or affect legal rights or obligations, or represent a determination of any party's liability.

National Sediment Contaminant Point Source Inventory

Contents

Ackn	owledgments	vii
Execu	utive Summary	ix
1	Introduction	
_	Objectives of Point Source Inventory and Analysis Anticipated Uses	1-2 1-3
9	Development of the Point Source Inventory	2-1
	Identification of Point Source Releases of Sediment Contaminants	
	Determination of Chemical Loads	
	Toxic Release Inventory Data	
	Permit Compliance System Data	2-4
	Assignment of Geographic Location and Industrial Category	2-5
I	Inventory Limitations	2-5
n	Development of Chemical Load Scores	
J	Chemical-Specific Toxicity Score	
-	Aquatic Life Screening Values	3-4
	Human Health Screening Values	
	Chemical-Specific Toxicity Scores	
	Chemical-Specific Fate Score	
	Air-Water Partitioning Subfactor	
	Sediment Adsorption Subfactor	
	Aqueous Biodegradation Subfactor	
	Functions of Chemical Load Score Components	
	Results of Screening-Level Analyses	4-1
4	Preparation of Data for Loading Analysis	
	Analysis by Chemical	
	Analysis by Chemical	
	Analysis by Watershed Analysis by Industrial Category	
	Conclusions	
D. C.		
Keiei	rences	
Appe	endices	
	A. Chemical Load Scores and Supporting Data	A-1
	B. Watershed Priority Groups	B-L
	C. Detailed Analyses of Industrial Categories	C-1

Page

Contents

Tables	Page
Table 3-1	Assignment of Load Score
Table 4-1	Analysis of TRI Data by Chemical (Sorted by Descending Load Score)
Table 4-2	Analysis of PCS Data by Chemical (Sorted by Descending Load Score)
Table 4-3	Analysis of TRI Data by Chemical Class
Table 4-4	Analysis of PCS Data by Chemical Class
Table 4-5	Number of Watersheds in Each Priority Group by EPA Region
Table 4-6	Analysis of TRI Data by Industrial Category (Sorted by Descending Load Score)
Table 4-7	Analysis of PCS Data by Industrial Category (Sorted by Descending Load Score)

Tables in Appendices

Table A-1	Chemical Load Scores (Sorted by Chemical Name) A-3
Table A-2	Sediment Chemistry Screening Values (Sorted by Chemical Name) A-7
Table A-3	Physical and Chemical Properties (Sorted by Chemical Name) A-13
Table B-1	Priority Group 1 Watersheds (load score greater than 80)B-3
Table B-2	Priority Group 2 Watersheds (load score range: 61-80) B-5
Table B-3	Priority Group 3 Watersheds (load score range: 41-60)
Table B-4	Priority Group 4 Watersheds (load score range: 21-40) B-9
Table B-5	Priority Group 5 Watersheds (load score range: 1-20) B-15
Table C-1	Load Scores from TRI by Industrial Category and Chemical (for Load Scores greater than 0)
Table C-2	Load Scores from PCS by Industrial Category and Chemical (for Load Scores greater than 0)

v

		1.5				
2	N.F. 25		1 2 H 1 P	1 A N 1 1 1		irce Inventor
	NARA	CINE I	Northmont	l antomuo	at Point Sou	nyin invantar
	Inauto		посоннени	i Contaninina	ни, в оли бла	п сс таусниот

Figures	Page
Figure 3-1	Chemical Load Score—Parameter sensitivity
Figure 3-2	Chemical Load Score—K _{oc} sensitivity
Figure 4-1	Load Score by watershed
Figure 4-2	Comparison of Survey evaluation to Load Score by watershed: percent of stations classified as Tier 1 or 2 as a function of Load Score
Figure 4-3	Comparison of Survey evaluation to Load Score by watershed: (a) percent of stations classified as Tier 1 or 2 as a function of Load Score, (b) percent of watersheds that contain APCs by priority group

i J

į.

.

. .

.

Acknowledgments

The United States Environmental Protection Agency's Office of Science and Technology produced this report with technical assistance from Tetra Tech, Inc., under EPA Contract Number 68-C3-0374 and Versar, Inc., under EPA Contract Number 68-C3-0013. Several staff people from EPA regional offices and other headquarters program offices reviewed previous drafts of this document, and we greatly appreciate their efforts and helpful comments. We wish to thank Anthony Pait of the National Oceanic and Atmospheric Administration (NOAA) for his review of the original hazard analysis methodology and Ruth Hull of the Oak Ridge National Laboratory for providing many measures of the physical-chemical properties for specific chemicals. We also wish to acknowledge the following persons, who provided external peer review of a previous working draft report employing the hazard analysis methodology on 1992 facility release data: William J. Adams, formerly of Analytical Bio-Chemistry Laboratories, Inc., in Columbia, Missouri; Robert Huggett, formerly of the Virginia Institute of Marine Science in Norfolk, Virginia; Richard Kimerle of the Monsanto Company in St. Louis, Missouri; and Keith Phillips of the State of Washington Department of Ecology in Olympia, Washington. We greatly appreciate their insightful comments.

Executive Summary

uring the past two decades, the U.S. Environmental Protection Agency (EPA) has focused its water pollution control efforts on protecting water quality within the water column. This has been accomplished primarily by controlling municipal and industrial point sources. More recently, EPA has begun to direct its efforts toward identifying and controlling other threats to the aquatic environment, including the accumulation of toxic chemicals in sediment. The Water Resources Development Act of 1992 (WRDA) directed EPA, in consultation with the National Oceanic and Atmospheric Administration and the Army Corps of Engineers, to conduct a comprehensive national survey of data regarding aquatic sediment quality in the United States. The Act required EPA to compile all existing information on the quantity, chemical and physical composition, and geographic location of pollutants in aquatic sediment, including the probable source of such pollutants and identification of those sediments which are contaminated. The Act further required EPA to report to the Congress the findings, conclusions, and recommendations of such survey, including recommendations for actions necessary to prevent contamination of aquatic sediments and to control sources of contamination. Volume 3 of this report (this volume) addresses point sources. Volume 4 of this report, when completed, will address nonpoint sources. Chapter 4 of Volume 1 of this report describes all probable source categories.

EPA's Office of Science and Technology (OST) has led the Agency's efforts to compile and analyze data for the National Sediment Contaminant Point Source Inventory. The screening-level sediment contaminant load analysis developed for and applied to this study cannot be used alone to predict sediment contamination or to indicate where contaminated sediment problems have occurred or who is responsible. The major objectives of the inventory and the analysis presented in this report are as follows:

- Generate a relative ranking of chemicals and industrial categories based on 1993 Toxic Release Inventory (TRI) and 1994 Permit Compliance System (PCS) chemical release data.
- Prioritize watersheds for collection of additional information that might lead to the identification of additional monitoring needs or pollution prevention opportunities.
- Establish a baseline to which additional or future inventories can be compared.

The inventory includes more than 25,500 individual TRI and PCS records of point source pollutant releases of 111 different chemicals. Approximately 1,020 individual watersheds and 31 distinct industrial categories are represented. In general, areas that are population centers and are associated with industrial activity receive the greatest amount of potential sediment contaminants from point sources. Direct releases of potential sediment contaminants from 4,869 facilities in PCS totaled nearly 19 million lb/yr in 1994. From 1993 TRI data, direct releases and transfers to POTWs of potential sediment contaminants

from 3,432 manufacturing facilities totaled 7.3 million lb/yr. The inventory is limited by the quality, quantity, coverage, and bias of the release data in TRI and PCS.

EPA developed and employed a screening-level load analysis procedure to achieve the objectives of this study. The "Load Score" is a unitless index of the magnitude of potential sediment contamination based on chemical/facility-specific releases, physical and chemical properties, and potential environmental risk. The loading analysis is limited by the lack of consideration of site-specific information, the lack of pollutant transport analysis, and the uncertainty associated with the components of the chemical-specific sediment hazard scores. For these reasons, the results of the loading analysis should be used for screening purposes only, not as a definitive judgment regarding the most significant sediment contaminants, the most affected watersheds, or the most important industrial categories.

This analysis indicates that metals and organic chemicals that can cause or contribute to contamination of sediment continue to be released from point sources. Although important in some instances, releases of PAHs, pesticides, and PCBs appear to be less prevalent than releases of metals and other organic compounds. The loading analysis relies on correlative, statistically based threshold values to evaluate the potential adverse effects of metals in sediment. Although these correlative thresholds are useful, they are limited in their application because they do not directly address the bioavailability of metals in sediment. This report further emphasizes the need for the development of practical assessment tools to evaluate the bioavailability and toxicity of metals in sediment.

The data analysis based on release data from TRI and PCS indicates that certain industrial categories have a high potential for contributing to sediment contamination. Sewerage systems, with nearly 2,000 facilities in PCS, represent more than one-half of the total Load Score of all the data analyzed in PCS and TRI together. Sixty-one percent of the Load Score for sewerage systems is from the five divalent metals. The Metal Products and Finishing, Primary Metal Industries, and Industrial Organic Chemicals categories were ranked in the top five industrial categories in terms of Load Score for both PCS and TRI. Other industrial categories ranked in the top five for either TRI or PCS include Public Utilities (other than sewerage systems), Petroleum Refining, and Other Chemical Products. Although TRI and PCS contain extensive records from most of the large dischargers, these data represent a limited, and somewhat biased, segment of the overall discharger community. Some industrial categories are not well represented in either PCS or TRI. Thus, these results reflect data availability as much as relative sediment hazard potential.

Total Load Scores at the watershed level ranged from 0 to 312. Of the 1,020 watersheds evaluated, 17 watersheds were placed in priority group 1 (Load Score greater than 80), 19 watersheds were placed in priority group 2 (Load Score range 61-80), 29 watersheds were placed in priority group 3 (Load Score range 41-60), 87 watersheds were placed in priority group 4 (Load Score range 21-40), and 672 watersheds were placed in priority group 5 (Load Score range 1-20). One hundred ninety-six watersheds had a Load Score of zero and were not assigned to a priority group. Figure ES-1 shows the location of watersheds in priority groups 1, 2, 3, and 4.

The watersheds identified in this analysis represent areas where sediment contaminants are discharged; they do not necessarily represent locations where sediment contamination has occurred or will occur. As defined by the U.S. Geological Survey 8-digit cataloging unit, watersheds can represent large areas that vary greatly in size, shape, and physical/ National Sediment Contaminant Point Source Inventory

xi

characteristics encompassing large mainstem rivers and small tributary streams. Transport, sediment partitioning, and sediment accumulation—whether in locations very close to the point of discharge or far downstream—depend on many factors, including streamflow, stream velocity, geomorphology, particle size distribution, organic carbon content, suspended sediment load, temperature, pH, and salinity. However, comparison with existing sediment monitoring data provides further means of screening watersheds where point sources are more likely to contribute to contamination.

The general relationship between annual point source releases and results reported in Volume 1: *National Sediment Quality Survey* demonstrates a co-occurrence of active discharges of sediment contaminants and evidence of sediment contamination. A watershed with a high Load Score is more likely to contain one of the 96 areas of probable concern for sediment contamination (APCs) in the *National Sediment Quality Survey*. For priority group 1, 75 percent of the watersheds contain APCs. For priority groups 2 and 3, 37 and 35 percent of the watersheds contain APCs, respectively. For priority group 4, 21 percent of the watersheds contain APCs. Finally, for priority group 5, 8 percent of the watersheds contain APCs. Less than 1 percent of the watersheds with a zero Load Score contain APCs.

While this analysis does not imply that point sources caused the in-place contamination, it emphasizes the potential significance of contaminant releases in areas already contaminated. There are many sources of sediment contaminants in watersheds, both active and historical, point and nonpoint. This assessment identifies specific watersheds where active point sources might play an important role. To promote natural recovery of contaminated areas, active dischargers must be adequately controlled to ensure that their releases do not perpetuate contamination problems.

The draft EPA report *Environmental Goals for America With Milestones for 2005* (USEPA, 1996a) proposes that the Agency, together with its state partners, adequately control point sources of contamination over the next 10 years in 10 percent of the watersheds where sediment contamination is widespread. Specifically, major facility discharge limits need to be evaluated and appropriately revised in watersheds at greatest risk from active discharges. The objective of these evaluations should be to determine whether existing technology-based controls or water quality-based discharge limits protect downstream sediment quality to the degree necessary for natural recovery of contaminated sites. EPA is currently developing the methodology to relate point source contributions to sediment contaminant concentrations. This methodology is needed before developing permit limits protective of sediment quality. This report identifies 29 watersheds that both contain APCs based on the *National Sediment Quality Survey* and are in Load Score priority group 1, 2, or 3 based on this analysis. These watersheds should be considered for further evaluation and necessary action to achieve the milestone in EPA's Goals Report.

Chapter 1 Introduction

During the past two decades, the U.S. Environmental Protection Agency (EPA) has focused its water pollution control efforts on protecting water quality within the water column. This has been accomplished primarily by controlling municipal and industrial point sources. More recently, EPA has begun to direct its efforts toward identifying and controlling other threats to the aquatic environment, including the accumulation of toxic chemicals in sediment. Because many different Agency program offices are involved in addressing the nationwide problem of contaminated sediments, EPA established an Agencywide steering committee in 1989 to oversee the development of a Contaminated Sediment Management Strategy (CSMS). The purpose of the proposed CSMS is to coordinate the Agency's efforts to assess, prevent, and remediate contaminated sediment that poses environmental and human health risks.

The Water Resources Development Act of 1992 (WRDA) directed EPA, in consultation with the National Oceanic and Atmospheric Administration and the Army Corps of Engineers, to conduct a comprehensive national survey of data regarding aquatic sediment quality in the United States. The Act required EPA to compile all existing information on the quantity, chemical and physical composition, and geographic location of pollutants in aquatic sediment, including the probable source of such pollutants and identification of those sediments which are contaminated. The Act further required EPA to report to the Congress the findings, conclusions, and recommendations of such survey, including recommendations for actions necessary to prevent contamination of aquatic sediments and to control sources of contamination. Volume 3 of this report (this volume) addresses point sources. Volume 4 of this report, when completed, will address nonpoint sources. Chapter 4 of Volume 1 of this report describes all probable source categories.

EPA's Office of Science and Technology (OST) initiated work several years ago on the development of a National Sediment Inventory (NSI) through a series of pilot inventories, planning meetings, and national workshops. Recently, various data indicative of sediment quality have been compiled into an integrated data set. The evaluation of the sediment quality data was documented in Volume 1: *National Sediment Quality Survey* (hereafter referred to as the Survey). The Survey evaluation serves as a means of screening and targeting, and it identifies 96 watersheds containing areas of probable concern for sediment contamination (APCs). OST's Survey and the Office of Policy, Planning, and Evaluation's (OPPE's) draft National Goals Report both call for further evaluation of these watersheds. Further evaluation entails performing additional site characterization based on sediment chemistry and related biological data, determining temporal and spatial trends, assessing human health and ecological risks, identifying potential sources of sediment contamination, and determining whether potential sources are adequately controlled. The end result of these efforts should be a judgment whether natural recovery is a feasible option for risk reduction.

To proceed with the identification of potential sources of sediment contaminants, OST initiated two related efforts to identify, characterize, and evaluate the potential importance of nonpoint and point source discharges of pollutants that might contribute to sediment

of nonpoint and point source discharges of pollutants that might contribute to sediment contamination. The nonpoint source assessment effort focuses on collecting information on contributions primarily from agricultural lands, inactive and abandoned mine sites, urban areas, and atmospheric deposition. The corresponding effort to assess active point source releases and to identify watersheds where such releases might contribute to sediment contamination is the focus of this volume.

OST is leading EPA's efforts to complete a National Sediment Contaminant Point Source Inventory. Collection and analysis of data describing sources of contaminated sediment will help provide an understanding of the potential magnitude and extent of contamination problems in the Nation's freshwater and estuarine sediments. The inventory will be useful to help locate potentially contaminated sites for additional monitoring and to integrate sediment sampling into existing water quality monitoring programs. The Point Source Inventory will also be a useful source of information for identifying pollution prevention opportunities and other source control efforts.

Objectives of Point Source Inventory and Analysis

Identifying, locating, and assessing all potential sources of sediment contamination on a nationwide basis is a major undertaking. Potentially significant sources of sediment contamination include municipal sewage treatment facilities, storm water discharges and combined sewer overflows, urban and agricultural runoff, industrial discharges of process wastewater, leachate from hazardous waste sites, and atmospheric deposition from point and mobile source emissions. Industrial dischargers that are no longer active, poor-quality effluent in years prior to effective treatment, and spills are important historical sources of existing sediment contamination that are difficult to identify. The Point Source Inventory is a compilation of the most recent available documented releases of known sediment contaminants from active municipal, industrial, and federal facilities. The major objectives of this inventory and the analysis presented in this report are as follows:

- Generate a relative ranking of chemicals and industrial categories based on 1993 Toxic Release Inventory (TRI) and 1994 Permit Compliance System (PCS) chemical release data.
- Prioritize watersheds for collection of additional information that might lead to the identification of additional monitoring needs or pollution prevention opportunities.
- Establish a baseline to which additional or future inventories can be compared.

Chapter 2 of this report describes the data sources used to develop the Point Source Inventory. Chapter 3 describes the data sources, assumptions, and algorithms used to develop the screening-level chemical load scores. Chapter 4 presents a summary of the results in relationship to chemicals and chemical classes, watersheds, and industrial categories. Appendix A contains the data used to develop chemical load scores for individual chemicals. Appendix B presents the results of the watershed priority groupings, and Appendix C includes detailed results of the analysis by industrial category.

Anticipated Uses

EPA's proposed Contaminated Sediment Management Strategy (CSMS) calls for the Agency to compile data, perform analyses, and develop tools that will allow integration of sediment contamination concerns into existing EPA program office activities, including:

- Targeting further evaluations
- Evaluating alternative control options
- Enhancing current assessment approaches
- Evaluating environmental benefits.

This evaluation has identified watersheds where point sources could contribute to sediment contamination. It is anticipated that states, in cooperation with EPA and other federal agencies, will proceed with further evaluations of the top-priority watersheds. This effort is especially important for those watersheds also identified from the Survey as containing areas of probable concern for sediment contamination (APCs). The purpose of additional evaluation should be to determine whether existing technology-based controls or water quality-based discharge limits adequately protect downstream sediment quality and do not compromise natural recovery of contaminated areas.

The sediment contaminant loading analysis described in this report is currently the most comprehensive assessment of national point source releases of sediment contaminants. The Load Score analysis and data compiled for this report can be powerful tools for water resource managers at the national, regional, state, and watershed levels. This report provides a wealth of information that can be integrated with other data characterizing the quality of aquatic sediment and other contaminant sources. For example, point source release data and analysis results could be incorporated into the Agency's recently developed PC-based geographic information system (GIS) for watershed modeling and assessment. This system, called BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources), provides the framework to integrate and analyze spatially related data, such as land use, stream hydrography, ambient contaminant levels in water and sediment, and discharger locations and release amounts. This system also allows the user to augment or replace data with additional or more appropriate information at the regional or local level. This is an important feature when contemplating use of PCS or TRI data, which cover a limited segment of all dischargers and might contain erroneous data, for specific local analyses.

The Point Source Inventory can be used to track risk reduction achieved through reduced surface water loadings. This supports activities such as the EPA Office of Policy, Planning, and Evaluation's National Goals Report, which is an effort to develop and track progress toward the Clean Water Act and other environmental legislation goals. Although not a direct measure of environmental quality, the Point Source Inventory provides a mechanism to track discharges of sediment contaminants.

. .

r

.

.

1-4

Chapter 2

Development of the Point Source Inventory

The methodology employed in developing the Point Source Inventory had three basic steps. First, a master list of chemicals of interest was compiled. The chemicals selected were those with available sediment chemistry screening values that were used to evaluate Survey data. These chemicals are frequently detected in sediment and have been studied for their potential adverse effects on aquatic life or human health. Second, annual loading amounts were determined for the chemicals of interest. Two EPA computer databases were used as the primary sources of release information: the Toxic Release Inventory (TRI) and the Permit Compliance System (PCS). Releases were then assigned to watersheds, chemical classes, and industrial categories.

Identification of Point Source Releases of Sediment Contaminants

For the Survey, EPA compiled sediment chemistry and fish tissue residue data for more than 230 chemicals whose detected levels in these media could be evaluated for potential adverse effects to aquatic life or human health. The Survey evaluation of potential adverse effects to aquatic life was based on comparing sediment chemistry measurements to levels associated with adverse effects. The evaluation of adverse human health effects was based on comparing direct fish tissue measures, or predicted levels based on sediment concentrations, to EPA risk levels or Food and Drug Administration (FDA) guidance. Evaluating the potential threat to sediment quality posed by a point source chemical release requires knowledge of the level in sediment associated with an adverse effect. EPA could not evaluate sediment chemistry measurements for approximately 100 of the more than 230 chemicals because the Agency lacked either information regarding adverse effects to aquatic life or the means to predict fish tissue concentrations resulting from exposures to sediment contaminant concentrations (i.e., a biota-sediment accumulation factor (BSAF), available for nonionic organic compounds only). Other chemicals lacked the necessary information to evaluate the chemical fate or intermedia partitioning upon discharge to surface water. These factors limited the inventory to 111 individual sediment contaminants.

The data requirements of the Point Source Inventory limited the number of useful databases containing information about the release of those 111 chemicals from point sources. The requirements include (1) classification of the type of discharger (industrial category or Standard Industrial Classification [SIC] code); (2) pollutant-specific release data (e.g., measured or estimated load to the environment in mass per time) for individual facilities; and (3) location information for pollutant releases. TRI and PCS are the only national databases that meet these data requirements.

Toxic Release Inventory (TRI). TRI is a consistent, comprehensive national database of toxic chemical releases to all environmental media. Congress mandated its creation to fulfill the community right-to-know provision (section 313) of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This section requires the owner/ operator of an industrial facility to report environmental releases of more than 300 specified toxic chemicals to EPA if the facility meets certain criteria. EPA's Office of Pollution Prevention and Toxics (OPPT) manages the information on releases submitted by industry.

Reports submitted by industry are the sole source of data in TRI. TRI contains release information from approximately 27,000 facilities. An owner/operator must file a report for a facility when it meets the following criteria:

- It employs the equivalent of 10 or more full-time employees.
- It engages in manufacturing (SIC Codes 20 through 39).
- It manufactures, imports, or processes more than 25,000 pounds of any listed chemical, or otherwise uses more than 10,000 pounds of any listed chemical.

For each listed chemical (currently over 300 specific chemicals and 20 chemical groups), the facility must submit a "Toxic Chemical Release Reporting Form," which contains the following:

- Facility identification information such as facility name, parent company, location (street address and latitude/longitude), type of business (based on SIC codes), key identifiers (such as Dun and Bradstreet ID, and NPDES numbers), and name of receiving water body.
- Offsite transfer locations for toxic chemicals, such as publicly owned treatment works (name and address of POTW) or waste disposal and treatment facilities (name, address, and EPA identification number).
- Chemical-specific information such as chemical identification (name and Chemical Abstract Service [CAS] number); use of the chemical at the facility; quantities released to air (fugitive and stack), water (including storm water), underground injection, and land; quantities transferred to offsite locations; and waste treatment methods and efficiencies. The quantities are reported either as a range for levels below 1,000 lb/year (i.e., 0-10, 11-499, and 500-999) or as a total annual release. The facility also reports the methods used in determining the release quantities (e.g., actual monitoring data, mass balance calculations, or emission factors).

Permit Compliance System (PCS). PCS is the national information management system for tracking compliance, enforcement, and permit status for the National Pollutant Discharge Elimination System (NPDES) program under the Clean Water Act. The NPDES program requires permits for all point source pollutant discharges to navigable U.S. waterways (other than dredged or fill material regulated under section 404 of the Clean Water Act). Specific discharge limits or monitoring requirements have been set for over 200 individual chemicals.

National Sediment Contaminant Point Source Inventory

EPA's Office of Wastewater Management oversees the NPDES program on a national level. EPA has authorized 43 states and the Virgin Islands to administer the NPDES program. EPA regional offices administer the program in nonauthorized states. More than 65,000 active NPDES permits have been issued to facilities throughout the Nation. PCS has extensive records on approximately 7,000 permits that are classified as "major." Facilities are classified as "major" based on consideration of many factors, including effluent design flow, physical and chemical characteristics of the waste stream, and location of discharge. Each permit record in PCS may contain information that:

- Identifies and describes the facility (including a primary SIC code) to which the permit has been issued.
- Specifies the pollutant discharge limits for that facility.
- Records the actual amounts of pollutants and flows measured in the facility's wastewater discharges.
- Tracks the facility's history of compliance with construction requirements, pollutant limits, and reporting requirements.

Major facilities must report compliance with NPDES permit limits, usually on a monthly basis, via Discharge Monitoring Reports (DMRs). DMRs provide detailed information on measured concentrations, including those which are in violation of established limits for the permit. DMR data entered into PCS include the type of violation (if any), concentration and quantity values, and monitoring period. The PCS database is updated twice weekly.

Determination of Chemical Loads

The Point Source Inventory consists of two distinct sets of chemical loading data: one based on TRI records and one based on PCS records. For this evaluation, data from TRI and PCS were extracted for the calendar years 1993 and 1994, respectively. Together, TRI and PCS form the most comprehensive national chemical loading database. Facilities covered by both TRI and PCS cannot be readily identified, however, because no common, quality-controlled facility identification data elements are available in these databases. TRI contains a field for NPDES number, but its quality control is poor. Both TRI and PCS contain a field for EPA identification number, but these numbers, too, are unreliable. Therefore, there is a potential for double records of releases for chemicals reported in both TRI and PCS. As a result, the data in TRI and PCS are evaluated independently.

Toxic Release Inventory Data

For each TRI facility, total amounts of the chemicals of interest reported to be discharged to surface water and POTWs in calendar year 1993 were retrieved. For each chemical, the total release to surface water and an adjusted release to POTWs were summed to yield a total facility discharge. Some characteristics of the TRI database might introduce uncertainty into the release estimates. For example, manufacturers required to report to TRI might estimate chemical releases using ranges (e.g., 10 to 499 lb/yr). In the TRI database, the ranges are converted to a single value represented by the midpoint of the range (e.g., 250 lb/yr). Use of these midpoint values may overestimate or underestimate the actual releases of TRI chemicals. The reported amounts of releases to POTWs were adjusted by assuming that typical secondary treatments, such as activated sludge and aeration lagoons, remove a portion of the chemical load. Review of chemical-specific data from the Office of Research and Development's Treatability Database (USEPA, 1991) indicated that removal rates can be highly variable and dependent on conditions at the POTW. Based on peer review comments received on a draft version of this methodology (Adams, 1994), all pollutants were assigned a removal rate of 75 percent. This removal rate does not tend to significantly overestimate or underestimate actual loading values. In a secondary treatment system, such as an activated sludge system, chemicals that are readily biodegraded are usually, but not always, removed at rates equal to or in excess of 90 percent, and adsorption often removes 80 to 85 percent of the mass of chemicals that do not biodegrade (Adams, 1994).

Permit Compliance System Data

It is important to recognize that, unlike TRI, PCS is a permit tracking system, not a repository of pollutant release amounts. However, an option in PCS called Effluent Data Statistics (EDS) can process PCS data to calculate loading values (USEPA, 1992a). EDS uses the following hierarchy to assign a loading for each pollutant: (1) reported chemical mass loading and (2) chemical loadings estimated based on discharge flow and concentration measurement. Depending on the monitoring requirements imposed by the permit, concentrations may be reported in many different ways. EDS selects concentration measurements from PCS in the following order of preference for inclusion in the inventory:

- Average concentration
- Maximum concentration
- Minimum concentration.

Loadings were estimated only for records with valid concentrations (as defined by EDS) and corresponding flow data assuming 30 operating days per month for each facility. Loadings were estimated using the following general equation:

L	oad =	Flow * Conc * Conversion Factors	Equation 1
where:			
load	=	specific pollutant load from a facility per	unit time;
flow	=	facility effluent flow per unit time;	
conc	=	concentration of a pollutant; and	
conversion factor	's =	appropriate factors to convert reported un	its to standard units.

Total release amounts of the chemicals of interest were calculated for each PCS facility. Data were retrieved at the discharge pipe level from PCS for every NPDES discharger where the requisite data were available. Concentration data for each chemical were converted into annual loadings using Equation 1 above. The calculated loads for a given chemical from each discharge pipe at a facility were summed to yield the total facility load. In addition, multiple parameters sometimes exist for the same pollutant. For example, zinc concentrations might be reported as total zinc and dissolved zinc. In these cases, the largest calculated load (usually the "total" load) was selected for inclusion in the Point Source Inventory.

Concentration measurements for the chemicals of interest are often recorded in PCS as below the detection limit. In some cases, these measurements might reflect a low chemical concentration that available analytical instrumentation cannot recognize. In other cases, the chemical might not be present in the effluent. Measurements reported below a detection limit most commonly occur for highly toxic pollutants. Monitoring requirements for these chemicals might exist as a "safeguard" to alert managers to the presence of a particular chemical in effluent, or might be part of a large set of chemical measurements required by an effluent guideline rule covering a particular industrial category. In any case, a measurement reported below detection in PCS monitoring data does not establish the presence of the chemical in effluent. Therefore, values below the detection limit are set to zero in this inventory.

Assignment of Geographic Location and Industrial Category

Stream reach numbers (from EPA River Reach File 1) were assigned to each facility in the Point Source Inventory to place chemical discharges into watersheds. Because the reach number was frequently missing from both PCS and TRI, reach numbers were added electronically by linking PCS and TRI facility identification codes to the EPA Industrial Facilities Discharge File (IFD). If the reach number was not available in IFD, a computer-ized routine that starts with the facility latitude/longitude and searches the EPA Reach File for the nearest reach, up to a maximum distance of 10 miles, was employed. If the facility latitude and longitude coordinates were missing, the centroid of the county was used as the discharge location.

Industrial categories are groupings based on SIC codes. An industrial category can be based on a single 4-digit SIC code (e.g., Petroleum Refining) or a large and variable range of SIC codes (e.g., Metal Products and Finishing). Each facility in the Point Source Inventory was assigned a single SIC code based on the designated primary SIC code in PCS and TRI. However, because many large industrial facilities are involved in multiple activities that could correspond to different SIC codes, industrial category groupings are only approximate. There were 31 industrial categories overall. PCS data were grouped into 27 industrial categories, and TRI data were grouped into 21 industrial categories.

Inventory Limitations

The Point Source Inventory contains various limitations that should be considered when using this information in environmental decision-making. These limitations do not, however, preclude its use as a targeting tool to prioritize watersheds, chemicals, and industries for further evaluation. In some instances, the limitations might affect small-scale analyses (i.e., individual stream or lake water body segments) while large-scale analyses, such as the ones presented in this report, are affected to a lesser degree. Conclusions presented in this report are made with consideration of the following factors.

This analysis is primarily limited by the quality and quantity of existing data in national EPA databases. The broad scope of the inventory has prohibited collection of large amounts of data from numerous site-specific information sources at this time. Therefore, the inventory relies on data available in national electronic databases such as TRI and PCS. Although a considerable volume of information is contained in these databases, many important parameters are not available. In particular, no national electronic database accurately, consistently, or completely stores information concerning the characteristics of water bodies, such as underlying sediment type. Furthermore, data quality assurance/quality control is an important issue when using data from large national databases that receive input from a variety of sources. The amount of data contained in these national databases is too large to conduct comprehensive verification procedures. In addition, it should be noted that the number of facilities discharging chemicals of interest may vary from year to year based on such factors as regulatory changes (e.g., increased chemical reporting or SIC coverage in TRI, or increases in the number of recorded storm water permits in PCS) or economic conditions. Given these qualifications, the three major limitations of the inventory as it is now structured are:

- The inability to predict whether a point source release could contribute to a sediment contamination problem.
- The inability to predict where point source releases might contribute to sediment contamination (i.e., the geographic analyses are limited to identifying areas or watersheds where point source releases occur).
- The inability to assess contributions from nonpoint source inputs (including deliberate introduction of toxic substances, such as pesticides and household chemicals, to the environment) and from point source inputs not represented in the PCS or TRI databases (e.g., facilities that do not meet a TRI reporting criterion and for which NPDES permits do not require monthly monitoring).

Conclusions based on the Point Source Inventory should take into consideration the inherent limitations of the databases and the assumptions used in developing the inventory. Factors associated with database limitations that should be considered include the possibility of erroneous data in TRI and PCS, the limited coverage of TRI and PCS, and inherent database biases. Neither PCS nor TRI accurately reflects the full extent of toxic chemical releases from point sources, and the data contained in both may be inherently biased. Although several hundred individual chemicals are represented in each database, as many as 5 to 10 times more chemicals might be discharged (Adams, 1994). In addition, the number of chemicals addressed in PCS permits is highly variable. Because the types and number of chemicals included are partly a function of the policies and practices of the state or regional permitting authority, and of the industrial activities conducted at the facility, the data might be biased toward some geographic regions and industrial categories. Furthermore, only approximately 10 percent of permitted dischargers are classified as "major" and have extensive records from which chemical loads can be derived. Facilities subject to TRI reporting represent a relatively narrow range of commercial activities (manufacturing only). Although the TRI database is based on a standard set of chemicals, many highly toxic chemicals that tend to accumulate in sediment are not included. Therefore, TRI captures only a portion of chemical releases to the environment. Future enhancements to TRI might overcome some of these limitations and the biases they create.

Other potential sources of error are associated with the assumptions used in the assignment of geographic location and industrial category. In many cases, geographic location assignment was made using latitude and longitude coordinates of the facility and the near-

est stream reach. However, the nearest stream might not be the receiving stream for some facilities. Also, for TRI data, POTW receiving streams could not be identified. Consequently, chemical loadings derived from POTW transfers for TRI data were assigned to the stream reach associated with the reporting facility. Industrial category assignment was made on the basis of primary SIC code; however, many facilities are engaged in a wide range of commercial activities. As a result, chemical wastes generated from non-primary SIC code activities are included with those from the primary SIC code in the Point Source Inventory.

.

т .

.

. .

. .

> , .

.

.

Chapter 3

Development of Chemical Load Scores

ne major objective of the Point Source Inventory was to develop and employ a screening-level loading analysis procedure to identify and prioritize watersheds where active point sources may contribute to sediment contamination, and to generate a relative ranking of chemicals and industrial source categories that are potential contributors. To enable screening-level analyses, chemical-specific chemical loading scores (CLSs) were developed and used to normalize the annual chemical loads (ACLs) in the Point Source Inventory. In the screening-level analysis (described in Section 4), ACLs were multiplied by chemical-specific CLSs to produce adjusted loads:

Adjusted Load = CLS * ACL	Equation 2
---------------------------	------------

where:

- CLS = Chemical load score, a product of the FATE and TOX scores as described below, and
- ACL = Annual chemical load, the annual release amount (lb/yr) of a specific chemical from individual industrial or municipal treatment facilities.

CLSs are intended to represent both the potential of a particular chemical to accumulate in sediment upon discharge to surface water (independent of the characteristics of the site) and the potential ecological and human health risk posed by the chemical. The CLS is the product of the chemical-specific toxicity (TOX) score and chemical-specific fate (FATE) score. The TOX score is intended to represent the potential for adverse effects to human health and aquatic life from chemicals in sediment. The FATE score is intended to represent the potential for a chemical to partition to and persist in sediment. Four previous works were examined to assist in the development of the screening-level methodology:

- National Sediment Quality Survey (peer-reviewed draft, USEPA, 1996b);
- Established methods of determining sediment toxicity (USEPA, 1992b);
- Superfund's Hazard Ranking System, Final Rule (USEPA, 1990a); and
- NOAA's pesticide hazard rating system (Pait et al., 1992).

Calculated CLSs, TOX scores, and FATE scores, along with the information required to calculate them (i.e., sediment chemistry screening values and physical/chemical properties), are presented in Appendix A of this report.

Development of Chemical Load Scores

The adjusted load computed for a facility's discharge of a specific chemical is assigned a Load Score. The Load Score is a unitless index of the magnitude of potential sediment contamination based on chemical/facility-specific releases, physical and chemical properties, and potential environmental risk. The mathematical relationship of adjusted load scores to Load Score is given by the following equation:

Load Score = $INT (\log_{10} (adjusted \ load)) + 1$

Equation 3

Values less than zero or greater than 5 are set to zero and 5, respectively. Load Scores indicate the potential contribution to sediment contamination in the absence of any knowledge of historical or nonpoint source inputs and site-specific conditions (e.g., stream velocity, organic carbon content of underlying sediment) affecting chemical fate and intermedia partitioning. Load Scores may be used to rank and compare potential sediment contamination sources. Once the Load Scores were calculated for each chemical-facility combination, a number of data aggregations were performed to evaluate chemical classes and industrial categories for their relative potential risk of causing sediment contamination, and to identify watersheds where the risk of contamination from active point sources might be the greatest.

Table 3-1 illustrates the assignment of Load Scores. In general, the Load Score represents the magnitude of the adjusted load (product of CLS times ACL). However, if the adjusted load is less than 1, the release is assigned a Load Score of zero. This assumes that these releases are not significant potential contributors to sediment contamination, and is intended to focus attention on larger releases with greater hazard potential. The column headings of Table 3-1 provide chemicals representative of each CLS range as a reference. For example, the sediment hazard posed by mercury is approximately 10 times the hazard posed by pyrene. This scoring system allows comparison of annual loads of chemicals that vary in their hazard potential. For example, an annual load of 1,000 pounds of zinc is approximately equivalent to an annual load of 100 pounds of fluorene or 10 pounds of

Annual	Chemical Load Score (TOX Score * FATE Score)					
Annuai Chemical Load (lb/yr)	0.001 (e.g., phenol)	0.01 (e.g., zinc)	0.1 (e.g., fluorene)	1 (e.g., pyrene)	10 (e.g., mercury)	>100 (e.g., PCBs)
<0.01	0	0	0	0	0	1
0.1	0	0	0	0	1	2
I	0	0	0	1	2	3
10	0	0	1	2	3	4
100	0	1	2	3	4	5
1,000	1	2	3	4	5	
10,000	2	3	4	5		
100,000	3	4	5			

 Table 3-1. Assignment of Load Score

pyrene or 10,000 pounds of phenol: each receives a Load Score of 2. These scores can also be summed across aggregate units. For example, 20 facilities each releasing 100 pounds of mercury per year (Load Score = 4) in a given watershed would yield a watershed Load Score of 80 (20 times 4).

Chemical-Specific Toxicity Score

Sediment contamination is a function of the mixture and concentration of toxic pollutants in the sediment and the physical and chemical characteristics of the site. To assess potential sediment toxicity, sediment chemistry data must be related to adverse biological effects. Numerical effects-based, chemical-specific sediment chemistry screening values have been used to assist analysts and managers in the evaluation of sediment chemistry data and to identify and prioritize problem areas (Di Toro et al., 1991). The TOX score is one component of the CLS. This chemical-specific value was calculated by taking the inverse of the chemical's derived sediment chemistry screening value reported in milligrams per kilogram (mg/kg). Because the inverse of the sediment chemistry screening value is used, the TOX score increases in direct proportion to the toxicity of the chemical.

Several methods are currently available for developing sediment quality screening values (USEPA, 1992b). Most of these methods require information on site-specific conditions (field data) and chemical-specific properties. However, because field data are not available for each point source discharge location, screening values for use in this analysis must be based on empirical methods that make use of available data from a variety of sites, or mechanistic methods where the site-specific components can be reasonably assumed. The NOAA National Status and Trends program's effects range approach and the State of Washington's apparent effect threshold approach use existing sediment chemistry and biological effects data from a variety of sites, and EPA's equilibrium partitioning approach has a site-specific component that can be reasonably assumed. The preferred approach for screening value estimation depends on the properties and expected chemical partitioning associated with the released chemical.

In this study, a combination of the equilibrium partitioning (EqP) approach and biological effects correlation approaches was used to estimate sediment chemistry screening values for the protection of aquatic life. The theoretical bioaccumulation (TBP) approach was used to estimate sediment chemistry screening values for human health assessments. Appendix A contains a listing of all the calculated sediment chemistry screening values for the chemicals of interest contained in the Point Source Inventory.

It is important to note that the certainty with which sediment toxicity can be predicted for each chemical varies significantly based on the quality of the available data and the appropriateness of exposure assumptions. Estimated sediment chemistry screening values are to be used for screening purposes only. Their purpose is to obtain a relative ranking of potential hazard for aquatic bottom sediments from point source pollutant discharges to surface waters. The following limitations of the estimated sediment chemistry screening values should be noted:

• Values may be overprotective or underprotective of actual site-specific sediment because methodological and exposure conditions vary considerably.

3-3

- Values are general approximations of concentrations potentially leading to adverse effects because data and assessment methods are continually being compiled and developed.
- Values are based on a composite of several different sediment assessment approaches and a variety of data sources, the application of which EPA has not adopted or endorsed for use outside this and other screening-level analyses.

EPA has proposed sediment quality criteria (SQCs) for five chemicals based on extensive data quality and quantity requirements and methodologies that have gone through extensive peer review. The other estimated sediment chemistry screening values for additional chemicals presented in Appendix A of this report do not represent proposed SQCs. The sediment chemistry screening values were developed or compiled for the evaluation of Survey data (Volume 1 of this report). The remainder of this section provides a brief overview of the screening values. The interested reader should consult Volume 1 of this report and appendices for detailed descriptions and explanations.

Aquatic Life Screening Values

The sediment chemistry screening values used to evaluate potential adverse effects to aquatic life include theoretically and empirically based values. The theoretically based values rely on demonstrated laboratory toxicity and physical/chemical properties of sediment to predict a concentration level that protects the benthic community from chronic adverse reproductive or growth effects. The empirically based, or correlative, threshold values rely on paired field and laboratory data to relate incidence of observed adverse biological effects to the dry-weight sediment concentration of a specific chemical.

The theoretically based screening values, limited to nonionic organic compounds, include the following parameters:

- Sediment Quality Criteria (SQCs): EPA (1993a, b, c, d, e) has developed draft SQCs for five chemicals using the equilibrium partitioning (EqP) approach, which involves predicting a dry-weight sediment concentration that is in equilibrium with a threshold pore water concentration using the chemical-specific organic carbon/water partition coefficient (K_{αc}) and the site-specific organic carbon content. The EqP approach is described in detail in Appendix B of the Survey. Draft SQCs are based on the highest-quality data available, which have been reviewed extensively.
- Sediment Quality Advisory Levels (SQALs): SQALs were also developed using the EqP approach, but have fewer aquatic toxicity data requirements.

For purposes of calculating sediment hazard scores for the chemicals with available SQCs and SQALs, a default organic carbon content of 1 percent was used because of lack of site-specific sediment information in PCS and TRI. In practical application, the organic carbon content can vary a great deal, as can important other binding phases at any given sampling station.

The empirically based, correlative approaches used for the Point Source Inventory include the following upper screening values. Each of these parameters has a corresponding lower (more stringent) screening value that was not used in the development of TOX scores and subsequent chemical load scores. The primary limitation to use of these values for chemical-specific analyses is the possible effects of other toxic agents that may be present at the field site where biological effects are observed. The correlative approaches tend to result in screening values that are lower than the theoretical SQCs and SQALs, which address the effect caused only by a single contaminant.

- Effects Range-Median (ERM): Values above the ERM are defined as being in the "probable-effects range" (Long et al., 1995). The ERM is the 50th percentile of the distribution of measured concentrations associated with an observed adverse effect.
- Apparent Effects Threshold-High (AETH): Developed by Barrick et al. (1988), the AET-high or AETH is the concentration at which observed adverse effects always demonstrate statistically significant differences from reference conditions for each biological indicator tested.
- **Probable Effects Level (PEL):** Toxic effects were found to occur usually or frequently at concentrations above the PEL (FDEP, 1994). The PEL is derived in a manner similar to the ERM.

Human Health Screening Values

To evaluate the potential risk to human consumers of organisms exposed to sediment contaminants, a theoretical bioaccumulation potential (TBP) was calculated. A TBP is an estimate of the equilibrium concentration of a contaminant in fish tissue if the sediment in question were the only source of contamination. At present, a TBP calculation can only be performed for nonpolar organic chemicals based on the concentration of contaminant in the sediment, the organic carbon content of the sediment, the lipid content of the fish, and the relative affinity of the chemical for sediment organic carbon and fish lipid. The relative affinity is a field-measured biota-sediment accumulation factor (BSAF). The TBP calculation and the selection of BSAFs are discussed in detail in Appendices B and C of Volume 1 of this report. Because data on site-specific conditions were not available from the PCS and TRI data sets, average default values for organic carbon content (1 percent) and lipid concentration (3 percent) were used in the TBP calculation in this study.

Human health screening values were derived by using EPA risk levels and solving the TBP equation for sediment concentration. EPA fish tissue risk levels were calculated using a fish consumption rate of 6.5 grams per day and an average adult body weight of 70 kilograms, the same exposure parameters EPA uses to develop human health water quality criteria. Cancer risk levels were calculated using recommended slope factors and a target risk level of 10⁻⁵. Noncancer risk levels were calculated using recommended reference doses and a target hazard quotient of 1. Example risk calculations and slope factors and reference doses are presented in the Volume 1 of this report.

Chemical-Specific Toxicity Scores

The overall sediment chemistry screening value is the lower of the aquatic life screening value and human health screening value. The aquatic life screening value for a particular chemical was selected in the following descending order of availability: SQCs, SQALs, ERMs, AETHs, and PELs. This selection hierarchy reflects the EPA preference for screening values that can reliably attribute adverse effects to the chemical of interest, especially for a chemical-specific loading analysis such as this. As previously stated, the inverse of the sediment chemistry screening value serves as the TOX score to produce a positive relationship between screening values and TOX scores. In other words, the more stringent the screening value, the greater the TOX score.

Chemical-Specific Fate Score

The second component of the Chemical Load Score (CLS) is the FATE score. The FATE score is the product of the air/water partitioning subfactor (HLC score), sediment adsorption subfactor (KOC score), and biodegradation subfactor (BIODEG score). The potential for a chemical to accumulate in the underlying sediment upon discharge to surface water depends greatly on site-specific characteristics such as sediment organic matter content, temperature, suspended particulate matter, and the lotic or lentic nature of the receiving water body. The physical/chemical properties of the pollutants also affect their transport and persistence in the aquatic environment. The chemicals of interest in the Point Source Inventory differ widely in their physical/chemical properties. Some chemicals are very likely to partition to and to persist in the sediment, some will likely volatilize, and others will rapidly degrade. Therefore, a FATE score with sediment adsorption, air/water partitioning, and aqueous degradation subfactors was used. Three physical/chemical properties for organic sediment contaminants were obtained for the chemicals in the inventory: the sediment adsorption coefficient or K_{oc} , the Henry's Law constant (HLC), and the aerobic aqueous biodegradation half-life.

The two transport subfactors, air-water partitioning and sediment adsorption, are represented by chemical-specific HLC and K_{oc} values, respectively. These subfactors were treated in a manner similar to that used in the pesticide hazard rating system devised by Pait et al. (1992). Individual HLC and K_{oc} values were assigned scores ranging from 0.1 to 1. These values were then multiplied to produce a score that represents the likelihood of transport to the sediment.

The aqueous degradation subfactor is represented by chemical-specific aerobic biodegradation half-lives. Because the sediment hazard score was applied to annual release amounts, the half-life was converted to an annual loss rate constant and multiplied by the transport value (i.e., the product of the two transport subfactor scores) to arrive at the final FATE score.

Air-Water Partitioning Subfactor

The Henry's Law constant (HLC) is the ratio of vapor pressure to solubility and is indicative of the propensity of a chemical to volatilize from surface water (Lyman et al., 1982). The larger the HLC, the more likely the chemical will volatilize. Lyman et al. (1982) state that a chemical with an HLC less than 3×10^{-7} (atm-m³/mole) is essentially nonvolatile, and a chemical with an HLC greater than 10^{-3} (atm-m³/mole) will volatilize rapidly from surface water. HLC scores were calculated according to the following steps:

- 1. All values > 10^{-3} were assigned a score of 0.1.
- 2. All values $< 3 \times 10^{-7}$ were assigned a score of 1.0.
- 3. All other values were assigned a score using Equation 4 to evenly distribute scores across the range of values:

$$HLC_{score} = \left[\frac{\log(10^{-3}) - \log(HLC)}{\log(10^{-3}) - \log(3 \times 10^{-7})} * 0.9\right] + 0.1$$
 Equation 4

where:

HLC_{score} = air-water partitioning subfactor and HLC = Henry's Law constant (atm-m³/mole).

Sediment Adsorption Subfactor

 K_{oc} is a chemical-specific adsorption parameter that is largely independent of the properties of soil or sediment and can be used as a relative indicator of adsorption to such media. Although a high K_{oc} value indicates that a chemical is more likely to partition to sediment, it also indicates that a chemical may be less bioavailable. K_{oc} is highly inversely correlated with solubility and fairly well correlated with BSAF.

U.S. EPA (1993b) recommends using the following regression equation to calculate the organic carbon-water partition coefficient (K_{∞}) from the octanol-water partition coefficient (K_{∞}) :

$$\log_{10}K_{ac} = 0.00028 + 0.983 * \log_{10}K_{ac}$$
 Equation 5

Where available, K_{oc} values were calculated from the latest EPA-recommended octanolwater coefficient (K_{ow}) (Karickhoff and Long, 1995). Other K_{ow} values used included those derived from the slow-stir flask method, which were selected preferentially over other laboratory values reported in literature (USEPA, 1993f).

KOC scores were calculated according to the following steps:

- 1. All values > 10^6 were assigned a score of 1.0.
- 2. All values $< 10^2$ were assigned a score of 0.1.
- 3. All other values were assigned a score using Equation 6 to evenly distribute scores across the range of values:

$$KOC_{scure} = \left[\frac{\log(K_{oc}) - \log(10^2)}{\log(10^6) - \log(10^2)} * 0.9\right] + 0.1$$
 Equation 6

where:

KOC
score= sediment adsorption subfactor andK
oc= organic carbon-water partition coefficient (L/kg).

Aqueous Biodegradation Subfactor

Although many physical and chemical processes can contribute to degradation (e.g., hydrolysis, photolysis, biological degradation), aerobic biodegradation half-life was selected as the sole indicator of environmental persistence of a chemical released to the water column. Ignoring other removal mechanisms is a conservative approach because it can only overestimate rather than underestimate a chemical's persistence potential. Aerobic aqueous biodegradation half-lives are empirically derived time periods when half of a chemical load released to water is degraded by microbial action in the presence of oxygen. Although the degradation products may be equal in toxicity to or even more toxic than the parent, evaluation of chemical metabolites was not considered in the hazard analysis. Aerobic biodegradation half-lives for the current set of potential sediment contaminants range from 4 hours to 16 years.

Half-lives in days were converted to loss rate constants in (years)⁻¹ using the following equation:

 $\lambda = \frac{\ln(2) * 365}{t^{\frac{1}{2}}}$ Equation 7 where: $\lambda = \text{loss rate constant (year)}^{-1};$ $\ln(2) = \text{natural log of 2};$ $t^{\frac{1}{2}} = \text{aqueous aerobic biodegradation half-life (days); and}$ 365 = conversion factor (days per year).

Because other factors, such as deep burial, might become important over time, chemicals with reported half-lives greater than 7 years were assigned a half-life of 7 years. This results in the largest BIODEG score of 10. The BIODEG score was calculated by taking the inverse of the loss rate constant so that more persistent compounds would have higher values:

$$BIODEG_{score} = \frac{1}{\lambda}$$
 Equation 8

The FATE score was calculated by combining the HLC, KOC, and BIODEG scores according the following formula:

$$FATE_{score} = (BIODEG_{score}) * (HLC_{score}) * (KOC_{score})$$
 Equation 9

Metals, which will not degrade or volatilize, were assigned a BIODEG score of 10 and an HLC score of 1. The relative partitioning of dissolved metal between the water column and the underlying sediment is a function of site-specific conditions, not inherent properties of the metal. Therefore, metals were assigned a KOC score of 0.5, representing the midpoint of all possible values.

Functions of Chemical Load Score Components

The overall general equation for the CLS is:

	$CLS = TOX_{score} * FATE_{score}$	Equation 10
where:		
TOX	$= (SCV)^{-1};$	
FATE _{score}	= KOC _{score} * HLC _{score} * BIODEG _{score} ;	
CLS	= chemical load score (unitless);	
SCV	= sediment chemistry screening value (based on values in units of mg/kg);	screening
KOC _{score}	= sediment adsorption subfactor (unitless);	
HLC	= air-water partitioning subfactor (unitless); and	
BIODEG	= aqueous biodegradation subfactor (unitless).	

The function of the sediment chemistry screening value in the CLS is to increase or decrease the adjusted load relative to the annual chemical load (ACL) based on the toxicity exhibited by the chemical. Ignoring the effects of the FATE score components, a chemical with a sediment chemistry screening value less than 1 mg/kg has an CLS greater than 1 and higher adjusted loads than ACLs. On the other hand, a chemical with a sediment chemistry screening value greater than 1 mg/kg has an CLS less than 1 and lower adjusted loads than

ACLs. The magnitude of the effect on the adjusted load is in direct proportion to the magnitude of the sediment chemistry screening value versus a value of 1 mg/kg. The "standard" of 1 mg/kg is arbitrary and does not have any physical or biochemical significance.

The function of the BIODEG score is to adjust the ACL based on a chemical's persistence in the aquatic environment. Half-life values in days were converted to a loss rate constant in (years)⁻¹. The BIODEG score, which is the inverse annual loss rate constant, has the mathematical effect of converting an annual surface water load to a steady-state mass of chemical in the water column. Chemicals with a half-life greater than 253 days (ln(2) * 365 days/yr) have a BIODEG score greater than 1, which increases the adjusted load. This indicates that the steady-state mass is greater than 253 days have a BIODEG score less than 1, which decreases the adjusted load. This indicates that the steady-state mass is less than the annual load (i.e., net loss). The magnitude of the effect on adjusted load is in direct proportion to the magnitude of the half-life versus a value of 253.

The functions of the KOC score and HLC score are to decrease the adjusted load depending on the chemical's propensity to partition to sediment or volatilize from the water column. If a chemical is hydrophilic and has little propensity to bind to sediment, the adjusted load will decrease by as much as one order of magnitude. Likewise, if a chemical has a strong tendency to volatilize, the adjusted load will also decrease by as much as one order of magnitude. This relatively small adjustment was made because of the many mitigating site-specific factors that affect intermedia partitioning.

The sediment chemistry screening values and ACLs for the chemicals of concern in this analysis vary over more orders of magnitude than do biodegradation half-lives, KOC scores, and HLC scores. Therefore, adjusted loads are primarily driven by ACLs and chemical toxicity.

The sensitivity of the parameters used in CLS calculation, with the exception of K_{∞} , are depicted in Figure 3-1. Note that the x-axis labels represent the factor by which the original values are multiplied (i.e., the effect of doubling a given parameter on the CLS is read from the point labeled "2" on the x-axis). Likewise, the y-axis labels represent the change in CLS values resulting from altering input parameters. For example, if the percent OC is halved ("0.5" on the x-axis), the CLS would be doubled ("2" on the y-axis). The sensitivity of K_{∞} is depicted in Figure 3-2 in three parts: one for the effect based on KOC score (increase in K_{∞} means greater propensity to partition to sediment and higher CLS), one for the effect based on the equilibrium partitioning approach (increase in K_{∞} means less bioavailability and lower CLS), and one for the overall K_{∞} effect.

The overall uncertainty in the CLS precludes their use in analyses that require a high degree of accuracy. However, this level of uncertainty is acceptable for meeting the objective of performing a screening-level loading analysis.
National Sediment Contaminant Point Source Inventory

Figure 3-1. Chemical Load Score (CLS)—Parameter sensitivity.

K_{oc} = Organic Carbon-Water Partition Coefficient

Figure 3-2. Chemical Load Score (CLS)—K_{oc} sensitivity.

Chapter 4

Results of Screening-Level Analyses

Toxic Release Inventory (TRI) and the 1994 Permit Compliance System (PCS) can be used to evaluate the release of sediment contaminants and to identify the chemical classes, watersheds, and industrial categories that may be associated with potential sediment quality problems arising from point sources. The analysis does not necessarily indicate where contaminated sediment problems have occurred or who is responsible. Further information to screen watersheds can be obtained when the release data are compared to the Survey data evaluation (Volume 1 of this report).

This chapter describes how the Point Source Inventory data were prepared for the loading analysis and highlights the results by chemical, watershed, and industrial category. Tables and figures of summary information are presented within the body of the text. Longer tables that contain more detailed information are presented in Appendices B and C. Appendix B contains a listing of watersheds (defined by 8-digit U.S. Geological Survey (USGS) cataloging units) grouped by specific ranges of Load Scores. These groups are referred to as priority groups in this report. Appendix C contains detailed information on chemicals associated with the industrial categories evaluated in this analysis.

Preparation of Data for Loading Analysis

The first step in conducting the screening-level loading analysis was to qualitatively examine the Point Source Inventory data for validity and prepare the data for analysis. Of the original 233 potential sediment contaminants analyzed as part of the Survey, 122 were excluded from the loading analysis because a CLS could not be calculated or no data were available for analysis. Table A1 in Appendix A contains a complete list of the remaining 111 sediment contaminants participating in the loading analysis.

Although the PCS and TRI data were not systematically checked for errors when the inventory was developed, an attempt was made to eliminate highly suspect records from the loading analysis. Several loading records from PCS were excluded from the loading analysis because they were highly suspect and would bias the results. For this analysis, EPA defined a highly suspect record as the release of any chemical in excess of one-half million pounds per year. While feasible at large municipal treatment works such as Chicago Main or Blue Plains in Washington, DC, experience in examining PCS records indicates that these extremely large surface water releases can be traced back to incorrectly reported concentration or flow measurements. Because incorrect flow measurements would have an impact on all loadings reported for that facility, all data for 21 facilities from PCS were removed from further analysis. Based on examining monitoring data reported for dioxin in PCS, all dioxin data were also excluded from the analysis. Many dioxin records were listed as below detec-

tion, and thus treated as zero discharge. EPA had little confidence in the remaining detectable levels because of problems with measurement units and other concerns. No facilities from TRI were removed from the analysis.

More than 25,500 individual records of direct or indirect pollutant releases to surface water from point sources were examined in the screening-level loading analysis for their potential to contribute to sediment contamination. Releases of 111 different chemicals including divalent metals (i.e., cadmium, copper, lead, nickel, and zinc); mercury; other metals; polynuclear aromatic hydrocarbons (PAHs); pesticides; polychlorinated biphenyls (PCBs); and other organic compounds were analyzed. The 1993 TRI data have release records for 60 of these chemicals, and the 1994 PCS data have release records for 108 of these chemicals.

PCS records show that direct releases of sediment contaminants from 4,869 facilities totaled nearly 19 million lb/yr in 1994. Based on 1993 TRI data, direct releases and transfers to POTWs (multiplied by 0.25 to account for removal during treatment) from 3,432 manufacturing facilities totaled 7.3 million lb/yr. Facilities with chemical release records in PCS and/or TRI were located in all 50 states, the District of Columbia, Puerto Rico, and the Virgin Islands. Over 1,000 individual watersheds, as defined by USGS 8-digit cataloging units, receive loads of potential sediment contaminants as reported by PCS and TRI. This corresponds to approximately one-half of all watersheds in the United States. Individual facilities are placed into 31 distinct industrial categories. These categories represent a broad range of activities (e.g., POTWs, chemical manufacturers, textile mills, coal mines).

Analysis by Chemical

Table 4-1 presents the annual release, adjusted load, and Load Score for each of the 60 chemicals included in the loading analysis for TRI data. The CLS and the number of facilities reporting surface water releases or POTW transfers for each chemical are also included in Table 4-1. Based on TRI data, xylene, nickel, and copper have the largest aggregate Load Scores. Together with the next seven chemicals listed in Table 4-1 (lead, toluene, phenol, chromium, 1,1,1-trichloroethane, trichloromethane, and benzene), all with Load Scores greater than 80, the top 10 chemicals represent more than 69 percent of the aggregate Load Score for data from TRI.

Table 4-2 shows the corresponding information for the 108 chemicals included in the loading analysis for PCS data. Based on PCS data, zinc, copper, and nickel have the largest aggregate Load Scores. Together with the next 10 chemicals listed in Table 4-2 (cadmium, silver, mercury, lead, chromium, arsenic, PCBs, benzo(a)pyrene, antimony, and tetrachloroethene), all with Load Scores greater than 80, the top 13 represent more than 86 percent of the aggregate Load Score for data from PCS.

Several chemicals have large aggregate national raw loads and are released from a large number of facilities (i.e., zinc and copper), whereas other chemicals (e.g., chlordane) appear to represent a few isolated releases. Tables 4-1 and 4-2 also present the distribution of records by Load Score. The Load Score distribution is skewed to the right for most chemicals. That is, most records indicate a low Load Score (i.e., less than 3); substantially fewer records have large Load Scores. This assessment transforms the adjusted load for each analyzed record to a Load Score from zero to five representing the magnitude of the CLS * ACL product. This approach minimizes the impact of a small number of very large release records that account for the majority of adjusted load and appropriately focuses attention on

				Annual			Distribut	ion of Load	Distribution of Load Score by Facility	acility		Total
Chemical Class	Chemical	Number of Facilities	CLS	Release (Ib/yr)	Adjusted Load	0	1	2	3	4	s	Load Score
Other	Xylenes	429	1.6E-01	216,429	3.5E+04	179	86	129	24	11	•	460
Divalent Metal	Nickel	673	9.7E-02	62,936	6.1E+03	354	233	76	10	1	'	415
Divalent Metal	Copper	1,092	1.9E-02	80,855	1.5E+03	730	339	22	1	r	'	386
Divalent Metal	Lead	317	2.3E-02	31,596	7.3E+02	218	91	7	1	1	'	108
Other	Toluene	513	2.5E-03	375,394	9.4E+02	437	56	19	1	ı	1	16
Other	Phenol	313	1.1E-03	1,081,204	1.2E+03	243	46	22	2	1	ı	96
Metal	Chromium	578	1.4E-02	43,481	6.1E+02	492	76	10	1	1	•	96
Other	Trichloroethane, 1,1,1-	209	1.3E-01	26,026	3.4E+03	138	53	13	5	'	'	94
Other	Trichloromethane	141	1.2E-03	602,141	7.2E+02	69	55	16	1	'	'	06
Other	Benzene	192	1.3E-02	95,948	1.2E+03	134	37	18	3	1	•	82
Other	Tetrachtoroethene	78	6.5E-02	37,904	2.5E+03	43	17	13	5	1	'	58
Divalent Metal	Zinc	129	1.2E-02	92,386	1.1E+03	88	34	5	2		'	50
PAH	Naphthalene	121	1.4E-02	37,211	5.2E+02	83	30	7	1	'	ľ	47
Other	Pentachlorophenol	23	7.9E-01	2,824	2.2E+03	3	6	3	8	1	•	39
Other	Biphenyl	64	2.6E-03	203,381	5.3E+02	38	16	8	2	1	1	38
Other	Acrylonitrile	47	4.7E-02	53,565	2.5E+03	26	6	6	2	1	1	37
Other	Trichloroethene	120	1.7E-02	16,662	2.8E+02	16	25	3	1		•	34
Other	Xylene, o-	28	1.5E-01	6,743	1.0E+03	6	6	11	2	1	-	34
Other	Diethyl phthalate	33	7.1E-02	75,866	5.4E+03	6	20	1	2	1	1	32
Metal	Silver	30	1.4E+00	802	1.1E+03	6	18	4	2	ľ	1	32
Mercury	Mercury	14	7.0E+00	271	1.9E+03		3	5	6	1	•	31
Other	Bis(2-ethylhexyl) phthalate	58	2.7E-02	7,843	2.1E+02	34	18	6	ł	'	•	30
Other	Dichloroethane, 1,2-	35	1.8E-02	10,281	1.9E+02	14	14	7	r	ſ	-	28
Divalent Metal	Cadmium	29	5.2E-01	951	4.9E+02	13	7	7	2	1	1	27
Metal	Antimony	52	2.5E-02	17,873	4.5E+02	35	10	5	2	•	1	26
Other	Tetrachloromethane	26	1.3E-01	1,872	2.4E+02	10	6	7	F		•	23

Table 4-1. Analysis of TRI Data by Chemical (Sorted by Descending Load Score)

4-3

National Sediment Contamination Point Source Inventory

		Number of		Annual Beleace	Adjustad		Distribu	tion of Los	Distribution of Load Score by Facility	/ Facility		Total
Chemical Class	Chemical	Facilities	CLS	(lb/yr)	Load	0	1	2	e	4	s	Score
Other	Dichlorobenzene, 1,2-	16	8.6E-02	9,872	8.5E+02	4	4	9	7	1	'	22
PAH	Anthracene	18	5.5E-01	741	4.1E+02	4	7	0	1	•	1	22
Other	Xylene, m-	13	1.6E-01	11,140	1.8E+03	5	4	5	1		1	21
Other	Xylene, p-	13	1.6E-01	8,679	1.4E+03	4	2	6		1	'	18
Other	Trichlorobenzene, 1,2,4-	28	4.2E-03	43,813	1.8E+02	16	7	5	,	1	•	17
Other	Cresols	37	1.4E-02	14,512	2.0E+02	24	10	2		1	'	17
Other	Dichloropropane, 1,2-	8	2.2E-01	4,812	1.1E+03	'	2	4	2	ľ		16
Metal	Arsenic	40	7.1E-02	1,731	1.2E+02	27	10	3		ł	•	16
Other	Trichloroethane, 1,1,2-	12	2.0E-01	2,430	4.9E+02	3	4	4		1		15
Other	Chlorobenzene	34	2.0E-02	5,651	1.1E+02	21	11	2	ľ	1	'	15
Other	Dimethyl phthalate	18	1.7E-02	33,101	5.6E+02	∞	7	1	2	-	'	15
Other	Hexachlorobenzene	5	3.4E+00	539	1.8E+03	1	1	1	4	1	1	14
Other	Dichloromethane	184	2.4E-04	273,711	6.6E+01	173	11	'	I	-	'	11
Other	Tetrachloroethane, 1,1,2,2-	7	3.0E-01	2,969	8.9E+02	Э		1	2	1	I	6
Other	Dichlorobenzene, 1,4-	7	8.3E-02	2,173	1.8E+02	2	2	3	T	'	•	∞
Other	Hexachlorobutadiene	4	1.9E-01	1,204	2.3E+02	1	1	-	1	•	1	6
Pesticide	Chlordane	1	5.0E+02	28	1.4E+04	'	1	'	ľ	t		ς.
Pesticide	BHC, gamma/Lindane	2	2.1E+02	2	3.2E+02	 	'	-	1	t	'	S
Other	Dimethylphenol, 2,4-	6	2.0E-02	1,509	3.0E+01	2	3	1	1	1	'	5
Other	Cresol, m-	8	1.4E-02	3,040	4.3E+01	4		1	'	1	1	5
PCB	Polychlorinated biphenyls	1	2.9E+02	66	1.9E+04	1	 	•	1	1	1	5
Other	Di-n-butyl phthalate	28	5.5E-03	5,830	3.2E+01	25	2		'	1	1	4
Pesticide	Methoxychlor	1	5.8E+01	5	2.9E+02	•		ľ	1	1	ľ	3
Other	Hexachloroethane	2	5.9E-02	291	1.7E+01	1	'	1	'	1	1	2
Pesticide	Heptachlor	1	5.8E+00	13	7.3E+01	•	1	1	'	T	'	6
Other	Cresol, o-	9	3.5E-03	10,394	3.6E+01	5	I	1	t	'	1	2

Table 4-1. (Continued)

í

 Table 4-1. (Continued)

		Number of		Annual Release	A directed		Distribu	tion of Loa	Distribution of Load Score by Facility	Facility		Total
Chemical Class	Chemical	Facilities	CLS	(lb/yr)	Load	0	1	5	£	4	S	Load Score
Other	Cresol, p-	6	6.5E-05	217,420	1.4E+01	∞	1	1	'	1	'	2
Other	Dichlorobenzene, 1,3-	4	1.9E-02	523	9.9E+00	2	2	'	3	1	ŀ	2
Other	Butyl benzyl phthalate	45	1.5E-03	4,950	7.4E+00	44	-			'		1
Other	Ethylbenzene	220	2.8E-04	29,600	8.3E+00	219	-	1		1	1	1
Other	Acetone	469	3.5E-06	3,064,869	1.1E+01	469		'		ŀ	ľ	0
Other	Trichlorofluoromethane	6	2.8E-05	1,700	4.8E-02	6	ŀ	1				0
Other	Methyl ethyl ketone	254	5.4E-07	386,356	2.1E-01	254	•			1	ŀ	0
Other	Dibenzofuran	. 5	7.3E-03	136	9.9E-01	S	·	l	t		'	0

Table 4-2. Analysis of PCS Data by Chemical (Sorted by Descending Load Score)

		Nimite - e		Annual			Distributi	ion of Loa	Distribution of Load Score by Facility	Facility		Total
Chemical Class	Chemical	Facilities	CLS	Kelease (lb/yr)	Load	0	1	5	3	4	5	Load Score
Divalent Metal	Zinc	3,018	1.2E-02	10,194,441	1.2E+05	1,478	946	449	112	33	-	2,312
Divalent Metal	Copper	2,765	1.9E-02	3,123,697	5.9E+04	1,633	780	283	57	12	•	1,565
Divalent Metal	Nickel	1,320	9.7E-02	1,014,946	9.8E+04	463	431	320	92	13	I	1,404
Divalent Metal	Cadmium	1,153	5.2E-01	188,980	9.8E+04	546	363	188	47	8	1	917
Metal	Silver	675	1.4E+00	535,437	7.SE+05	179	197	214	63	20	2	904
Mercury	Mercury	749	7.0E+00	28,592	2.0E+05	269	233	172	62	6	4	819
Divalent Metal	Lead	2,018	2.3E-02	654,901	1.5E+04	1,491	376	128	21	2	'	703
Metal	Chromium	1,456	1.4E-02	525,942	7.4E+03	. 1,061	301	86	7	1	1	498
Metal	Arsenic	498	7.1E-02	504,168	3.6E+04	265	138	72	20	2	, 1	355
PCB	Polychlorinated biphenyls	62	2.9E+02	1,611	4.7E+05	12	و	13	14	13	4	146
PAH	Benzo(a)pyrene	54	4.2E+01	476	2.0E+04	3	13	10	22	9	•	123
Metal	Antimony	138	2.5E-02	255,532	6.4E+03	78	37	18	4	1	-	89
Other	Tetrachloroethene	163	6.5E-02	117,021	7.6E+03	101	41	17	3	1	-	88
Other	Bis(2-ethylhexyl) phthalate	180	2.7E-02	41,963	1.1E+03	124	39	14	3	-	-	76
Other	Xylenes	277	1.6E-01	18,816	3.0E+03	228	36	8	4	1	-	68
Pesticide	BHC, gamma- \ Lindane	32	2.1E+02	140	2.9E+04	6	4	10	8	3	1	65
PAH	Benzo(a)anthracene	35	1.1E+01	347	3.8E+03	8	. 6	8	13	ı	-	61
PAH	Benzo(b)fluoranthene	34	4.8E+00	423	2.0E+03	5	6	13	7	1	1	56
Other	Hexachlorobenzene	40	3.4E+00	327	1.1E+03	12	12	12	4	-	-	48
Other	Trichloromethane	323	1.2E-03	1,003,597	1.2E+03	290	24	9	3	1	-	45
Pesticide	Chlordane	18	5.0E+02	57	2.9E+04	2	2	5	5	3	1	44
PAH	Benzo(k)fluoranthene	. 32	4.7E+00	283	1.3E+03	8	6	10	5	'	1	44
Other	Trichloroethane, 1,1,1-	144	1.3E-01	12,076	1.6E+03	111	25	7	•	. 1	•	43
PAH	Pyrene	40	1.4E+00	450	6.3E+02	14	12	13	1	•	1	41
Other	Tetrachloromethane	58	1.3E-01	190,869	2.5E+04	33	19	3	1	1	1	37
Other	Trichloroethene	204	1.7E-02	33.202	5.6E+02	180	15	7	2	•	1	35

.

Results of Screening-Level Analyses

4-6

_	
_	-
	_
	_
-	-
<u> </u>	-
	-
-	
	-
- 6	ъ.
7	•
(¥.
-	
	۰.
~	-
~	-
	-
~	;
0	i
5	i
5	i
1-2	i
4-2.	i
4-2	i
4-2.	i
5 4 -2, (i
P 4-2 (1
P 4.2.	
le 4.2. (
) <u>4.2</u> (
hle 4.2 (
hle 4.2 (
ahle 4.2 (
able 4.2 (
Pable 4.2 (

- Crantediat Fedilities Custandiat Custa			Number of		Annual Release	Adinsted		Distribu	tion of Loa	Distribution of Load Score by Facility	Facility		Total
Diemond/Mundhenee 11 22640 38 13646 -	Chemical Class	Chemical	Facilities	CLS	(lb/yr)	Load	0	1	2	3	4	s	Load Score
t Bacacare 450 1.26 -0 8.630 1.26 -0 3.56 -0 $3.$	AH	Dibenzo(a,h)anthracene	11	2.2E+02	58	1.3E+04	<u> </u>		3	4	4	'	34
diage DDT LB-GC 391 S.2B-GC 391 S.2B-GC 391 39-GC 32 3	Other	Benzene	458	1.3E-02	88,624	1.2E+03	437	10	9	2		-	34
(m) (m) <td>besticide</td> <td>DDT</td> <td>14</td> <td>2.1E+02</td> <td>391</td> <td>8.2E+04</td> <td>3</td> <td>-</td> <td>5</td> <td>3</td> <td></td> <td>2</td> <td>30</td>	besticide	DDT	14	2.1E+02	391	8.2E+04	3	-	5	3		2	30
IToluene 430 $153, 171$ $3.394, 02$ 410 11 8 1	Dther	Dichloropropane, 1,2-	40	2.2E-01	3,544	7.8E+02	18	16	4	2	1		30
ide Transforme ide 450-00 560-00 240-00 2 3 5 4 1 1 1 ide Delotion Delotion 21 1.66-00 230 3.00-00 1 4 1 1 1 1 1 1 Chopsene Delotion 233 1.06-00 230 1.16-00 230 1.16-00 23 1.16-00 23 1 <td< td=""><td>)ther</td><td>Toluene</td><td>430</td><td>2.5E-03</td><td>155,171</td><td>3.9E+02</td><td>410</td><td>=</td><td>8</td><td>1</td><td>1</td><td>,</td><td>30</td></td<>)ther	Toluene	430	2.5E-03	155,171	3.9E+02	410	=	8	1	1	,	30
dide Didution 12 1.6.E+05 37 6.0E+16 1 2 4 1 1 1 Chrysene 20 1.0E+00 2x6 3.0E+02 2x8 1.4 10 9 -	esticide	Toxaphene	15	4.6E+01	96	4.4E+03	2	3	5	4	1		29
Chrystene Chrystene 33 1.0E4:00 296 3.0E4:00 14 10 9 -	esticide	Dieldrin	12	1.6E+03	377	6.0E+05	-	ε	, 2	4	-	F	28
	AH	Chrysene	33	1.0E+00	296	3.0E+02	14	10	6	•	'	'	28
Petatechorophenol 22 $7.9c_{11}$ $1.3p_{10}$ $1.1B_{10}$ 10 7 1 <	ther	Trichlorocthane, 1,1,2-	50	2.0E-01	698	1.4E+02	28	11	5			•	27
Anthracene 32 $5.5-01$ 339 $1.9E+02$ 13 11 8 $ -$ PCB-1242 16 $2.9E+02$ 5 $1.6E+03$ 2 6 3 5 $ -$ <td< td=""><td></td><td>Pentachlorophenol</td><td>. 32</td><td>10-36'L</td><td>1,395</td><td>1.1E+03</td><td>14</td><td>10</td><td>7</td><td>1</td><td></td><td>-</td><td>27</td></td<>		Pentachlorophenol	. 32	10-36'L	1,395	1.1E+03	14	10	7	1		-	27
PCB-1242 $IcdIcd29E+02Icd<$	AH	Anthracene	32	5.5E-01	339	1.9E+02	13	=	8				27
PCB-1248 14 2.9E+02 11 3.1E+03 2 9 1 3 1 4 3 1 1 1 Indexo(1.23-cd)pyrene 12 1.3E+01 01 8.0E+02 2 3 3 4 4 3 3 4 1 3 1 <	B	PCB-1242	16	2.9E+02	S.	1.6E+03	2	9	3	S	'	'	27
Indeno(1,2,3-cd)pyrene 12 1.3B+01 of 8.0E+02 2 3 4 5 1 5 1 Pertoritor Dichorethane, 1,2- 89 1.8E+02 3 3 4 1 4 5 1 5 1 5 1 5 1 5 1 5 1 </td <td>8</td> <td>PCB-1248</td> <td>14</td> <td>2.9E+02</td> <td>11</td> <td>3.1E+03</td> <td>2</td> <td>4</td> <td>4</td> <td>9</td> <td>1</td> <td></td> <td>25</td>	8	PCB-1248	14	2.9E+02	11	3.1E+03	2	4	4	9	1		25
PCB-1016 12 2.9E+02 3 8.3E+02 2 9 14 1 4 2 9 Phenanthrene 45 1.5E-01 26,362 4.0E+02 73 12 4 2 1 2 Dichtorethare, 1.2- 89 1.8E-02 8,700 1.6E+02 73 12 4 2 2 2 Dichtorethare, 1.2- 89 1.8E-02 1.462 1.462 1.3E+02 7 4 3 4 3 2 2 2 Dichtorethare, 1.2- 84 8.6E-02 1.462 1.3E+02 29 11 4 3 4 3 2 2 2 Dichtorethare, 1.4- 8.6E-02 1.462 1.3E+02 29 1 4 3 2 <td< td=""><td>ΛH</td><td>Indeno(1,2,3-cd)pyrene</td><td>12</td><td>1.3E+01</td><td>61</td><td>8.0E+02</td><td>3</td><td>ŝ</td><td></td><td>4</td><td></td><td></td><td>21</td></td<>	ΛH	Indeno(1,2,3-cd)pyrene	12	1.3E+01	61	8.0E+02	3	ŝ		4			21
Phenanthread 45 1.5E-01 26,362 4.0E+03 29 14 1 - 1 - <	ß	PCB-1016	12	2.9E+02	3	8.3E+02	2	ю	3	4	,		21
Dichloroethame, 1,2- 89 1,8E,42 8,700 1.6E+02 73 12 4	НИ	Phenanthrene	45	1.5E-01	26,362	4.0E+03	29	14			-	1	20
PCB-1254 13 2.9B+02 3 7.7B+02 3 7 9	ther	Dichloroethane, 1,2-	68	1.8E-02	8,700	1.6E+02	73	12	4	'			20
Dichlotobenzene, 1,2- 44 8,6E-02 1,462 1,3E+02 29 11 4 -	ß	PCB-1254	. 13	2.9E+02	3	7.7E+02	3	۳ ۳	4	Э	'		20
PCB-1260 12 2.9E+02 ··2 7.2E+02 2 4 3 3 3 - - - ide DDD 11 2.6E+02 70 1.8E+04 4 1 3 2 2 1 1 Dichlorobenzene, 1,4- 50 8.3E+02 1,492 1.2E+02 34 14 2 2 2 7 1 PCB-1221 11 2.9E+02 1,492 1.2E+02 34 14 2 2 2 2 7 1 PCB-1221 11 2.9E+02 3 9.6E+02 34 14 2 2 2 2 7 1 1 1 1 1 2 1 1 2 1	ther	Dichlorobenzene, 1,2-	44	8.6E-02	. 1,462	1.3E+02	29	Ξ	4		,	1	19
ide DDD 11 2.6E+02 70 1.8E+04 4 1 3 2 - 1 1 Dichlorobenzene, 1,4- 50 8.3E-02 1,492 1.2E+02 34 14 2 - 1 1 PcB-1221 11 2.9E+02 3 9.6E+02 2 3 3 3 3 -	f	PCB-1260	12	2.9E+02	.2	7.2E+02	2	4	3	3			19
Dichlorobenzene, 1,4 50 8.3E-02 1,492 1.2E+02 34 14 2 -	sticide	DDD	11	2.6E+02	70	1.8E+04	4	-	3	2			18
PCB-1221 11 2.9E+02 3 9.6E+02 2 3 3 3 3 -	ther	Dichlorobenzene, 1,4-	50	8.3E-02	1,492	1.2E+02	34	14	5	1	'	1	18
PCB-1232 11 2.9E+02 2 7.2E+02 2 3 3 3 3 - -	CB	PCB-1221	11	2.9E+02	3	9.6E+02	2	۳			,	'	8
ide DDE 11 3.4E+02 1,145 3.9E+05 4 1 4 1 - 1 Hexachlorobutadiene 35 1.9E-01 455 8.6E+01 20 14 1 - 1 1 - 1 - 1 - 1 - 1	B	PCB-1232	11	2.9E+02	2	7.2E+02	2		3	3		•	18
Hexachlorobutadiene 35 1.9E-01 455 8.6E+01 20 14 1 -	sticide	DDE	11	3.4E+02	1,145	3.9E+05	4	H	4	-	•	11	17
	her	Hexachlorobutadiene	35	1.9E-01	455	8.6E+01	20	14	-		'	,	16

National Sediment Contamination Point Source Inventory

				Annual		Distributio	Distribution of Load Score by Facility	Score by I	acility			Total
Chemical Class	Chemical	Number of Facilities	CLS	Release (lb/yr)	Ajdusted Load	0	1	2	3	4	5	Load Score
Pesticide	Aktrin	14	4.5E+02	2	7.3E+02	5	4	4	1	•		15
Other	Acrylonitrik	41	4.7E-02	1,784	8.4E+01	29	10	2	-	t	1	14
Other	Dicthyl phthalate	43	7.1E-02	4,377	3.1E+02	33	8	1	1	-	1	13
PAH	Fluorene	35	1.2E-01	422	5.1E+01	23	11	1	1	-	1	13
Other	Dibromochloromethane	38	2.1E-02	10,335	2.2E+02	28	8	1	1	1	1	13
PAH	Fluoranthene	42	1.2E-01	373	4.5E+01	29	13	,	-		1	13
Pesticide	BHC, alpha-	10	2.6E+02	30	7.9E+03	5	,	3	1	1	ı	13
PAH	Acenaphthylene	31	1.2E-01	394	4.7E+01	20	10	1	-	I		12
Pesticide	Heptachlor epoxide	10	3.6E+02	2	6.3E+02	4	1	4	1	1	t	12
Pesticide	BHC, beta-	10	2.4E+02	2	4.5E+02	5	1	4	1		'	11
Other	Tetrachloroethane, 1,1,2,2-	14	3.0E-01	614	1.8E+02	7	5	1	1	ı	ı	10
Other	Nitrosodiphenylamine, N-	12	4.4E-01	2,329	1.0E+03	6	4	1	1	1	1	6
PAH	Acenaphthene	38	4.9E-02	793	3.9E+01	31	6	1	T	I	ı	8
PAH	Benzo(ghi)perykne	12	8.0E-01	65	5.2E+01	6	4	2	1		ı	8
Pesticide	Heptachlor	14	5.8E+00	56	3.2E+02	10	2	1	1	I	1	7
Pesticide	Endosulfan, alpha-	12	3.7E+01	3	9.7E+01	7	3	2	-		1	· L
Other	Hexachloroethane	32	5.9E-02	377	2.2E+01	26	6	I	1		1	6
Pesticide	Endrin	20	9.3E-01	868	8.1E+02	16	3	1	1	I	1	6
Other	Dichloromethane	212	2.4E-04	175,765	4.2E+01	207	4	1	I	ı	1	6
PAH	Naphthalene	122	1.4E-02	5,276	7.4E+01	118	3	1	1	-	,	5
Other	Chlorobenzene	55	2.0E-02	1,364	2.7E+01	50	5		1	-	1	5
Pesticide	Methoxychlor	1	5.8E+01	66	5.7E+03	1	I	1	I	1	t	4
Other	Tribromomethane	22	3.0E-02	4,611	1.4E+02	20	1	_	1	,	-	4
Pesticide	Diazinon / Spectracide	1	9.7E+02	6	5.6E+03	1	I		-	1	I	4
Other	Phenol	158	1.1E-03	14,248	1.6E+01	155	3		1	1	-	3
Pesticide	Endosultan mixed isomers	11	3.4E+00	5	1.7E+01	6	1	1		,		3

Table 4-2. (Continued)

1

4-8

Table 4-2. (Continued)

CLS (0xy) Ladd 0 1 2 3 1 2 $3.9E+01$ $2.0E+01$ 3 1			Number of		Annual Release	A d fuetad		Distribu	tion of Loa	Distribution of Load Score by Facility	Facility		Total
ctube Dehotorbuneters 5 8,96.02 2.23 1,58.400 75 2 2 2 Dehotorbuneters Dehotorbuneters 77 5.58.03 2.725 1,58.400 73 2 </th <th>Chemical Class</th> <th>Chemtcal</th> <th>Facilities</th> <th>CLS</th> <th>(lb/yr)</th> <th>Load</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>s</th> <th>Load Score</th>	Chemical Class	Chemtcal	Facilities	CLS	(lb/yr)	Load	0	1	2	3	4	s	Load Score
ctube Disebury Inflution 77 5.5E/05 2.725 1.15E/01 75 2 2 2 2 2 cite BRC, dolut. 2.41 3.5E/05 5.5E/05 5.51 1.3E/01 3 2	Other	Dichlorobenzenes	5	8.9E-02	229	2.0E+01	3	-	I T		_ '		3
rt Dimetrylphanel, 2,4- 36 2,06-0 13,8-0 34 1,3-0 34 2 2 2 cide BHC, data. 9 9,28-00 1 1,48-01 8 7 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 <td>Other</td> <td>Di-n-butyl phthalate</td> <td><i>LL</i></td> <td>5.5E-03</td> <td>2,725</td> <td>1.5E+01</td> <td>75</td> <td>2</td> <td></td> <td>ľ</td> <td>1</td> <td>'</td> <td>2</td>	Other	Di-n-butyl phthalate	<i>LL</i>	5.5E-03	2,725	1.5E+01	75	2		ľ	1	'	2
differ BFC, delta: 9 9.28:40 1 1.46:401 8 - 1 - - tick Buotoutlin, beas. 9 7.68:40 2 1.36:401 7 2 - - - tick Bronophenyl phrayl ethot, 4 11 7.88:02 2.66:40 - 1 -<	Other	Dimethylphenol, 2,4-	36	2.0E-02		1.3E+01	34	2	1			1	2
defe EndoatIan, bear. 9 7.684.00 2 $1.36-01$ 7 2 $ -$ r Bromophenyl phrayl ethar, 4 11 $3.82.02$ 3.7 $4.47-00$ 10 1 $ -$ eide DCPA/Dachal 1 $ -$ eide Decomphenyl ethar, 4 14 $3.57.06$ 4.813 $1.77-02$ $ -$ <td< td=""><td>Pesticide</td><td>BHC, delta-</td><td>6</td><td>9.2E+00-</td><td>1</td><td>1.4E+01</td><td>8</td><td> '</td><td>1</td><td>'</td><td>ľ</td><td>-</td><td>2</td></td<>	Pesticide	BHC, delta-	6	9.2E+00-	1	1.4E+01	8	'	1	'	ľ	-	2
Bronophenyl phenyl ether, 4 11 7.8.0.2 57 4.46+00 10 1 \sim \sim cide DCPA/Dachal 1 9.26:03 266 3.66+00 \sim 1 \sim \sim cide Decomban 1.1 9.25:06 4813 1.75:02 1 \sim \sim \sim Thehouthounethane 9 2.5:04 4813 1.75:02 \sim	Pesticide	Endosulfan, beta-	6	7.6E+00	2	1.3E+01	7	2		'	-	'	2
olde DCRA/Dachai 1 9.28-03 286 2.66-40 - 1 - - Acetture Acetture 14 3.35-06 4.813 1.75-02 14 -<	Other	Bromophenyl phenyl ether, 4-	11	7.8E-02	57	4.4E+00	10	-	ŀ	'	1	•	1
Λ centone Λ centone 1 3.55 - 6 4.813 1.75 - 0.2 <th< td=""><td>Pesticide</td><td>DCPA/Dacthal</td><td>1</td><td>9.2E-03</td><td>286</td><td>2.6E+00</td><td>'</td><td>-</td><td></td><td>·</td><td></td><td> </td><td>1</td></th<>	Pesticide	DCPA/Dacthal	1	9.2E-03	286	2.6E+00	'	-		·			1
m Dichloroethane, 1,1- 63 1.T.E.05 1.067 1.8E-02 63 -	Other	Acetone	14	3.5E-06	4,813	1.7E-02	14		ŀ		,		0
Trichlorochane 9 $2.8E \cdot 05$ 7.086 $2.0E \cdot 01$ 9 $ -$ Isophoree 15 $2.0E \cdot 04$ 403 $8.1E \cdot 02$ 15 $ -$ -	Other	Dichloroethane, 1,1-	63	1.7E-05	1,067	1.8E-02	63			'	ŀ		0
isophorone 15 $2.0E-04$ 403 $8.1E-02$ 15 - <t< td=""><td>Other</td><td>Trichlorofluoromethane</td><td>6</td><td>2.8E-05</td><td>7,086</td><td>2.0E-01</td><td>6</td><td>1</td><td>1</td><td></td><td></td><td>•</td><td>0</td></t<>	Other	Trichlorofluoromethane	6	2.8E-05	7,086	2.0E-01	6	1	1			•	0
weityl tetryl ketone 4 $5.4E_0$ 29 $1.6E_0$ 4 $ -$ Buyl barzyl phthalate 20 $1.5E_0$ 316 $4.7E_0$ 20 $ -$ Kylene, o- 13 $1.5E_0$ $1.5E_0$ $1.5E_0$ $1.5E_0$ $1.7E_0$ $ -$	Other	Isophorone	15	2.0E-04	403	8.1E-02	15	·		ľ	ľ	1	0
Buryl berazyl printalate 20 1.5E.01 316 $4.7E.01$ 20 - <td>Other</td> <td>Methyl ethyl ketone</td> <td>4</td> <td>5.4E-07</td> <td>29</td> <td>1.6E-05</td> <td>4</td> <td></td> <td> '</td> <td>1</td> <td> '</td> <td>1</td> <td>0</td>	Other	Methyl ethyl ketone	4	5.4E-07	29	1.6E-05	4		'	1	'	1	0
Xylene, o-131.5E-0123.2E-01131 \cdot <	Other	Butyl benzyl phthalate	20	1.5E-03	316	4.7E-01	20	·	'	1	'		0
Cresol, o- 1 $3.5E.03$ 0 $1.7E.03$ 1 $ -$ Tetrachlorobenzene, $1,2,4,5$ - 1 $4.5E.02$ 0 $1.8E.03$ 1 $ -$ Haylbenzene, $1,2,4,5$ - 1 $4.5E.04$ 5.830 $1.6E+00$ 200 $ -$	Other	Xylene, o-	13	1.5E-01	2	3.2E-01	13	'	'	•	ľ	1	0
Tetrachtorobenzene, 1,2,4,5. 1 4,5E,02 0 1,8E-03 1 - </td <td>Other</td> <td>Cresol, o-</td> <td>1</td> <td>3.5E-03</td> <td>0</td> <td>1.7E-03</td> <td>1</td> <td> ·</td> <td></td> <td></td> <td>ľ</td> <td>1</td> <td>0</td>	Other	Cresol, o-	1	3.5E-03	0	1.7E-03	1	·			ľ	1	0
Bitiviburatene200 $2.8E-04$ $5,830$ $1.6E+00$ 200 $ -$ Xylene, p -12 $1.6E-01$ 3 $5.4E-01$ 12 $ -$ Cresol, p -11 $6.5E-05$ 6 $3.8E-04$ 11 $ -$ Xylene, m -91 $6.5E-05$ $ 0$ $3.8E-04$ 1 $ -$ Xylene, m -91 $6.5E-05$ 16 0 1 0 $ -$ Di-u-ocyl phthalate1 0 $1.6E-01$ 1 0 0 0 $ -$ Di-u-ocyl phthalate18 $1.8E-02$ 184 $3.3E+00$ 18 $ -$ Di-u-ocyl phthalate18 $1.8E-02$ 184 $3.3E+00$ 18 $ -$ Dimethyl phthalate31 $1.7E-02$ 305 $5.2E+00$ 31 $ -$ Dimethyl phthalate31 $1.7E-02$ 305 $5.2E+00$ 31 $ -$ Dimethyl phthalate1 $7.3E-03$ 305 $5.2E+00$ 31 $ -$ Dichlorobenzene, 1.3- $ -$ <t< td=""><td>Other</td><td>Tetrachlorobenzene, 1,2,4,5-</td><td>1</td><td>4.5E-02</td><td>0</td><td>1.8E-03</td><td>-</td><td> ·</td><td> ·</td><td>1</td><td>1</td><td></td><td>0</td></t<>	Other	Tetrachlorobenzene, 1,2,4,5-	1	4.5E-02	0	1.8E-03	-	·	·	1	1		0
Xylene, p- 12 1.6E-01 3 5.4E-01 12 - </td <td>Other</td> <td>Ethylbenzene</td> <td>200</td> <td>2.8E-04</td> <td>5,830</td> <td>1.6E+00</td> <td>200</td> <td></td> <td>ľ</td> <td> </td> <td>,</td> <td> </td> <td>0</td>	Other	Ethylbenzene	200	2.8E-04	5,830	1.6E+00	200		ľ		,		0
Cresol, p- 1 6.5E-05 6 3.8E-04 1 - <td>Other</td> <td>Xylene, p-</td> <td>12</td> <td>1.6E-01</td> <td>3</td> <td>5.4E-01</td> <td>12</td> <td>† -</td> <td></td> <td></td> <td>, </td> <td>'</td> <td>0</td>	Other	Xylene, p-	12	1.6E-01	3	5.4E-01	12	† -			, 	'	0
Xylene, m-91.6E-0119.9E-029Di-n-octyl phthalate181.8E-021843.3E+0018 <td>Other</td> <td>Cresol, p-</td> <td>1</td> <td>6.5E-05</td> <td>9</td> <td>3.8E-04</td> <td>I</td> <td> </td> <td></td> <td>'</td> <td> </td> <td>1</td> <td>0</td>	Other	Cresol, p-	1	6.5E-05	9	3.8E-04	I	 		'	 	1	0
Di-noctyl phthalate 18 1.8E-02 18 3.3E+00 18 -	Other	Xylene, m-	6	1.6E-01	1	9.9E-02	6	·	'	ŀ	'		0
Trichlorobenzene, 1,2,4- 41 4.2E-03 665 2.8E+00 41 - <td>Other</td> <td>Di-n-octyl phthalate</td> <td>18</td> <td>1.8E-02</td> <td>184</td> <td>3.3E+00</td> <td>18</td> <td></td> <td>† .</td> <td> </td> <td> '</td> <td> </td> <td>0</td>	Other	Di-n-octyl phthalate	18	1.8E-02	184	3.3E+00	18		† .		'	 	0
Dimethyl phthalate 31 1.7E-02 305 5.2E+00 31 -	Other	Trichlorobenzene, 1,2,4-	41	4.2E-03	665	2.8E+00	41		1	ſ	'	,	0
Dibenzofuran 1 7.3E-03 43 3.1E-01 1 - <td>Other</td> <td>Dimethyl phthalate</td> <td>31</td> <td>1.7E-02</td> <td>305</td> <td>5.2E+00</td> <td>31</td> <td> - </td> <td>1</td> <td> </td> <td></td> <td> </td> <td>0</td>	Other	Dimethyl phthalate	31	1.7E-02	305	5.2E+00	31	- 	1			 	0
Dichloroethene, trans-1,2- 68 8.7E-06 680 5.9E-03 68 - <td>Other</td> <td>Dibenzofuran</td> <td>1</td> <td>7.3E-03</td> <td>43</td> <td>3.1E-01</td> <td>III</td> <td> </td> <td>† -</td> <td> </td> <td> </td> <td>†</td> <td>0</td>	Other	Dibenzofuran	1	7.3E-03	43	3.1E-01	III	 	† -			†	0
Dichlorobenzene, 1,3- 34 1.9E-02 292 5.6E+00 34	Other	Dichloroethene, trans-1,2-	68	8.7E-06	680	5.9E-03	68	·	·	ľ	1	'	0
	Other	Dichlorobenzene, 1,3-	34	1.9E-02	292	5.6E+00	34	,	•	·		'	0

National Sediment Contamination Point Source Inventory

ued)
ontin
č v
4
ole

				Annual		Distributi	Distribution of Load Score by Facility	Score by F	^z acility			Total
Chemical Class	Chemical	Number of Facilities	CLS	Relcase (lb/yr)	Adjusted Load	0		2	3	4	5	Score
Pesticide	BHC, technical grade	2	4.8E+01	0	6.9E-01	2	1		-	,	1	0
Other	Pentachlorobenzene	1	1.6E-01	0	6.4E-03	1	•	1	ł			0
Pesticide	Mirex / Dechlorane	1	9.4E+01	0	3.7E-01	1	1	1	-	1	1	0
Pesticide	Chlorpyrifos \ Dursban	2	5.4E-02	10	5.5E-01	2	1	1	I			0

chemicals with a large number of potentially significant releases. The results for the DDT metabolite DDE illustrate this point. The adjusted load is very large, yet appears to be caused by a single release record. Although not ignoring the potential local importance of this individual release, the total Load Score reflects the overall national significance of point source DDE discharge.

Aggregate raw loads and Load Scores for individual chemicals are grouped by chemical class to determine which types of chemicals cause the greatest potential sediment hazard. Chemical classes are assigned in the following manner:

Divalent Metal: This group comprises five metal species (cadmium, copper, nickel, lead, and zinc) that are typically associated with acid-volatile sulfide (AVS). These metals have sulfide solubilities smaller than that of iron sulfide, making them less bioavailable as long as the AVS molar concentration (reservoir of sulfide anions in anoxic sediment) exceeds the sum of the molar concentrations of the simultaneously extracted metals.

Mercury: Mercury also has a sulfide solubility less than that of iron sulfide; however, mercury was not included with the other AVS metals because of the complicating factors of methylation in sediment and subsequent bioaccumulation. Unfortunately, the sediment chemistry screening value does not account for the effects of this bioaccumulation potential.

Other Metal: This group includes the remaining metals evaluated: antimony, arsenic, chromium, and silver.

Pesticide: This group includes chemicals that are usually large, complex, and manufactured to be biological inhibitors.

Polynuclear Aromatic Hydrocarbon (PAH): This group includes all polynuclear aromatic hydrocarbons, including those which are halogenated.

Polychlorinated Biphenyl (PCB): This group includes all measured PCBs whether reported as total PCBs or as one of seven aroclors. PCBs are highly toxic, highly bioaccumulative, and highly persistent.

Other Organic: This group includes the remaining organic chemicals not classified as pesticides, PAHs, or PCBs.

Table 4-3 depicts raw loads, adjusted load, and Load Scores by chemical class for TRI data. The TRI data show that other organic and divalent metal categories represent about 95 and 4 percent of the annual release, respectively. These same categories represent 54 and 36 percent of the Load Score. Metals (antimony, arsenic, chromium, and silver) account for 6 percent of the Load Score while less than 1 percent of the annual release. All other chemical groups account for less than 3 percent of the total Load Score for TRI data. Table 4-4 depicts raw loads, adjusted loads, and Load Scores by chemical class for PCS data. In contrast to the TRI data, divalent metals dominate the raw load and Load Score for PCS. The PCS data show that the divalent metal, other organic, and other metal categories represent 80, 10, and 10 percent of the Load Score. Mercury also contributes 7 percent to the aggregate Load Score. Contributions to the Load Score from pesticides, PAHs, and PCBs range from 3 to 5 percent.

				Di	stribution o	f Load Scor	e*		
Chemical Class	Annual Release (lb/yr)	Adjusted Load	0	1	2	3	4	5	Load Score
Divalent Metal	268,723	1.0E+04	1,403	704	117	16	-	· _	986
Mercury	271	1.9E+03	-	3	5	6	-	-	31
Metal	63,887	2.3E+03	560	114	22	4	-	-	170
Pesticide	47	1.5E+04	-	-	2	2	-	1	15
РАН	37,952	9.3E+02	87	37	13	2	÷	-	69
РСВ	66	1.9E+04		-	-	-	-	1	5
Other Organic	6,955,304	6.7E+04	2,785	554	332	74	15	-	1,500

Table 4-3.	. Analysis of TRI Data by Chemical Class	
------------	--	--

*Facilities are counted more than once since facilities may report loadings for more than one chemical per chemical class.

				Di	stribution of	f Load Scor	e -		
Chemical Class	Annual Release (lb/yr)	Adjusted Load	0	1	2	3	4	5	Load Score
Divalent Metal	15,176,965	3.9E+05	5,611	2,896	1,368	329	68	2	6,901
Mercury	28,592	2.0E+05	269	233	172	62	9	4	819
Metal	1,821,078	8.0E+05	1,583	673	390	94	24	3	1,846
Pesticide	3,646	1.2E+06	103	32	54	33	11	7	318
РАН	36,419	4.6E+04	323	134	84	56	11	-	514
PCB	1,641	4.8E+05	27	32	36	38	14	4	294
Other Organic	1,920,606	4.7E+04	3,381	386	126	31	4	1	752

Table 4-4. Analysis of PCS Data by Chemical Class

*Facilities are counted more than once since facilities may report loadings for more than one chemical per chemical class.

Analysis by Watershed

To evaluate watersheds, Load Scores are grouped by USGS hydrologic unit codes. The 8-digit hydrologic unit code is one of several ways to define a watershed, and it represents four levels of organization. The first two digits represent the region. USGS divides the contiguous United States into 18 distinct hydrologic regions based on river drainage. Alaska, Hawaii, and the Caribbean are regions 19, 20, and 21, respectively. Each region is divided into as many as 30 subregions, but typically regions contain approximately 10 subregions. Subregions are represented by the first 4 digits in the 8-digit code. Subregions can be further subdivided into as many as four accounting units, represented by the first 6 digits of the 8-digit code. Accounting units, in turn, can be subdivided into as many as 10 cataloging units, represented by the full 8-digit code. For the purposes of this study, Load Scores are summed according to USGS cataloging units (8-digit code). There are more than 2,100 cataloging units (watersheds) in the United States.

Based on the data from TRI and PCS, a total Load Score was computed for 733 and 861 watersheds, respectively. For watersheds represented by both TRI and PCS the higher of the two scores was applied. This approach resulted in a total Load Score for 1,020 watersheds. Selecting the maximum Load Score, rather than adding the results, eliminates problems asso-

ciated with double-counting releases; however, this approach may underestimate total releases and the "true" Load Score. Total Load Scores at the watershed level ranged from 0 to 312, although few were above 100. To divide individual watersheds into groups based on releases of sediment contaminants, EPA simply created quintiles within the 0 to 100 range. Watersheds with a total Load Score from 81 to 100 were assigned to priority group 1, or the first quintile. All watersheds with total Load Scores greater than 100 were also placed in the first quintile. Priority group 2 watersheds have a Load Score of 61 to 80. Priority group 3 watersheds have a Load Score of 41 to 60, and priority group 4 watersheds have a Load Score from 21 to 40. Priority group 5 watersheds have a Load Score from 1 to 20. Watersheds with no data or a Load Score of zero were not assigned to a priority group. Figure 4-1 presents the watersheds in the contiguous United States based on Load Score for priority groups 1 through 4.

Table 4-5 summarizes this information for each EPA region. The majority of priority group 1, 2, and 3 watersheds are in EPA Regions 2 and 5. Of the 1,020 watersheds evaluated, 17 watersheds were placed in priority group 1, 19 watersheds were placed in priority group 2, 29 watersheds were placed in priority group 3, 87 watersheds were placed in priority group 4, and 672 watersheds were placed in priority group 5. The remaining 196 watersheds had a Load Score of zero and were not assigned to a priority group. Appendix B contains a detailed table listing all of the 824 watersheds assigned to the 5 priority groups and includes information on the predominant chemical class and predominant industrial category associated with that chemical class. The following is a list of the 17 watersheds assigned to priority group 1:

Watershed Name	State Location
Narragansett	MA, RI
Lower Hudson	NY, CT, NJ
Hackensack-Passaic	NY, NJ
Sandy Hook-Staten Island	NY, NJ
Northern Long Island	NY
Southern Long Island	NY
Middle Delaware Musconetcong	PA, NJ
Lower Delaware	PA, NJ
Schuylkill	PA ·
Delaware Bay	NJ
Detroit	MI
Niagara	NY
Seneca	NY
Upper Ohio	WV, PA, OH
Lower Mississippi-Baton Rouge	LA
Buffalo-San Jacinto	TX
San Francisco Bay	CA

The general relationship between annual point source releases and results of the Survey evaluation demonstrate a co-occurrence of active discharge of sediment contaminants and evidence of sediment contamination. Figure 4-2 depicts this relationship by plotting the percent of monitoring stations with a high (Tier 1) or intermediate (Tier 2) probability of contamination in a watershed, as ascribed in the Survey, versus the watershed Load Score. Only those watersheds with at least one Tier 1 or Tier 2 station from the Survey evaluation and a Load Score above zero are plotted. In watersheds with Load Scores greater than 50,

4-14

Priority					EPA 1	Region					
Group	1	2	3	4	5	6	7	8	9	10	Total Watersheds ^e
1	2	10	4	0	. 2	2	0	0	1	0	17
2	0	- 2	1	4	11	0	0	. 1	4	0	19
3	2	7	5	4	: 10	2	2	. 0	4	0	29
4	7	9	11	24	28	5	2	3	5	6	87
5	27	29	69	182	134	111	75	47	32	29	672
TOTAL	38	57	90	214	185	120	79	51	46	35	824

Table 4-5. Number of Watersheds in Each Priority Group by EPA Region^{a,b}

"Watersheds may be reported in more than one EPA Region.

^bWatersheds with no reported data or a Load Score equal to 0 are not reported.

Total watersheds will not equal the sum of the Regional values because watersheds may be located in more than one EPA Region.

at least 70 percent of all monitoring stations within the watershed exhibit some degree of contamination. Watersheds with relatively low Load Scores vary greatly in the extent of contamination, demonstrating the importance of contaminant sources not documented in this study, such as historical releases and nonpoint sources.

Watersheds with high Load Scores are more likely to contain areas of probable concern for sediment contamination (APCs) in the Survey evaluation. In Figure 4-2, watersheds containing APCs are plotted as dark circles, whereas all other watersheds are plotted as cross marks. Overall, approximately 10 percent of watersheds receiving point source discharges contain APCs. However, it is apparent that the fraction of watersheds containing APCs increases as the Load Score increases. In fact, watersheds containing APCs constitute 75 percent (12 of 16) of priority group 1 watersheds. Figure 4-3 further illustrates this relationship. For priority groups 2 and 3, 37 and 35 percent of the watersheds contain APCs. For priority group 5, only 8 percent of the watersheds contain APCs. Less than 1 percent of the watersheds with a Load Score of zero contain APCs.

While this analysis does not imply that point sources caused the in-place contamination, it emphasizes the potential significance of contaminant releases in areas already contaminated. There are many sources of sediment contaminants in watersheds, both active and historical, point and nonpoint. This assessment identifies specific watersheds where active point sources might play an important role. To promote natural recovery of contaminated areas, active dischargers must be adequately controlled to ensure that their releases do not perpetuate contamination problems.

Analysis by Industrial Category

Facility-level Load Scores for chemical releases were summed by industrial categories, as assigned based on the primary SIC code reported in PCS or TRI. There are 31 industrial categories overall, covering a broad range of activities. Table 4-6 lists these industrial categories by descending Load Score for TRI data. Table 4-7 presents the same information for PCS data. For TRI data, metal products and finishing, primary metal industries, petro-leum refining, and industrial organic chemicals account for 67 percent of the Load Score. For PCS data, sewerage systems (i.e., POTWs), other public utilities, metal products and

Figure 4-2. Comparison of Survey evaluation to Load Score by watershed: percent of stations classified as Tier 1 or 2 as a function of Load Score.

finishing, and industrial organic chemicals account for 80 percent of the Load Score. POTWs alone account for 62 percent of the Load Score. It should be noted that public utilities include steam electric power generators, and EPA did not attempt to account for pollutants in the intake water used by the industry. For PCS, the dominant industrial categories are also the ones required to perform the most monitoring. Thus, these results reflect data availability as much as relative sediment hazard potential. Only five TRI facilities, but a significant number of PCS facilities (198), do not fall into the defined industrial categories or do not report a primary SIC code. These facilities are listed as "Nonclassifiable."

Tables C1 and C2 in Appendix C present Load Scores grouped by chemical for each industrial category for TRI and PCS, respectively. The number of facilities within the industrial category discharging each chemical, the raw load (lb/yr), and adjusted load are also presented. These tables are not comprehensive lists of all chemicals discharged from all facilities, but are limited to industrial category-chemical combinations where the Load Scores exceed 0. Tables 4-6 and 4-7 also present the number of facilities in each industrial category. Most of the PCS facilities (38 percent) included in the loading analysis are POTWs, with other public utilities, other trade and services, metal products and finishing, and primary metal industries also well represented.

Most of the TRI facilities (44 percent) are metal products and finishing operations. Primary metal industries, industrial organic chemicals, and other chemical products represent another 14, 7, and 6 percent of the represented facilities, respectively. Some industrial categories are not well represented in either PCS or TRI. This limited representation could be a result of many facilities within the industry not qualifying for major NPDES permits (which require monthly discharge monitoring for specific chemicals), not meeting the reporting requirements for TRI, or not having release records for pollutants retained in the loading analysis. National Sediment Contamination Point Source Inventory

Figure 4-3. Comparison of Survey evaluation to Load Score by watershed: (a) percent of stations classified as Tier 1 or 2 as a function of Load Score, (b) percent of watersheds that contain APCs by priority group.

4-17

		Annual	A 32		Dist	ribution of	f Load Sc	ore*		Load
Industrial Category	Number of Facil.	Release (lb/yr)	Adjusted Load	0	1	2	3	4	5	Score
Metal Products and Finishing	1,501	508,725	1.3E+04	1,838	565	99	13	1	-	806
Primary Metal Industries	488	289,375	2.4E+04	608	269	56	10	-	1	416
Petroleum Refining	128	755,797	1.8E+04	333	127	92	16	8	-	39
Industrial Organic Chemicals	244	1,747,680	2.9E+04	454	90	50	13	2	1	242
Other Chemical Products	215	82,406	4.5E+03	386	63	34	4	1	-	147
Industrial Inorganic Chemicals	61	98,805	6.2E+03	85	25	34	14	-	-	135
Paper and Allied Products	170	1,515,980	1.1E+03	299	83	22	1	-	-	130
Plastic Materials and Synthetics	140	385,059	2.4E+03	232	35	31	4	-	-	10
Textile Products	70	272,467	7.1E+03	33	18	23	8	2	-	· 9
Pharmaceuticals	84	1,368,481	5.1E+03	139	31	13	8	1	-	8:
Lumber and Wood Products	52	10,766	2.4E+03	63	23	8	8	-	-	` 6
Pesticides	24	7,466	9.6E+02	43	13	4	3		-	3
Rubber and Plastics Products	86	97,542	9.9E+02	99	20	3	1	-	-	2
Food and Kindred Products	21	23,427	2.4E+02	. 8	10	5	-	-	-	2
Furniture and Fixtures	20	10,452	1.6E+02	38	7	6	-	-	-	1
Stone, Clay, and Glass Prod.	44	21,619	2.4E+02	46	10	2	1	-	-	1'
Leather and Leather Products	19	5,257	8.6E+01	14	6	3	-	-	-	1:
Petroleum and Coal Products	13	119,502	7.1E+01	28	3	3	-	-	-	
Printing and Publishing	37	3,323	3.2E+01	. 54	6	1	-	-	-	
Nonclassifiable	5	1,150	3.6E+01	7	3	2	-	-	-	
Other Trade and Services	9	922	2.3E+01	24	5	-	-	-	-	
Tobacco Products	1	51	2.0E-01	4	-	-	-	-	-	

Table 4-6. Analysis of TRI Data by Industrial Category Sorted by Descending Load Score)

Facilities are counted more than once since facilities may report loadings for more than one chemical.

Conclusions

EPA conducted the screening-level sediment loading analysis of the Point Source Inventory data to obtain more information about potential sediment contamination and its sources, and to prioritize chemicals, watersheds, and industries for further evaluation. The inventory is limited by the quality, quantity, coverage, and bias of the release data in TRI and PCS. The loading analysis is limited by the lack of consideration of site-specific information, the lack of pollutant transport analysis, and the uncertainty associated with the components of the chemical-specific chemical load scores. For these reasons, the results should be used for screening purposes only, not as a definitive judgment regarding the most significant sediment contaminants, the most affected watersheds, or the most important industrial categories.

This study indicates that point source releases of sediment contaminants to surface water are ongoing and, in many cases, coincident with areas where there is evidence of contamination. TRI and PCS contain records of approximately 25,500 individual point

Table 4-7. Analysis of PCS Data by Industrial Category (Sorted by Descending Load Score)

		Annual			Dis	tribution o	f Load Sc	ore*		
Industrial Category	Number of Facil.	Release (lb/yr)	Adjusted Load	0	1	2	3	4	5	Load Score
Sewerage Systems	1,854	9,633,326	2.4E+06	3,957	2,584	1,425	416	79	15	7,073
Public Utilities	542	2,323,268	1.3E+05	1,064	220	155	71	16	2	817
Metal Products and Finishing	443	1,703,481	3.4E+05	1,303	298	104	25	13	1	638
Industrial Organic Chemicals	140	1,533,573	6.6E+04	747	259	100	35	10	- 1	609
Primary Metal Industries	268	463,543	2.5E+04	545	215	94	30	5	-	513
Plastic Materials and Synthetics	108	258,689	1.1E+04	406	152	58	17	2	-	327
Industrial Inorganic Chemicals	101	341,325	1.7E+04	224	87	52	16	5	-	259
Other Trade and Services	479	99,958	9.6E+03	1,326	95	25	5	2	-	168
Petroleum Refining	132	648,506	8.5E+03	186	85	36	1	2	-	168
Metal Mining	65	310,246	4.7E+03	150	69	39	1	1	-	154
Paper and Allied Products	109	519,868	7.4E+03	124	67	32	4	1	-	147
National Security	32	138,848	6.2E+04	88	36	25	3	1	1	104
Nonclassifiable	198	50,066	1.2E+03	482	43	16	4	-	-	87
Other Chemical Products	57	33,154	1.6E+03.	108	39	16	4	-	-	83
Textile Products	.61	608,873	9.8E+03	84	. 35	6	. 3	2	-	64
Food and Kindred Products	51	40,327	5.7E+02	73	16	14	1	-	-	47
Rubber and Plastics Products	48	124,606	3.3E+04	100	11	6	3	1	1	41
Pharmaceuticals	36	104,286	7.9E+02	86	22	4	2	-	-	36
Pesticides	16	11,916	2.5E+02	22	9	7	-	-	-	23
Nonmetallic Mineral Mining	15	4,456	1.1E+03	23	10	3	1	-	-	19
Lumber and Wood Products	23	7,494	8.7E+02	38	7	2	1	-	-	14
Stone, Clay, and Glass Products	38	5,970	2.0E+02	67	7	3	-	-	-	13
Furniture and Fixtures	7	957	8.6E+01	22	5	2	-	-	-	9
Leather and Leather Products	10	5,678	8.0E+01	13	3	3	-	-	-	9
Printing and Publishing	5	840	8.4E+01	8	6	1	-	-	-	. 8
Coal Mining	5	603	5.3E+01	7	4	1	-	-	-	6
Petroleum and Coal Products	11	14,712	1.5E+03	· 16	-	1	-	1	-	6
Construction	3			9	1	-	-	-	-	1
Oil and Gas Extraction	11	213	4.9E+00	17	1	-	-	-	-	1
Grain Production	1	62	7.6E-01	2	· _	-	-	-	-	0

aFacilities are counted more than once since facilities may report loadings for more than one chemical.

source releases of 111 different sediment contaminants into over 1,000 watersheds across the country from 31 distinct industrial categories. Direct releases from 4,869 facilities in PCS totaled nearly 19 million pounds per year in 1994. Based on 1993 TRI data, direct releases and transfers to POTWs (multiplied by 0.25 to account for removal during treatment) from 3,432 manufacturing facilities totaled 7.3 million lb/yr. Assuming that there is some overlap between TRI and PCS, these databases together indicate that major municipal and industrial facilities release about 20-25 million pounds of sediment contaminants annually. This analysis indicates that metals and organic chemicals other than pesticides, PAHs, and PCBs constitute the most extensive potential sediment hazard from point sources. Although important in some instances, releases of PAHs, pesticides, and PCBs appear to be less prevalent. Survey evaluation results (Volume 1) indicate that other organic chemicals, as a class of pollutants, are not as significant as other classes. The potential sediment hazard posed by metals represents the most substantial area of agreement between the Point Source Inventory loading assessment and the Survey evaluation, on both an individual chemical basis and a watershed basis. The Point Source Inventory and Survey both rely on correlative, statistically based threshold values to evaluate the potential adverse effects of metals in sediment. Although these correlative thresholds are useful, they are limited in their application because they do not directly address the bioavailability of metals in sediment. This report further emphasizes the need for the development of practical assessment tools to evaluate the bioavailability and toxicity of metals in sediment.

The watersheds identified in this analysis represent areas where sediment contaminants are discharged; they do not necessarily represent locations where sediment contamination has occurred or will occur. Watersheds, as defined by the USGS 8-digit cataloging unit, can represent large areas encompassing large mainstem rivers and small tributary streams that vary greatly in size, shape, and physical/chemical characteristics. Transport, sediment partitioning, and sediment accumulation—whether in locations very close to the point of discharge or far downstream—depend on many factors, including streamflow, stream velocity, geomorphology, particle size distribution, organic carbon content, suspended sediment load, temperature, pH, and salinity. However, comparison with existing sediment monitoring data provides further means of screening watersheds where point sources are more likely to contribute to contamination.

A watershed with a high Load Score is more likely to contain one of the 96 areas of probable concern for sediment contamination (APCs) in the Survey evaluation. The draft EPA report Environmental Goals for America With Milestones for 2005 (USEPA, 1996a) proposes that the Agency, together with its state partners, adequately control point sources of contamination over the next 10 years in 10 percent of the watersheds where sediment contamination is of probable concern. Specifically, major facility discharge limits need to be evaluated and appropriately revised in watersheds at greatest risk from active discharges. The objective of these evaluations should be to determine whether existing technology-based controls or water quality-based discharge limits protect downstream sediment quality to the degree necessary for natural recovery of contaminated sites. EPA is currently developing the methodology to relate point source contributions to sediment contaminant concentrations. This methodology is needed before developing permit limits protective of sediment quality. This report identifies 29 watersheds that both contain APCs from the Survey and are in Load Score priority group 1, 2, or 3 from this analysis. These watersheds should be considered for further evaluation and necessary action to achieve the milestone in EPA's Goals Report.

References

- Adams, W.J. 1994. Director, Environmental Toxicology, Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO. Letter to Catherine Fox, U.S. Environmental Protection Agency, Washington, DC. April 30. Subject: Review of March 9, 1994, Draft National Sediment Contaminant Point Source Inventory.
- Barrick, R., S. Becker, L. Brown, H. Beller, and R. Pastorok. 1988. Volume 1. Sediment quality values refinement: 1988 update and evaluation of Puget Sound AET. EPA Contract No. 68-01-4341. Bellevue, WA: PTI Environmental Services.
- Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas, and P.R. Paquin. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. *Envir. Toxicol. and Chem.* 10:1-43.
- FDEP. 1994. Approach to the assessment of sediment quality in Florida coastal water, Vol.1 Development and evaluation of sediment quality assessment guidelines. Prepared for Florida Department of Environmental Protection, Office of Water Policy, Tallahassee, FL, by MacDonald Environmental Sciences Ltd., Ladysmith, British Columbia.
- Howard, P.H., ed. 1991a. Handbook of environmental fate and exposure data for organic chemicals. Chelesa, MI: Lewis Publishers, Inc.
- Howard, P.H., ed. 1991b. Handbook of environmental degradation rates. Chelsea, MI: Lewis Publishers, Inc.
- Karickhoff, S.W., and J.M. Long. 1995. Internal report on summary of measured, calculated, and recommended log K_{ow} values. Prepared for Elizabeth Southerland, Chief, Risk Assessment and Management Branch, Standards and Applied Sciences Division, Office of Water, by Environmental Research Laboratory-Athens.
- Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environ. Manage*. 19(1):81-97.
- Lyman W.J., W.F. Reehl, and D.H. Rosenblatt. 1982. Handbook of chemical property estimation methods—Environmental behavior of organic compounds. New York, NY: McGraw-Hill Book Company.
- Pait, A.S., A.E. DeSouza, and D.R.G. Farrow. 1992. Agricultural pesticide use in coastal areas: A national summary. Office of Ocean Resources Conservation and Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce.

SRC. 1993. CHEMFATE database retrieval. Syracuse Research Corporation.

- USEPA. 1989. Computer data base of physical/chemical properties for SARA 313 chemicals. Washington, DC: U.S. Environmental Protection Agency, Office of Toxic Substances.
- USEPA. 1990a. Hazard Ranking System, Final Rule. U.S. Environmental Protection Agency. *Fed. Regist.*, December 14, 1990, 55:241.
- USEPA. 1990b. The Environmental Fate/Groundwater Branch Office of Pesticide Programs database compiled from OPP file and literature review. OPP Database. Washington, DC: U.S. Environmental Protection Agency, Office of Pesticide Programs.
- USEPA. 1991. Risk Reduction Engineering Laboratory (RREL) Treatability Database. Cincinnati, OH: U.S. Environmental Protection Agency.
- USEPA. 1992a. Permit Compliance System generalized retrieval manual. Washington, DC: U.S. Environmental Protection Agency. PCS-GR92-1.01.
- USEPA. 1992b. Sediment classification methods compendium. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA 823-R-92-006.
- USEPA. 1993a. Sediment quality criteria for the protection of benthic organisms: Acenaphthene. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-013.
- USEPA. 1993b. Sediment quality criteria for the protection of benthic organisms: Dieldrin. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-015.
- USEPA. 1993c. Sediment quality criteria for the protection of benthic organisms: Endrin. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-016.
- USEPA. 1993d. Sediment quality criteria for the protection of benthic organisms: Fluoranthene. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-012.
- USEPA. 1993e. Sediment quality criteria for the protection of benthic organisms: Phenanthrene. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-014.
- USEPA. 1993f. Technical basis for deriving sediment quality criteria for nonionic organic contaminants for the protection of benthic organisms by using equilibrium partitioning. Washington, DC: U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-011.
- USEPA. 1993g. *Quantitative Structure Activity Relationship (QSAR)*. Duluth, MN: U.S. U.S. Environmental Protection Agency, Office of Water. EPA-822-R-93-014.

Ref-2

- USEPA. 1993h. Superfund Chemical Data Matrix (SCDM). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- USEPA. 1996a. Environmental goals for America, with milestones for 2005. Draft. Washington, DC: U.S. Environmental Protection Agency, Office of Policy, Planning, and Evaluation.
- USEPA. 1996b. The national sediment quality survey: A report to Congress on the extent and severity of sediment contamination in surface waters of the United States. Draft. Washington, DC: U.S. Environmental Protection Agency, Office of Science and Technology.
- Verschueren, K. 1983. *Handbook of environmental data on organic chemicals*. 2nd ed. New York, NY: Van Nostrand Reinhold and Co.
- Worthing, C.R., and R.J. Hance. 1991. *The pesticide manual: A world compendium*. 9th ed. Farnham, Surry, United Kingdom: The British Crop Protection Council.

Ref-4

Appendix A

Chemical Load Scores and Supporting Data

.

. .

·

. - · · ·

		-					
		Chemical	TOXICITY	FATE.	Aqueous Biodeoradation	Air-Water	Adsorntion
CAS Chemical Name ^a	Chemical Class	Score	Score	Score	Score	Partition Score	Score
83329 Acenaphthene	PAH	4.9E-02	7.7E-01	6.3E-02	4.0E-01	3.0E-01	5.2E-01
208968 Acenaphthylene	PAH	1.2E-01	1.6E+00	7.9E-02	2.4E-01	6.0E-01	5.6E-01
67641 Acetone	Other	3.5E-06	2.7E-03	1.3E-03	2.8E-02	4.6E-01	1.0E-01
107131 Acrylonitrile	Other	4.7E-02	1.5E+01	3.1E-03	9.1E-02	3.4E-01	1.0E-01
309002 Aldrin	Pesticide	4.5E+02	8.6E+02	5.3E-01	2.3E+00	2.3E-01	1.0E+00
120127 Anthracene	PAH	5.5E-01	9.1E-01	6.0E-01	1.8E+00	5.1E-01	6.6E-01
7440360 Antimony	Metal	2.5E-02	5.0E-03	5.0E+00	1.0E+01	1.0E+00	5.0E-01
7440382 Arsenic	Metal	7.1E-02	1.4E-02	5.0E+00	1.0E+01	1.0E+00	5.0E-01
71432 Benzene	Other	1.3E-02	1.8E+01	7.7E-04	6.3E-02	1.0E-01	1.2E-01
56553 Benzo(a)anthracene	PAH	1.1E+01	5.8E+00	2.0E+00	2.7E+00	8.0E-01	9.1E-01
50328 Benzo(a)pyrene	PAH	4.2E+01	5.8E+01	7.2E-01	2.1E+00	3.4E-01	1.0E+00
205992 Benzo(b)fluoranthene	PAH	4.8E+00	5.8E+00	8.3E-01	2.4E+00	3.4E-01	1.0E+00
191242 Benzo(ghi)perylene	PAH	8.0E-01	3.8E-01	2.1E+00	2.6E+00	8.1E-01	1.0E+00
207089 Benzo(k)fluoranthene	PAH	4.7E+00	5.8E-01	8.2E+00		9.7E-01	1.0E+00
319846 BHC, alpha-	Pesticide	2.6E+02	1.0E+03	2.6E-01	5.3E-01	1.0E+00	4.9E-01
319857 BHC, beta-	Pesticide	2.4E+02	1.0E+03	2.4E-01	4.9E-01	1.0E+00	4.9E-01
319868 BHC, delta-	Pesticide	9.2E+00	9.0E+01	1.0E-01	4.0E-01	9.6E-01	2.7E-01
58899 BHC, gamma-/Lindane	Pesticide	2.1E+02	2.7E+02	7.8E-01	1.6E+00	1.0E+00	4.8E-01
608731 BHC, technical grade	Pesticide	4.8E+01	2.7E+02	1.8E-01	4.0E-01	1.0E+00	4.5E-01
92524 Biphenyl	Other	2.6E-03	9.1E-01	2.8E-03	2.8E-02	1.9E-01	5.3E-01
117817 Bis(2-ethylhexyl) phthalate	Other	2.7E-02	5.3E-01	5.2E-02	9.1E-02	5.7E-01	1.0E+00
101553 Bromophenyl phenyl ether, 4-	Other	7.8E-02	7.7E-01	1.0E-01	4.0E-01	3.4E-01	7.6E-01
85687 Butyl benzyl phthalate	Other	1.5E-03	9.1E-02	1.7E-02	2.8E-02	8.4E-01	7.2E-01
7440439 Cadmium	Divalent Metal	5.2E-01	1.0E-01	5.0E+00	1.0E+01	1.0E+00	5.0E-01
57749 Chlordane	Pesticide	5.0E+02	2.1E+02	2.4E+00	5.5E+00	4.4E-01	1.0E+00
108907 Chlorobenzene	Other	2.0E-02	1.2E+00	1.7E-02	5.9E-01	1.0E-01	2.8E-01
2921882 Chlorpyrifos/Dursban	Pesticide	5.4E-02	1.7E-01	3.2E-01	4.0E-01	1.0E+00	8.1E-01
7440473 Chromium	Metal	1.4E-02	2.7E-03	5.0E+00	1.0E+01	1.0E+00	5.0E-01
218019 Chrysene	PAH	1.0E+00	3.6E-01	2.9E+00	4.0E+00	8.0E-01	9.1E-01
7440508 Copper	Divalent Metal	1.9E-02	3.7E-03	5.0E+00	1.0E+01	1.0E+00	5.0E-01
108394 Cresol, m-	Other	1.4E-02	1.4E+00	1.0E-02	1.1E-01	9.1E-01	1.0E-01
95487 Cresol, o-	Other	3.5E-03	1.4E+00	2.5E-03	2.8E-02	9.1E-01	1.0E-01
106445 Cresol, p-	Other	6.5E-05	2.8E-01	2.4E-04	2.6E-03	9.1E-01	1.0E-01
1319773 Cresols	Other	1.4E-02	1.4E+00	9.8E-03	1.1E-01	8.6E-01	1.0E-01
1861321 DCPA/Dacthal	Pesticide	9.2E-03	4.9E-02	1.9E-01	3.6E-01	1.0E+00	5.1E-01
72548 DDD	Pesticide	2.6E+02	3.7E+01	7.1E+00	1.0E+01	7.1E-01	1.0E+00
72559 DDE	Pesticide	3.4E+02	7.2E+01	4.7E+00	1.0E+01	4.7E-01	1.0E+00
50293 DDT	Pesticide	2.1E+02	3.7E-02	5.6E+00	1.0E+01	5.6E-01	1.0E+00

Table A-1. Chemical Load Scores (Sorted by Chemical Name)

A-3

National Sediment Contaminant Point Source Inventory

			Chemical			Aqueous		Sediment
CAS	Chemical Name [*]	Chemical Class	Load	TOXICITY	FATE	Blodegradation	Air-Water	Adsorption
84742	84742 Di-n-butyl phthalate	Other	5.5E-03	9.1F-07	SCOLE 6 1E-02	300FC	rarution Score	Score
117840	117840 Di-n-octyl phthalate	Other	1.8E-02	1.6E-01	1.1E-01	1.1E-01		10-77.0
333415	333415 Diazinon/Spectracide	Pesticide	9.7E+02	5.3E+03	1.9E-01	4.0E-01		4 7F-01
53703	53703 Dibenzo(a,h)anthracene	PAH	2.2E+02	5.8E+01	3.7E+00	3.7E+00	1.0E+00	1.0E+00
132645	132649 Dibenzofuran	Other	7.3E-03	5.0E-01	1.5E-02	1.1E-01	2.4E-01	5.5E-01
124481	124481 Dibromochloromethane	Other	2.1E-02	2.3E+00	9.3E-03	7.1E-01	1.0E-01	1.3E-01
95501	95501 Dichlorobenzene, 1,2-	Other	8.6E-02	2.9E+00	2.9E-02	7.1E-01	1.0E-01	4.1E-01
541731	541731 Dichlorobenzene, 1,3-	Other	1.9E-02	5.9E-01	3.2E-02	7.1E-01	1.0E-01	4.5E-01
106467	106467 Dichlorobenzene, 1,4-	Other	8.3E-02	2.9E+00	2.9E-02	7.1E-01	1.0E-01	4.1E-01
25321226	25321226 Dichlorobenzenes	Other	8:9E-02	2.9E+00	3.0E-02	7.1E-01	1.0E-01	4.2E-01
75343	75343 Dichloroethane, 1,1-	Other	1.7E-05	2.7E-03	6.1E-03	6.1E-01	1.0E-01	1.0E-01
107062	107062 Dichloroethane, 1,2-	Other	1.8E-02	2.5E+00	7.3E-03	7.1E-01	1.0E-01	1.0E-01
156605	156605 Dichloroethene, trans-1,2-	Other	· 8.7E-06	1.4E-02	6.4E-04	5.9E-02	1.0E-01	1.1E-01
75092	75092 Dichloromethane	Other	2.4E-04	2.1E-01	1.1E-03	1.1E-01	1.0E-01	1.0E-01
78875	78875 Dichloropropane, 1,2-	Other	2.2E-01	1.9E+00	1.2E-01	5.1E+00	2.3E-01	1.0E-01
60571	60571 Dieldrin	Pesticide	1.6E+03	8.1E+02	2.0E+00	4.3E+00	5.7E-01	8.4E-01
84662	84662 Diethyl phthalate	Other	7.1E-02	1.6E+00	4.5E-02	2.2E-01	1.0E+00	2.0E-01
131113	131113 Dimethyl phthalate	Other	1.7E-02	6.3E+00	2.8E-03	2.8E-02	1.0E+00	1.0E-01
105679	105679 Dimethylphenol, 2,4-	Other	2.0E-02	4.8E+00	4.3E-03	2.8E-02	9.0E-01	1.7E-01
115297	115297 Endosulfan mixed isomers	Pesticide	3.4E+00	1.9E+02	1.8E-02	5.5E-02	6.0E-01	5.6E-01
959988	959988 Endosulfan, alpha-	Pesticide	3.7E+01	3.4E+02	1.1E-01	4.0E-01	6.0E-01	4.5E-01
33213659	33213659 Endosulfan, beta-	Pesticide	7.6E+00	7.1E+01	1.1E-01	4.0E-01	6.0E-01	4.5E-01
72208	72208 Endrin	Pesticide	9.3E-01	2.4E+01	3.9E-02	7.9E-02	6.4E-01	7.7E-01
100414	100414 Ethylbenzene	Other	2.8E-04	2.1E-01	1.4E-03	4.0E-02	1.0E-01	3.4E-01
206440	206440 Fluoranthene	PAH	1.2E-01	1.6E-01	7.6E-01	1.7E+00	5.6E-01	7.8E-01
86737	86737 Fluorene	PAH	1.2E-01	1.9E+00	6.5E-02	2.4E-01	4.7E-01	5.8E-01
76448	76448 Heptachlor	Pesticide	5.8E+00	2.3E+02	2.6E-02	2.6E-01	1.0E-01	1.0E+00
10245/3	102457/3 Heptachlor epoxide	Pesticide	3.6E+02	4.5E+02	7.9E-01	2.2E+00	4.8E-01	7.6E-01
118/41	118/41 Hexachlorobenzene	Other	3.4E+00	4.3E+00	7.9E-01	8.3E+00	1.0E-01	9.5E-01
8/683	8/683 Hexachlorobutadiene	Other	1.9E-01	3.7E+00	5.1E-02	7.1E-01	1.0E-01	7.1E-01
67721	67/721 Hexachioroethane	Other	5.9E-02	1.0E+00	5.9E-02	7.1E-01	1.5E-01	5.3E-01
C65591	193395 Indeno(1,2,3-cd)pyrene	PAH	1.3E+01	5.8E+00	2.3E+00	2.8E+00	8.1E-01	1.0E+00
78591	78591 Isophorone	Other	2.0E-04	2.7E-02	7.4E-03	1.1E-01	6.7E-01	1.0E-01
7439921 Lead	Lead	Divalent Metal	2.3E-02	4.6E-03	5.0E+00	1.0E+01	1.0E+00	5.0E-01
7439976	7439976 Mercury	Mercury	7.0E+00	1.4E+00	5.0E+00	1.0E+01	1.0E+00	5.0E-01
72435	72435 Methoxychlor	Pesticide	5.8E+01	5.3E+01	1.1E+00	1.4E+00	1.0E+00	7.7E-01
78933	78933 Methyl ethyl ketone	Other	5.4E-07	4.6E-04	1.2E-03	2.8E-02	4.2E-01	1.0E-01
2385855	2385855 Mirex/Dechlorane	Pesticide	9.4E+01	6.6E-02	1.4E+00	1.4E+00	1.0E+00	1.0E+00

.

Table A-1. (Continued)

A4

ed)
inu
ont
Q
1.
le A

						Aqueous		Sediment
CAS	Chemical Name ^a	Chemical Class	Load Score	Score	FATE Score	Biodegradation Score	Air-Water Partition Score	Adsorption Score
91203 Naphthalene	hthalene	PAH	1.4E-02	2.1E+00	6.5E-03	7.9E-02	2.1E-01	3.9E-01
7440020 Nickel	kel	Divalent Metal	9.7E-02	1.9E-02	5.0E+00	1.0E+01	1.0E+00	5.0E-01
86306 Nitr	86306 Nitrosodiphenylamine, N-	Other	4.4E-01	7.7E+00	5.7E-02	1.3E-01	1.0E+00	4.2E-01
12674112 PCB-1016	3-1016	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
11104282 PCB-1221	3-1221	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
11141165 PCB-1232	3-1232	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
53469219 PCB-1242	3-1242	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
12672296 PCB-1248	3-1248	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
11097691 PCB-1254	3-1254	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
11096825 PCB-1260	3-1260	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
608935 Pent	608935 Pentachlorobenzene	Other	1.6E-01	1.4E+00	1.1E-01	1.4E+00	1.0E-01	8.1E-01
87865 Pent	87865 Pentachlorophenol	Other	7.9E-01	1.4E+00	5.5E-01	7.0E-01	1.0E+00	7.8E-01
85018 Phenanthrene	nanthrene	PAH	1.5E-01	5.6E-01	2.6E-01	7.9E-01	5.1E-01	6.6E-01
108952 Phenol	nol	Other	1.1E-03	8.3E-01	1.4E-03	1.4E-02	9.9E-01	1.0E-01
1336363 Poly	1336363 Polychlorinated biphenyls	PCB	2.9E+02	4.0E+02	7.4E-01	2.3E+00	3.6E-01	8.9E-01
129000 Pyrene	une .	PAH	1.4E+00	3.8E-01	3.5E+00	7.5E+00	6.0E-01	7.8E-01
7440224 Silver	er	Metal	1.4E+00	2.7E-01	5.0E+00	1.0E+01	1.0E+00	5.0E-01
95943 Tetr	95943 Tetrachlorobenzene, 1,2,4,5-	Other	4.5E-02	9.4E-01	4.8E-02	7.1E-01	1.0E-01	6.8E-01
79345 Tetr.	79345 Tetrachloroethane, 1,1,2,2-	Other	3.0E-01	5.6E+00	5.4E-02	7.1E-01	4.2E-01	1.8E-01
127184 Tetr.	127184 Tetrachloroethene	Other	6.5E-02	1.9E+00	3.4E-02	1.4E+00	1.0E-01	2.4E-01
56235 Tetr	56235 Tetrachloromethane	Other	1.3E-01	3.6E+00	3.6E-02	1.4E+00	1.0E-01	2.5E-01
108883 Tolucne	lene	Other	2.5E-03	1.1E+00	2.2E-03	8.7E-02	1.0E-01	2.6E-01
8001352 Toxaphene	aphene	Pesticide	4.6E+01	5.5E+01	8.3E-01	1.4E+00	6.7E-01	8.7E-01
75252 Trib.	75252 Tribromomethane	Other	3.0E-02	1.5E+00	2.0E-02	7.1E-01	1.6E-01	1.7E-01
120821 Trici	120821 Trichlorobenzene, 1,2,4-	Other	4.2E-03	1.1E-01	3.8E-02	7.1E-01	1.0E-01	5.4E-01
71556 Trici	71556 Trichloroethane, 1,1,1-	Other	1.3E-01	5.9E+00	2.1E-02	1.1E+00	1.0E-01	2.0E-01
79005 Trici	79005 Trichloroethane, 1,1,2-	Other	2.0E-01	1.6E+00	1.2E-01	1.4E+00	8.4E-01	1.0E-01
79016 Trici	79016 Trichloroethene	Other	1.7E-02	4.8E-01	3.5E-02	1.4E+00	1.0E-01	2.5E-01
75694 Tricl	75694 Trichlorofluoromethane	Other	2.8E-05	9.4E-04	3.0E-02	1.4E+00	1.0E-01	2.1E-01
67663 Trici	67663 Trichloromethane	Other	1.2E-03	1.7E-01	7.1E-03	7.1E-01	1.0E-01	1.0E-01
108383 Xylene, m-	sne, m-	Other	1.6E-01	4.0E+01	4.0E-03	1.1E-01	1.0E-01	3.6E-01
95476 Xylene, o-	sne, o-	Other	1.5E-01	4.0E+01	3.8E-03	1.1E-01	1.0E-01	3.4E-01
106423 Xylene, p-	sne, p-	Other	1.6E-01	4.0E+01	3.9E-03	1.1E-01	1.0E-01	3.5E-01
1330207 Xylenes	snes	Other	1.6E-01	4.0E+01	4.0E-03	1.1E-01	1.0E-01	3.6E-01
7440666 Zinc		Divalent Metal	1.2E-02	2.4E-03	5 OF+00	1 OF TO1	1 05100	S OF 01

toxicity information to calculate CLSs. Chemicals shown also have available data in PCS and/or TRI.

-
Name
Chemical
βV
Sorted
Values (
Screening
Chemistry
Sediment (
le A-2.
9

		5 - Y - C		- 1	Sediment					1444	
		Estimated Sediment Chemistry		Sediment Quality Criteria	Quanty Advisory Level	Effects Range-	Apparent Effects Threshold-	Probable	EPA Cancer	EFA Noncancer Hazard	Biota-Sediment
1	1	Screening Values	Guideline	(1%0C) AQ-SQC	(1%0C) AQ-SQAL	Median AQ-ERM	High AQ-AETH	Effects Level AQ-PEL	Risk 10 ⁵ HH-C	Quotient = 1 HH-NC	Accumulation Factor
CAS		_(uidd)	Type	(mdd)	c ;	(mdd)	(udd)	(mqq)	(mqq)	(mdd)	(unitless)
83329		<u>.</u>	AUSUC	Ω	Ĵ		7	0.0889		000	67.0
208968	-	0.64	AQ-EKM			0.64	1.3	0.128			
67641	-	370	HH-NC							1100	
98862	Acetophenone	"								1100	
107028	_	"								220	
107131		0.067	HH-C		-				0.2	11	
15972608	+								13	110	
116063	-	ľ								11	
CUUDUE	_	0.001	ЛН						0.0063	032	18
6253	_								61		2
120127	-	11	AO-FRM			1.1	13	0.245		3200	0.29
550000000	-	18	AO-SOAL		1	11	69	0.245		3200	0.29
7440360		200	AO-AETH		2		200			43	
7440382		UL	AO-FRM			02	002	416	0.062	3.2	and a subscription of the subscription of
0766101	-	2 "					221	2	0.49	380	
TAADROR	-	0							2.0	750	
CEPIL	_	0.057	ACCOAL		0.057				27	NC1	
92875					1000				0.00047	32	
56553		0.17	HH-C			1.6	5.1	0.693	0.15		0.29
339999955		0.17	HH-C			1.6	5.1	0.693	0.15		0.29
50328	Benzo(a)pyrene	0.017	HH-C			1.6	3.6	0.763	0.015		0.29
205992		0.17	HH-C				9.9		0.15		0.29
191242	Benzo(ghi)perylene	2.6	AQ-AETH	,			2.6				
207089	Benzo(k)fluoranthene	1.7	HH-C				9.6		1.5		0.29
65850	Benzoic acid	0.76	AQ-AETH				0.76			43000	
98077	Benzotrichloride	"							0.0083		
100516	Benzyl alcohol	0.87	AQ-AETH				0.87			3200	
100447		°							0.63		
7440417	Beryllium	9 							0.025	54	
319846		0.0010	AQ-PEL					0.00099	0.017		1.8
319857		010070	AQ-PEL.					66000'0	0.06		1.8
319868		0.011			0.13			0.00099	0.06		1.8
58899	_	0.0037	AQ-SQAL		0.0037			0.00099	0.083	3.2	1.8
608731	_	LE00.0	AQ-SQAL		LE00'0			66000'0	0.06	3.2	1.8
92524	-	1.1	AO-SOAL		1.1					540	0.29
111444	Bis(2-chloroethyl)ether	ľ							860.0		
108601	_	ľ							1.5	430	
117817	_	1.9	AQ-AETH				1.9	2.65	7.7	220	
542881		"							0.00049		
7440428		"								0/.6	
75274	_	ľ							17	220	
			and the second sec							1	

National Sediment Contaminant Point Source Inventory

٩,

Blota-Sediment Accumulation Factor	(unitless)	-	-	-					4.77	4.77	2	2.22	4.77	4.77									1.8		0.29									1.8	0.28	0.28	7.7	7.7	7.7	1.67	. 1.67	
5_1	(mdd)	220	2200	5.4	1100	24	1100	160	0.65	0.65	0.65	0.65	0.65	0.65	220	220	4300		270		860	54	32	54		400	540	540	54	54	430	22	220	110					5.4	5.4	5.4	110
EPA Cancer Risk 10 ⁵ HH-C	(udd)								0.083	0.083	0.083	0.083	0.083	0.083		0.4		0.057		8.3					15							0.13			0.45	0.45	0.32	0.32	0.32	0.32	0.32	
Probable Effects Level AQ-PEL	(mqq)			4.21					0.00479	0.00479	0.00479	0.00479	0.00479	0.00479										160	0.846	108					_				0.00781	0.00781	0.374	0.374	0.0517	0.00477	0.00477	
Apparent Effects Threshold- High	(mdd)		0.0	9.6																				270	9.2	1300	0.72	0.72	3.6	0.72					0.043	0.043	0.015	0.015	0.015	0.034	0.034	
Effects Range- Median AQ-ERM		-		9.6											-				_					370	2.8	270		_							0.027	0.027	0.027	0.027	0.0461	0.027	0.027	_
Sediment Quality Advisory Level (1%OC) AQ-SQAL	13		II												-0.82						-											_										
Sediment Quality Criteria (1%OC) AQ-SQC	(m/A)																												-													
Guideline Tune	AO-SOAL		AQ-SQAL	AQ-ERM					AQ-PEL	AQ-PEL	AQ-PEL	AQ-PEL	AQ-PEL	AQ-PEL	AQ-SQAL								HH-NC	AQ-ERM	AQ-ERM	AQ-ERM	AQ-AETH	AQ-AETH	AQ-AETH	AQ-AETH				HH-NC	AQ-ERM	AQ-ERM	HH-C	HH-C	HH-C	AQ-ERM	AQ-ERM	
Estimated Sediment Chemistry Screening Values (nnm)	1.3	,	11	9.6		- c	ľ	Ĭ	0.0048	0.0048	0.0048	0.0048	0.0048	0.0048	- 0.82	۱	٩	۳	"	"	٦	"	5.9	370	2.8	270	0.72	0.72	3.6	0.72	ľ	°I	Ĭ	20	0.027		0.014		0.014	0.027	0.027	۱
Chemical Name	Bromo		Butyl benzyl phthalate	-	Carbaryl/Sevin	Carbofuran/furadan	Carbon disulfide	-+	_	_		-+-	-+-	_					_	Chloromethane	_	_	Chlorpyrifos/Dursban					_	_	_	_			_	-	_	_	_	_			Decabromodiphenyl oxide
CAS	101553	1689845	85687	7440439	63252	1563662	75150	133904	57749	5103719	5103742	5566347	999999247	999999248	108907	51015	72003	4I0C/	110758	74873	18616	95578	2921882	7440473	218019	7440508	108394	95487	106445	1319//3	98828	21725462	57125	1861321	53190	72548	3424826	72559	0026666666	789026	50293	1163195

Table A-2. (Continued)

\sim
ð
ੁੁ
2
Ħ
5
$\overline{\mathbf{a}}$
\mathbf{z}
J
ಲ ನ
() () ()
A-2. ((
e A-2. ((
le A-2. ((
ble A-:
le A-(

.

	(22)	-	ㅋ	1.8	0.29	-	Γ	1-	T	TF	T -		न⊢	-	ï	T	न -	न	٦.	-	T	-1	Т	Т	-	ㅋ		1	Т	<u>1:8</u>	-1	-]-	-1	Т	Т	1	Т	-		Т	Т	┳	
Biota-Sediment Accumulation	Factor (unitless)				0										and a second of the second																												
EPA Noncancer Hazard Quotient = 1 HH-NC	(mdd)	1100	220	9.7		43		220	320	026	096	20	040	20	0000	1100	DOTT	15	12	077		650	32	110	86		3.2	5.4		0.54	8600	110000	MMMTT	770	4.5		4.3	22	77	=;			C 7 7
EPA Cancer Risk 10 ⁵ HH-C	(mdd)				0.015		0.077	13				45	45	0.24			-	710	01-0		;	14				1.6	0.62	0.37	0.24	0.0067	t									╋	;;	0.13	-
Probable Effects Level AQ-PEL	(mqq)				0.135																									0.0043													-
Apparent Effects Threshold- High AQ-AETH	(mqq)	1.4	6.2		0.97	1.7				0.05		0.12	0.05																	6	0.2	0.16	100	17'0									
Effects Range- Median AQ-ERM	(mda)				0.26																							-										-					
Quality Quality Advisory Level (1% OC) AQ-SQAL (nnm)	11		010000	0,0009		2				0.34	1.7	0.35	0.34		1.1														110	1170	<u>co.v</u>												
Quality Criteria (1% OC) AQ-SQC (mm)	(midd)																												110	11.0										-			-
Guideline Tyne	AO-SOAL	AO-AFTU	UTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT		НH-С	AQ-SQAL		HH-C		AQ-SQAL	AQ-SQAL	AQ-SQAL	AQ-SQAL			HH-NC	HH-C		HH-NC		ЛН-С	, ,				2		 	U-HE	AO-SOAL		AQ-AETH	AO-AETH										
Estimated Sediment Chemistry Screening Values (ppm)*	11	6.7	0.000	2000/0		2	ĩ	0.43	Ĩ	0.34	1.7	0.35	0.34	ٵ	°	367	0.4	ĩ	73	ľ	47		1	Ĩ	0.52	5 0 0	U		0 0012 HH-C	0.63		0.16	0.21		Ĩ	ľ	ٵ	ľ	ľ	"	٦	"	-
r. Chemical Name	84742 Di-n-butyl phthalate	117840 Di-n-octv1 nhthalate	333415 Diazinon/Snectracide	53703 Dihanzo(a h)anthracana		Diterro 2 11		Dibromochloromethane	1918009 Dicamba	Dichlorobenzene, 1,2-	Dichlorobenzene, 1,3-	106467 Dichlorobenzene, 1,4-	25321226 Dichlorobenzenes	Dichlorobenzidine, 3,3'-	75718 Dichlorodifluoromethane	Dichloroethane 1,1-	Dichloroethane 1,2-	Dichloroethene, 1,1-		Dichloroethylene, cis-1,2-		Dichlorophenol, 2.4-	94757 Dichlorophenoxyacetic acid. 2.4-	94826 Dichlorophenoxybutanoic acid. 2.4-	78875 Dichloronronane. 1.2.	542756 Dichloropropene. 1.3-	Dichlorvos	Dicofol/Kelthane	Dieldrin		119904 Dimethoxybenzidine, 3, 3'-	131113 Dimethyl phthalate	105679 Dimethylphenol, 2,4-	Dinitrobenzene, 1,2-	99650 Dinitrobenzene, 1,3-	100254 Dinitrobenzene, 1,4	51285 Dinitrophenol, 2,4-	121142 Dinitrotoluene, 2,4-	Dinitrotoluene, 2,6-	Dinoseb/DNBP	Diphenylhydrazine, 1,2-	Disulfoton	
CAS	84742	117840	333415	53703	127640	00120	27106	124481	1918009	10566	541731	106467	25321226	91941	75718	75343	107062	75354		156592	75092	120832	94757	94826	78875	542756	62737	115322	60571	84662	119904	131113	105679	528290	99650	100254	51285	121142	606202	88857	122667	298044	

ł

111

National Sediment Contaminant Point Source Inventory

		Estimated		Sediment	Sediment Quality		Apparent			EPA	
		Sediment Chemistry		Quality Criteria	Advisory Level	Effects Range-	Effects Threshold-	Probable	EFA Cancer	Noncancer Hazard	Bleta-Sediment
		Screening Values	Guideline	(1%0C) A0-S0C	(1%0C) A0-SOAL	Mcdian AO-ERM	High AO-AETH	Effects Level AO-PEL	Risk 10 ⁵ HH-C	Quotient = 1 HH-NC	Accumulation Factor
+	Chemical Name	(mqq)	Type	(mqq)	"(mqq)	(mqq)	(mdd)	(mqq)	(mqq)	(mqq)	(unMless)
115297	Endosulfan mixed isomers	0.0054	AQ-SQAL		0.0054			•		65	1.8
959988	Endosulfan, alpha-	0,0029	AQ-SQAL		0.0029					65	1.8
33213659	Endosulfan, beta-	0.014	AQ-SQAL		0.014					65	1.8
—	Endrin	0.042	AQ-SQC	0.042	0.042					3.2	1.8
563122	Ethion/Bladen	1	HH-NC							5.4	1.8
-	Ethyl acetate	ľ								9700	
	Ethylbenzene	4.8	AQ-SQAL		4.8		0.037			1100	1
	Ethylene dibromide	ľ							0.0013		
	Fluoranthene	6.2	AQ-SQC	6.2	6.2	5.1	30	1.494		430	0.29
86737	Fluorene	0.54	AQ-SQAL	_	0.54	0.54	3.6	0.144		430	0.29
	Fonofos	°								22	
76448	Heptachlor	0.0044	HH-C						0.024	5.4	1.8
1024573	Heptachlor epoxide	0.0022	нн-с						0.012	0.14	1.8
118741	Hexachlorobenzene	0.23	AQ-AETH				0.23		0.067	8.6	0.09
87683	Hexachlorobutadiene	72.0 ·	AQ-AETH	-			0.27		1.4	2.2	1
74474	Hexachlorocyclopentadiene	ľ									
67721	Hexachloroethane	1	AQ-SQAL		1				7.7	. 11	1
51235042	Hexazinone	້								360	
999999484	HMW_PAHs	9.6	AQ-ERM			9.6	69	6.676			
123319	Hydroquinone	ľ								430	
193395	Indeno(1,2,3-cd)pyrene	0.17	HH-C				2.6		0.15		0.29
78591	Isophorone	37	HH-C						110	2200	1
33820530	Isopropalin	ľ								160	
7439921	Lead	218	AQ-ERM			218	660	112			
	LMW PAHs	3.2	AQ-ERM			3.16	24	1.442			
121755	Malathion	0.0007	AQ-SQAL		0.00067					220	1.8
	Maleic anhydride	٦								1100	
	Manganese	ٵ								54	
	Mercury	0.71	AQ-ERM			0.71	2.1	0.696		1.1	
72435	Methoxychlor	0.019	AQ-SQAL		0.019					54	1.8
-	Methyl ethyl ketone	2200	HH-NC							6500	-
108101	Methyl isobutyl ketone	ຶ								860	
22967926	Methyl Mercury	°								- 1.1	
91576	Methylnaphthalene, 2-	0.67	AQ-ERM			0.67	1.9	0.201			
	Metribuzin	ໍ່ໄ								270	
2385855	Mirex/Dechlorane	0.015	HH-C						0.06	2.2	1.31
7439987	Molybdenum	٦ ١								54	
91203	Naphthalene	0.47	AQ-SQAL		0.47	2.1	2.7	0.391		430	0.29
91598	Naphthylamine, 2-	ٵ							0.00083		
7440020	Nickel	52	AQ-ERM			51.6		42.8		220	
98953	Nitrobenzene	"]								5.4	
100027	Nitrophenol, 4	°								670	

i.

Table A-2. (Continued)

A-10
~
Ð
e
3
ti
2
-2
\sim
S
-7- ()
A-2. (C
le A-2. (C
Table A-2. (C

Biota-Sediment	Accumulation Factor (unitless)						1.85	1.85	1.85	1.85	1.85	1.85	1.85	0.04							1.85					0.29											1	0.059	1	1	1		
	Quotient = 1 A HH-NC (ppm)					65	0.75	0.22	0.22	0.22	0.22	. 0.22	0.22	8.6	32	320		6500	2.2	22000	0.22	160	43	810	140	320				54	54	6500	2200		0.27	11	3.2	_		. 110	7.5	320	320
EPA Cancer	Risk 10 ⁵ HH-C (ppm)	0.02	0.015	22	0.0021		0.014	0.014	0.014	0.014	0.014	0.014	0.014		0.41	0.9					0.014						0.009	0.009	-		0.9			0.00000069				0.00000069	0.54	2.1	0.83		4.5
Probable Effects	Level AQ-PEL (ppm)						0.189	0.189	0.189	0.189	0.189	0.189	0.189				0.544		•		0.189					1.398		•		1.77													
Apparent Effects Threshold-	High AQ-AETH (ppm)			0.13			3.1	3.1	3.1	3.1	3.1	3.1	3.1			0.69	6.9	1.2			3.1					16				6.1										0.14			
Effects Range-	Median AQ-ERM (ppm)						0.18	0.18	0.18	0.18	0.18	0.18	0.18				1.5				0.18					2.6				3.7													
Sediment Quality Advisory Level	(1%OC) AQ-SQAL (ppm) ^b													0.69			1.8																						1.6	0.53	1.2		
Sediment Quality Criteria	(1% OC) AQ-SQC (DDM)													-			1.8																										
	Guideline Tvoe			AQ-AETH			HH-C	HH-C	HH-C	HH-C	HH-C	HH-C	HH-C	AQ-SQAL		AQ-AETH	AQ-SQC	AQ-AETH			нн-с					AQ-ERM				AQ-ERM							HH-NC	HH-C	HH-C	AQ-SQAL	HH-C		
Estimated Sediment Chemistry	Screening Values (ppm)*	ů	ו	0.13	"	Ĩ	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.69	<u>.</u>	0.69	1.8	1.2	ľ	°	0.0025	°	°	°.	ໍ່	2.6	•	9 	°	3.7		°	^c	°	°	"	1.1	0.0000039	0.18	0.53	0.28	°	"
ł	Chemical Name	Nitrosodi-	- ···	<u> </u>	—			····	-	-	96 PCB(Aroclor-1248)	-	25 PCB(Aroclor-1260)	35 Pentachlorobenzene	_							30 Prometon/Pramitol	96 Prometym/Caparol		57 Propachlor		25 Quinoline		32 SEM_est	_	49 Simazine						—	-	Tetrachloroethane, 1,1,2,2-		_		_
•	CAS	924163	621647	86306	55185	56382	12674112	11104282	11141165	53469219	12672296	11097691	11096825	608935	82688	87865	85018	108952	298022	85449	1336363	1610180	7287196	23950585	1918167	129000	91225	91225	88888888	7440224	122349	7440246	100425	888888881	13071799	886500	95943	1746016	79345	127184	56235	58902	961115

ued)
Contin
5.
le A-
Tab

		Т	TF	1 00	T.	-			1_		1_	1	T	T	T	1	1	Γ	Τ-	T		1_		1_		
Blota-Sediment	Accumulation Factor	(unutess)		1.8																						
EPA Noncancer Hazard	Quotient = 1 HH-NC	(PPHU)	2200		220	110	970	43	65	3200	110	1100		110	86	81	5.4	5.4	75	11000	22000	22000		22000	3200	
EPA Cancer	Risk 10 ⁵ HH-C	(IIIIda)		0.098	14			1.9	9.6		18		9.6			14		3.6								
Probable	Effects Level	(middl																							271	
	High AQ-AETH (nnm)	(mdd)				0.064															0.12	0.12	0.12	0.12	1600	
Effects Range-	Median AQ-ERM (nnm)	(midd)																							410	
Sediment Quality Advisory Level	AQ-SQAL		0.89	0.1	0.65	9.2	0.17		2.1												0.025	0.025	0.025	0.025		
Sediment Quality Criteria	(1%0C) AQ-SQC (nnm)																									
L	Guideline Tvne		AQ-SQAL	HH-C	AQ-SQAL	AQ-SQAL	AQ-SQAL	нн-с	AQ-SQAL	HH-NC	HH-C	•									AQ-SQAL	AQ-SQAL	AQ-SQAL	AQ-SQAL	AQ-ERM	
Estimated Sediment Chemistry	Screening Values (nnm)	ľ	0.89	0.018	0.65	9.2	0.17	0.63	2.1	1100	6.0	°	"	°	ľ	"	°		°	ľ	0.025	0.025	0.025	0.025	410	
	Chemical Name	Tin	Toluene	8001352 Toxaphene	Tribromomethane/Bromoform	Trichlorobenzene, 1,2,4-	Trichloroethane, 1,1,1-	79005 Trichloroethane, 1,1,2-	79016 Trichloroethene	Trichlorofluoromethane	67663 Trichloromethane/Chloroform	Trichlorophenol, 2,4,5-	88062 Trichlorophenol, 2,4,6-	Trichlorophenoxyacetic acid, 2,4,5-	Trichlorophenoxypropionic acid, 2,4,5	1582098 Trifluralin/Treflan	Trimethylbenzene, 1,2,4-	118967 Trinitrotoluene	Vanadium -	108054 Vinyl acetate	108383 Xylene, m-	95476 Xylene, o-		Xylenes	Zinc	
	CAS	7440315	108883	8001352	75252	120821	71556	79005	79016	75694	67663	95954	88062	93765	93721	1582098	95636	118967	7440622	108054	108383	95476	106423	1330207	7440666 Zinc	

"Screening values selected based on the following methods: (1) an aquatic life threshold was selected in descending order of availability: SQC, SQAL, ERM, AETH, PEL; (2) a human health threshold was calculated based on the TBP approach (see Site Inventory report) by dividing the lower of the available risk values by the default 3% lipids and the BSAF and multiplying by the default 1% organic carbon. The lower of the aquatic life or human health thresholds was then used as the screening value. ^bSQALs are not equivalent to SQCs.

Based on criteria presented in the Site Inventory (Appendix C), no BSAF could be developed for this chemical, and subsequently, a human health threshold could not be derived for this chemical. In addition, no aquatic life thresholds were available for this chemical; therefore, no screening value could be developed.

A-12

Table A-3. Physical and Chemical Properties (Sorted by Chemical Name)

	BIODEGRAD	AQUEOUS AEROBIC BIODEGRADATION HALF-LIFE	HENRY'S L	HENRY'S LAW CONSTANT	LOG OCTANC COEFFI	LOG OCTANOL-WATER PARTITION COEFFICIENT (log K _{ow})	PREDICTED SEDIMENT ADSORPTION
Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K_)
Acenaphthene	102	Howard et al., 1991	1.6E-04	USEPA, 1993h	3.92	-	7139
Acenaphthylene	60	Howard et al., 1991	1.1E-05	USEPA, 1993h	4.1	USEPA, 1993h	10730
Acetone	7	Howard et al., 1991	3.9E-05	USEPA, 1989	-0.24	8 .	1
Acetophenone	. 16	USEPA, 1993g	1.1E-05	Lyman et al., 1982	1.64		41
Acrolein	28	Howard et al., 1991	1.2E-04	USEPA, 1989	-0.01	e	1
Acrylonitrile	23	Howard et al., 1991	1.1E-04	USEPA, 1989	0.25	•	2
Alachlor/Lasso	100	USEPA, 1993g	9.0E-11	<u>م</u>	3.99	USEPA, 1993g	8365
Aldicarb/Temik	361	Howard et al., 1991	6.0E-09	Lyman et al., 1982	1.1	USEPA, 1993h	12
	592	Howard et al., 1991	3.2E-04	USEPA, 1989	6.5	e	2453466
Aniline	26	SRC, 1993	1.9E-06	USEPA, 1989	0.98	E	6
Anthracene	460	Howard et al., 1991	2.6E-05	P.	4.55	*	29712
Atrazine	742	SRC, 1993			2.6	USEPA, 1993h	. 360
Benzene	16	Howard et al., 1991	5.4E-03	م	2.13		124
Benzidine	8	Howard et al., 1991	3.9E-11	USEPA, 1989	1.66	F.	43
Benzo(a)anthracene	680	Howard et al., 1991	1.8E-06	Ĵ	5.7	F]	401218
Benzo(a)pyrene	530	Howard et al., 1991	1.1E-04	USEPA, 1993h	6.11	a]	1014869
Benzo(b)fluoranthene	610	Howard et al., 1991	1.1E-04	USEPA, 1993h	6.2	4	1244171
Benzo(ghi)perylene	650	Howard et al., 1991	1.6E-06	USEPA, 1993h	6.7	*	3858158
Benzo(k)fluoranthene	2140	Howard et al., 1991	4.0E-07	USEPA, 1993h	6.2	a]	1244171
Benzoic Acid	16	USEPA, 1993g	4.6E-08	<u>م</u>	1.86	-	67
Benzotrichloride	7	Howard et al., 1991			2.9	°	710
Benzyl chloride	28	Howard et al., 1991	4.0E-04	4	2.3		182
BHC, alpha-	135	Howard et al., 1991	4.3E-11	٩,	3.8	-	5441
BHC, beta-	124	Howard et al., 1991	4.3E-11	۹	3.81		5566
BHC, delta-	100	Howard et al., 1991	4.3E-07	USEPA, 1993h	2.8	ů	566
BHC, gamma-/Lindane	413	Howard et al., 1991	4.3E-11	٩.	3.73	1	4644
BHC, technical grade	100	USEPA, 1993g	4.3E-11	٦	3.61	USEPA, 1989	3539
Biphenyl	7	Howard et al., 1991	4.3E-04	Ĵ	3.96		7816
Bis(2-chloroethyl) ether	180	Howard et al., 1991	1.7E-05	USEPA, 1989	1.21	- 	15
Bis(2-chloroisopropyl) ether	180	Howard et al., 1991	1.1E-04	USEPA, 1989	1.61	USEPA, 1989	. 38
Bis(2-ethylhexyl) phthalate	23	Howard et al., 1991	1.5E-05	USEPA, 1989	7.3		15003065
Bis(chloromethyl) ether	28	Howard et al 1991	2 1F-04	I tuman at al 1027	90.0	114554 10031	

National Sediment Contaminant Point Source Inventory

	AOUEO	US AEROBIC			LOG OCTAN	LOG OCTANOL-WATER PARTITION	PREDICTED SEDIMENT
	BIODEGRAD	BIODEGRADATION HALF-LIFE	HENRY'S L	HENRY'S LAW CONSTANT	COERFIL	("Y 201) INT	ADSORFTION
Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	(K)
Bromodichloromethane	15	USEPA, 1993g	2.1E-03	Ĵ	2.1	-	116
Bromomethane	28	Howard et al., 1991	6.2E-03	USEPA, 1989	1.19	-	15
Bromophenyl phenyl ether, 4-	100	USEPA, 1993g	1.2E-04	ן	5	1	82277
Bromoxynil	. 22	Howard et al., 1991			3	USEPA, 1993h	068
Butyl benzyl phthalate	7	Howard et al., 1991	1.3E-06	USEPA, 1989	4.84	-	57280
Carbaryl/Sevin	30	Howard et al., 1991	3.1E-09	^	2.3		182
Cathofuran/Furadan	17	USEPA, 1993g	3.0E-08	٩	1.5	ň	30
Carbon disulfide	11	USEPA, 1993h	3.0E-02	Ĵ	2		93
Chloramben	100	USEPA, 1993g			2.17	USEPA, 1989	136
Chlordane	1386	Howard et al., 1991	4.9E-05	USEPA, 1989	6.32	-	1632450
Chlorobenzene	150	Howard et al., 1991	4.6E-03	م	2.86	 	648
Chlorobenzilate	35	Howard et al., 1991	-		4.38		20222
Chloroethane	28	Howard et al., 1991	8.8E-03	USEPA, 1989	1.4	°1.	24
Chloroethene	180	Howard et al., 1991	2.7E-02	USEPA, 1989	1.5	4	30
Chloroethylvinyl ether, 2-	12	USEPA, 1993g	2.5E-04	Lyman et al., 1982	1.28	Lyman et al., 1982	18
Chloromethane	28	Howard et al., 1991	8.8E-03	USEPA, 1989	0.91	-	8
Chloronaphthalene, 2-	100	USEPA, 1993g	3.2E-04	٩	4.1	°	10730
Chlorophenol, 2-	15	SRC, 1993	5.6E-07	٩	2.15		130
Chlorpyrifos/Dursban	100	USEPA, 1993g	4.0E-08	٩	5.26	•	148204
Chrysene	1000	Howard et al., 1991	1.8E-06	ໍ	5.7	-	401218
Cresol, m-	29	Howard et al., 1991	7.1E-07	٩ 	1.97	*	86
Cresol, o-	- J	Howard et al., 1991	7.1E-07	٩	1.99	"	90
Cresol, p-	0.667	Howard et al., 1991	7.1E-07	٩	1.95		83
Cresols	29	Howard et al., 1991	1.1E-06	Lyman et al., 1982	1.9	°	74
Cunene	8	Howard et al., 1991	1.2E-02	٩	3.58		3307
Cyanazine	100	USEPA, 1993g			22	USEPA, 1993h	146
Cyanide	16	USEPA, 1993g			-0.25		1
DCPA/Dacthal	92	Howard et al., 1991	8.1E-11	ٵ	3.9	Worthing & Hance, 1991	6823
	5834	Howard et al., 1991	4.0E-06	USEPA, 1993h	6.1	-	992156
	5834	Howard et al., 1991	3.5E-05	۹ 	6.76	_a	4419366
	5694	Howard et al., 1991	1.5E-05	٩_	6.53	ч	2625851
Decabromodiphenyl oxide	360	Howard et al., 1991	4.5E-08	SRC, 1993	9.79	SRC, 1993	4205813396

A-14

led)
ntinu
ວື
Ē
A-3.
ble A-3. (

	AQUEO BIODEGRAD	AQUEOUS AEROBIC BIODEGRADATION HALF-LIFE	HENRY'S L.	HENRY'S LAW CONSTANT	LOG OCTANO COEFFI	LOG OCTANOL-WATER PARTITION COEFFICIENT (log K.,)	PREDICTED SEDIMENT ADSORPTION
Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K_)
84742 Di-n-butyl phthalate	23	Howard et al, 1991	2.8E-14	۹	4.61		34034
117840 Di-n-octyl phthalate	28	Howard et al, 1991	4.5E-13	٩	8.06	,	83803084
333415 Diazinon/Spectracide	001.	USEPA, 1993g	8.7E-08	٩,	3.7	* 	4339
53703 Dibenzo(a,h)anthracene	940	Howard et al., 1991	1.2E-07	2	69.9	* 	3771812
132649 Dibenzofuran	28	Howard et al., 1991	2.8E-04	°-	4.07	-	10025
96128 Dibromo-3-chloropropane, 1,2-	180	Howard et al., 1991			2.34		200
124481 Dibromochloromethane	180	Howard et al., 1991	8.1E-03	0	2.17	R	136
1918009 Dicamba	100	USEPA, 1993g	2.7E-08	า	0.48	USEPA, 1993h	3
95501 Dichlorobenzene, 1,2-	180	Howard et al., 1991	3.9E-03	Ĵ	3.43		2355
541731 Dichlorobenzene, 1.3-	180	Howard et al., 1991	3.9E-03		3.6	°,	3460
106467 Dichlorobenzene, 1,4-	180	Howard et al., 1991	3.9E-03	<u>م</u>	3.42	R	2302
25321226 Dichlorobenzenes	180	Howard et al., 1991	3.9E-03	°	3.5	USEPA, 1993h	5159
91941 Dichlorobenzidine, 3,3'-	180	Howard et al., 1991	5.1E-11	4	3.51	4	. 2822
75718 Dichlorodifluoromethane	180	Howard et al., 1991	3.6E-01		2.16		133
75343 Dichloroethane, 1,1-	154	Howard et al., 1991	4.8E-03	٩	1.79		58
107062 Dichloroethane, 1,2-	180	Howard et al., 1991	9.8E-04	USEPA, 1989	1.47	1	28
75354 Dichloroethene, 1,1-	180	Howard et al., 1991	5.4E-02	٩	2.13	*	124
156605 Dichloroethene, trans-1,2-	15	USEPA, 1993g	9.4E-03	USEPA, 1993h	2.07	4	108
156592 Dichloroethylene, cis-1,2-	15	USEPA, 1993g	7.6E-03	Lyman et al., 1982	1.86	1	67
75092 Dichloromethane	28	Howard et al., 1991	2.2E-03	USEPA, 1989	1.25	r	17
120832 Dichlorophenol, 2,4-	8.3	Howard et al., 1991	4.8E-07	1	3.08		1066
94757 Dichlorophenoxyacetic acid, 2,4-	50	Howard et al., 1991	5.5E-08	٩ 	2.7	.	451
78875 Dichloropropane, 1,2-	1289	Howard et al., 1991	3.2E-04	۹ 	1.97		86
542756 Dichloropropene, 1,3-	28	Howard et al., 1991	1.8E-03	USEPA, 1989	2	1	93
62737 Dichlorvos	3	SRC, 1993			1.5		30
115322 Dicofol/Kelthane	100	USEPA, 1993g			6.1	USEPA, 1993h	992156
60571 Dieldrin	1080	Howard et al., 1991	1.5E-05	USEPA, 1993h	5.37	1	190103
84662 Diethyl phthalate	56	Howard et al., 1991	3.6E-13	٩ -	2.5	B	287
119904 Dimethoxybenzidine, 3,3'-	180	Howard et al., 1991	4.7E-11	Ĵ	1.81		60
105679 Dimethylphenol, 2,4-	7	Howard et al., 1991	7.6E-07	4	2.36	4 -	209
528290 Dinitrobenzene, 1,2-	180	Howard et al., 1991			1.6		37
99650 Dinitrobenzene, 1,3-	180	Howard et al., 1991			1.5	-	30

į

National Sediment Contaminant Point Source Inventory

		AQUEOUS BIODEGRADATI	AQUEOUS AEROBIC BIODEGRADATION HALF-LIFE	HENRY'S L	HENRY'S LAW CONSTANT	LOG OCTAN COEFFI	OCTANOL-WATER PARTITION COEFFICIENT (1°5 K,)	PREDICTED SEDIMENT ADSORPTION
CAS	Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K)
100254	Dinitrobenzene, 1,4-	16	USEPA, 1993g			1.5		30
51285	Dinitrophenol, 2,4-	263	Howard et al., 1991	4.4E-07	USEPA, 1989	1.55	-	33
121142	Dinitrotoluene, 2,4-	180	Howard et al., 1991	4.0E-07	ſ	2.01		95
606202	Dinitrotoluene, 2,6-	180	Howard et al., 1991	4.0E-07	م ا	1.87	ī	69
88857	Dinoseb/DNBP	123	Howard et al., 1991.	1.5E-10	2	3.14		1222
122667	Diphenylhydrazine, 1,2-	180	Howard et al., 1991	4.4E-09	٩	2.9	°,	710
298044	Disulfoton	21	Howard et al., 1991			3.98	Real Provide Activity of the International Provide Activity of the	8177
115297	Endosulfan mixed isomers	14	Howard et al., 1991	1.1E-05	USEPA, 1993h	4.1	a	10730
959988	Endosulfan, alpha-	100	USEPA, 1993g	1.1E-05	USEPA, 1993h	3.6	USEPA, 1993h	3460
33213659	Endosulfan, beta-	100	USEPA, 1993g	1.1E-05	USEPA, 1993h	3.6	USEPA, 1993h	3460
72208	Endrin	20	USEPA, 1993g	7.5E-06	USEPA, 1993h	5.06	-]	94245
563122	Ethion/Bladan	16	USEPA, 1993g			5.1	USEPA, 1993h	103176
141786	Ethyl acetate	7	Howard et al., 1991			69.0	Ĩ	5
100414	Ethylbenzene	. 10	Howard et al., 1991	8.9E-03	-	3.14	-	1222
106934	Ethylene dibromide	180	Howard et al., 1991	2.5E-03	1	1.75		53
206440	Fluoranthene	440	Howard et al., 1991	1.6E-05	SRC, 1993	5.12	1	107954
86737	Fluorene	60	Howard et al., 1991	3.5E-05	Ĵ	4.21	Ĩ	13763
76448	Heptachlor	65	Howard et al., 1991	2.6E-03	SRC, 1993	6.26	erer -	1425148
1024573	1024573 Heptachlor epoxide	552	Howard et al., 1991	3.2E-05	USEPA, 1993h	5	۹ ۱	82277
118741	Hexachlorobenzene	2089	Howard et al., 1991	2.0E-03	า	5.89	4	616808
87683	Hexachlorobutadiene	180	Howard et al., 1991	8.2E-03	USEPA, 1989	4.81	· ·	53519
77474	Hexachlorocyclopentadiene	28	Howard et al., 1991	2.7E-01	SRC, 1993	5.39	-	198907
67721	Hexachloroethane	180	Howard et al., 1991	6.1E-04	٩	7	,	8556
51235042	51235042 Hexazinone	100	USEPA, 1993g	2.0E-12	Lyman et al., 1982	0.28	Lyman et al., 1982	2
123319		7	Howard et al, 1991	3.8E-11	USEPA, 1989	0.55	,	3
193395	Indeno(1,2,3-cd)pyrene	720	Howard et al., 1991	1.6E-06	USEPA, 1993h	6.65		3445323
78591	Isophorone	28	Howard et al., 1991	5.8E-06	Lyman et al., 1982	1.7	-	47
33820530	Isopropalin	105	Howard et al., 1991			5.74	Lyman et al., 1982	439238
121755	Malathion	51.5	Howard et al., 1991	8.4E-10	٩_	2.89		694
108316	Maleic, anhydride	15	USEPA, 1993g	4.0E-11	Lyman et al., 1982	-3.13	Lyman et al., 1982	0
72435	Methoxychlor	360	Howard et al., 1991	2.8E-07	ſ	5.08	-	98610
78933	Methyl ethyl ketone	7	Howard et al., 1991	5.6E-05	USEPA, 1989	0.28	4	2

5
2
nu
1ti
<u>,</u>
9
ė
1
e
Į
La l

	AQUE BIODEGRA	AQUEOUS AEROBIC BIODEGRADATION HALF-LIFE	HENRY'S L	HENRY'S LAW CONSTANT	LOG OCTAN	LOG OCTANOL-WATER PARTITION COEFFICIENT (log K _o)	PREDICTED SEDIMENT ADSORPTION
CAS Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K)
	7	Howard et al., 1991	1.4E-04	USEPA, 1989	1.19	-	15
_	100	USEPA, 1993g					
	15	USEPA, 1993g			1.7	USEPA, 1993h	47
7786347 Mevinphos/Phosdrin	16	USEPA, 1993g			0.21	Lyman et al., 1982	2
2385855 Mirex/Dechlorane	365	9	1.6E-14	SRC, 1993	689		5931301
91203 Naphthalene	20	Howard et al., 1991	3.7E-04	٩	3.36	-	2010
91598 Naphthylamine, 2-	180	Howard et al., 1991			2.28		174
98953 Nitrobenzene	197	Howard et al., 1991	4.5E-05	, ,	1.84		54
100027 Nitrophenol, 4-	7	Howard et al., 1991	5.5E-09	4	1.9	USEPA. 1993h	74
924163 Nitrosodi-n-butylamine, N-	180	Howard et al., 1991	6.9E-06	- -	2.41		234
621647 Nitrosodi-n-propylamine, N-		Howard et al., 1991		-USEPA, 1989-	1 .	······································	<u>7</u> 4
62759 Nitrosodimethylamine, N-	180	Howard et al., 1991	2.6E-07	USEPA, 1989	-0.57	-	C
86306 Nitrosodiphenylamine, N-	34	Howard et al., 1991	1.3E-07	Ĵ	3.16		1278
1000 PAH Compounds	940	Howard et al., 1991					
56382 Parathion ethyl	7	Verschueren, 1983	3.0E-07	4	3.83		5823
	590	9	1.0E-04	٩	5.6	USEPA, 1993h	319948
	590	•	1.0E-04	<u>م</u>	5.6	USEPA, 1993h	319948
11141165 PCB-1232	590	°.	1.0E-04	٩	5.6	USEPA, 1993h	319948
53469219 PCB-1242	590	*	1.0E-04	٩	5.6	USEPA, 1993h	319948
	590	• 	1.0E-04	4	5.6	USEPA, 1993h	319948
	590	9	1.0E-04	4	5.6	USEPA, 1993h	319948
	590	*	1.0E-04	2	5.6	USEPA, 1993h	319948
	345	Howard et al., 1991	2.4E-03	.	5.26		148204
	669	Howard et al., 1991	9.7E-07	4	4.64		36425
_	178	Howard et al., 1991	2.9E-07	ſ	5.09	"	100867
	200	Howard et al., 1991	2.6E-05	4	4.55		29712
	3.5	Howard et al., 1991	3.3E-07	USEPA, 1989	1.48		29
_	4	SRC, 1993	1.6E-06		3.81		5566
	7	Howard et al., 1991	1.6E-09	USEPA, 1989	-0.62	°,	0
	590	ľ			5.6	USEPA, 1993h	319948
1610180 Prometon/Pramitol		7			4.3	USEPA, 1990	16873
7287196 Prometyrn/Caparol	70	Worthing & Hance, 1991			3.43	Lyman et al., 1982	2355

		BIODEGRA	BIODEGRADATION HALF-LIFE	HENRY'S LAW	W CONSTANT	COEFFIC	COEFFICIENT (log K.,)	ADSORPTION
++	Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K_)
+	Pronamide	100	USEPA, 1993g			3.51	-	2822
1 191816/ F	Propachlor	42	Worthing & Hance, 1991	8.9E-08		1.8	Lyman et al., 1982	59
129000 P	Pyrene	1900	Howard et al., 1991	1.1E-05	USEPA, 1993h	5.11		105538
-	Quinoline	10	Howard et al., 1991	1.5E-06	Î	2	USEPA, 1993h	93
122349 S	Simazine	100	USEPA, 1993g			2.18	Lyman et al., 1982	139
100425 S	Styrene	28	Howard et al., 1991	8.9E-03	Ĩ	2.94	1	777
13071799 T	Terbufos/Counter	15	USEPA, 1993g	2.8E-06		3.68	SRC, 1993	4147
886500 T	Terbutryn	. 240	SRC, 1993			3.74	Lyman et al., 1982	4750
95943 T	Tetrachlorobenzene, 1,2,4,5-	180	Howard et al., 1991	2.8E-03	1	4.64		36425
1746016 T	Tetrachlorodibenzo-p-dioxin, 2,3,7,8-	590	Howard et al., 1991	1.68-05	SRC, 1993	6.53	8	2625851
79345 T	Tetrachloroethane, 1,1,2,2-	180	Howard et al., 1991	5.4E-05	1	2.39	a normal distance of the second se	224
25322207 T	Tetrachloroethane, NOS	180	Howard et al., 1991	1	1	2.4		229
127184 T	Tetrachloroethene	360	Howard et al., 1991	1.8E-02	ſ	2.67	•	422
56235 T	Tetrachloromethane	360	Howard et al., 1991	3.0E-02	٩	2.73		483
58902 T	Tetrachlorophenol, 2,3,4,6-	180	Howard et al., 1991			4.1		10730
961115 T	Tetrachlorvinphos/Gardona/Stirofos	100	USEPA, 1993g	2.2E-08	۹	3.53	USEPA, 1989	2953
108883 T	Toluene	22	Howard et al., 1991	5.7E-03	٩	2.75	-	505
8001352 T	Toxaphene	365	P	6.0E-06	USEPA, 1989	5.5	-	255141
75252 T	Tribromomethane	180	Howard et al., 1991	5.7E-04	۹	2.35	-	204
120821 T	Trichlorobenzene, 1,2,4-	180	Howard et al., 1991	3.3E-03	4	4.01	۹	8752
71556 T	Trichloroethane, 1,1,1-	273	Howard et al., 1991	1.6E-02	Ĵ	2.48	-	274
79005 T	Trichloroethane, 1,1,2-	360	Howard et al., 1991	1.2E-06	Ĵ	2.05	*	104
79016 1	Trichloroethene	360	Howard et al., 1991	1.9E-02	م ا	2.71	1	462
75694 7	Trichlorofluoromethane	360	Howard et al., 1991	9.7E-02	۹	2.53	-	307
67663 7	Trichloromethane	180	Howard et al., 1991	4.1E-03		1.92	-	17
95954 1	Trichlorophenol, 2,4,5-	069	Howard et al., 1991	3.3E-03	Ĵ	3.9	-	6823
88062 7	Trichlorophenol, 2,4,6-	70	Howard et al., 1991	3.3E-03		3.7	*	4339
93765 7	Trichlorophenoxyacetic acid, 2,4,5-	20	Howard et al., 1991	8.7E-09	USEPA, 1993h	3.31	4	1795
93721 7	Trichlorophenoxypropionic acid, 2,4,5-	100	USEPA, 1993g	3.5E-09	۹	3.41	4	2251
1582098 7	Trifturalin/Treflan	100	USEPA, 1993g	3.9E-09	4	5.4	USEPA, 1993h	203460
95636 7	Trimethylbenzene, 1,2,4-	28	Howard et al., 1991	6.6E-03	• [3.78	USEPA, 1989	5200
118967	Trinitrotoluene	180	Howard et al., 1991	4.9E-05	SRC, 1993	2.3	ĩ	182

A-18

•

ę

1

<u></u>	-	AQUI BIODEGRA	AQUEOUS AEROBIC BIODEGRADATION HALF-LIFE	HENRY'S L	HENRY'S LAW CONSTANT	LOG OCTANO COEFFIC	LOG OCTANOL-WATER PARTITION COEFFICIENT (log K _o)	PREDICTED SEDIMENT ADSORPTION
CAS	Chemical Name	Days	Reference	(atm-m ³ /mole)	Reference	Value	Reference	COEFFICIENT (K)
108054	108054 Vinyl acetate	16	16 USEPA, 1993g	5.1E-04	5.1E-04 USEPA, 1989	0.73		5
108383	108383 Xylene, m-	28	28 Howard et al., 1991	6.1E-03	۹ ۱	3.2		1399
95476	95476 Xylene, o-	28	Howard et al., 1991	6.1E-03	4	3.13	-	1194
106423	106423 Xylene, p-	28	28 Howard et al., 1991	6.1E-03	ſ	3.17		1307
1330207	1330207 Xylenes	28	28 Howard et al., 1991	6.1E-03	, n	3.2	3.2 USEPA, 1993h	1399

^aDraft log K_{ow} values recommended by Sarnuel W. Karickhoff and J. MacArthur Long, Environmental Research Laboratory-Athens. ^bPredicted using the EPA Office of Pollution Prevention and Toxics (OPPT) "HENRY" structure-activity model (2/94).

^eLiterature values provided by Ruth Hull, Oak Ridge National Laboratory (2/94). ⁴No data are available; therefore, a value of 365 days was selected as a high-end biodegradation rate.

*Assigned the biodegradation rate for 2,3,7,8-TCDD based on structural similarity.

A-19

•

•

t

.

· ·

Appendix B Watershed Priority Groups

. : .

.

Table B-1. Priority Group 1 Watersheds (Load Score greater than 80)

Cataloging	Watershed Name/	Dominant Chemical Class/	Data
Unit	EPA Region(s) and State(s)	Dominant Industrial Class	Source
01090004	Narragansett	Divalent Metal	PCS
(APC)	Region(s): 1 State(s): MA, RI	Sewerage Systems	
02030101	Lower Hudson Region(s): 2, 1 State(s): NY, CT, NJ	Divalent Metal Sewerage Systems	PCS
02030103	Hackensack-Passaic	Divalent Metal	PCS
(APC)	Region(s): 2 State(s): NY, NJ	Sewerage Systems	
02030104	Sandy Hook-Staten Island	Divalent Metal	PCS
(APC)	Region(s): 2 State(s): NY, NJ	Sewerage Systems	
02030201	Northern Long Island Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
02030202	Southern Long Island	Divalent Metal	PCS
(APC)	Region(s): 2 State(s): NY	Sewerage Systems	
02040105	Middle Delaware-Musconetcong	Pesticide	PCS
(APC)	Region(s): 3, 2 State(s): PA, NJ	Sewerage Systems	
02040202	Lower Delaware	Divalent Metal	PCS
(APC)	Region(s): 3, 2 State(s): PA, NJ	Sewerage Systems	
02040203	Schuylkill	Divalent Metal	PCS
(APC)	Region(s): 3 State(s): PA	Sewerage Systems	
02040204	Delaware Bay Region(s): 2 State(s): NJ	Pesticide Sewerage Systems	PCS
04090004	Detroit	Divalent Metal	PCS
(APC)	Region(s): 5 State(s): MI	Sewerage Systems	
04120104	Niagara	Divalent Metal	PCS
(APC)	Region(s): 2 State(s): NY	Sewerage Systems	
04140201	Seneca Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
05030101	Upper Ohio	Divalent Metal	PCS
(APC)	Region(s): 3, 5 State(s): WV, PA, OH	Primary Metal Industries	
08070100	Lower Mississippi-Baton Rouge Region(s): 6 State(s): LA	Divalent Metal Industrial Organic Chemicals	PCS
12040104	Buffalo-San Jacinto	PAH	PCS
(APC)	Region(s): 6 State(s): TX	Industrial Organic Chemicals	
18050004	San Francisco Bay	Divalent Metal	PCS
(APC)	Region(s): 9 State(s): CA	Sewerage Systems	

1 .

. I

•

.

. .

•

. . .

B-4

Table B-2. Priority Group 2 Watersheds (Load Score range: 61-80)

1

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
02030105 (APC)	Raritan Region(s): 2 State(s): NJ	PAH Sewerage Systems	PCS
03160204	Mobile - Tensaw Region(s): 4 State(s): AL	Divalent Metal Sewerage Systems	PCS
04040001 (APC)	Little Calumet-Galien Region(s): 5 State(s): IL, IN, MI	Divalent Metal Sewerage Systems	PCS
04110001 (APC)	Black-Rocky Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
04110003 (APC)	Ashtabula-Chagrin Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05030103	Mahoning Region(s): 5, 3 State(s): OH, PA	Divalent Metal Sewerage Systems	PCS
05040001 (APC)	Tuscarawas Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05060001	Upper Scioto Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05080002	Lower Great Miami Region(s): 5 State(s): OH, IN	Divalent Metal Sewerage Systems	PCS
05090203	Middle Ohio-Laughery Region(s): 4, 5 State(s): KY, IN, OH	Divalent Metal Sewerage Systems	PCS
05140101	Silver-Little Kentucky Region(s): 4, 5 State(s): KY, IN	Divalent Metal Public Utilities	PCS
05140201	Lower Ohio-Little Pigeon Region(s): 5, 4 State(s): IN, KY	PAH Plastic Materials and Synthetic	PCS cs
07120004 (APC)	Des Plaines Region(s): 5 State(s): WI, IL	Divalent Metal Sewerage Systems	PCS
16020204	Jordan Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
18050001	Suisun Bay Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18050002	San Pablo Bay Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18070104	Santa Monica Bay	Other	PCS
(APC)	Region(s): 9 State(s): CA	Sewerage Systems Other Petroleum Refining	TRI

1.

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
18070203	Santa Ana Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
21010005	Eastern Puerto Rico Region(s): 2 State(s): PR	Divalent Metal Sewerage Systems	PCS

Table B-3. Priority Group 3 Watersheds (Load Score range: 41-60)

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
02020003	Hudson-Hoosic Region(s): 1, 2 State(s): VT, NY, MA	Divalent Metal Sewerage Systems	PCS
02020004	Mohawk Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
02020006	Middle Hudson Region(s): 2, 1 State(s): NY, MA	Divalent Metal Sewerage Systems	PCS
02020008	Hudson-Wappinger Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
02040201	Crosswicks-Neshaminy Region(s): 3, 2 State(s): PA, NJ	PCB Sewerage Systems	PCS
02040206	Cohansey-Maurice Region(s): 3, 2 State(s): DE, NJ	PCB Other Trade and Services	PCS
02060003 (APC)	Gunpowder-Patapsco Region(s): 3 State(s): MD, PA	Divalent Metal Industrial Organic Chemicals	PCS
02080206	Lower James Region(s): 3 State(s): VA	PAH Plastic Materials and Synthetic	PCS s
03050103	Lower Catawba Region(s): 4 State(s): NC, SC	PAH Industrial Organic Chemicals	PCS
03050105	Upper Broad Region(s): 4 State(s): NC, SC	PAH Plastic Materials and Synthetic	PCS s
03160111	Locust Region(s): 4 State(s): AL	PAH Primary Metal Industries	PCS
04030204 (APC)	Lower Fox Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
04040002 (APC)	Pike-Root Region(s): 5 State(s): WI, IL	Divalent Metal Sewerage Systems	PCS
04050001 (APC)	St. Joseph Region(s): 5 State(s): IN, MI	Divalent Metal Sewerage Systems	PCS
04110002	Cuyahoga Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05090101	Raccoon-Symmes Region(s): 3, 5 State(s): WV, OH	PAH Industrial Organic Chemicals	PCS
05120201	Upper White Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems	PCS
06040006	Lower Tennessee Region(s): 4 State(s): KY, TN	PAH Industrial Inorganic Chemicals	PCS

Cataloging	Watershed Name/	Dominant Chemical Class/	Data
Unit	EPA Region(s) and State(s)	Dominant Industrial Class	Source
			•
07010206	Twin Cities	Divalent Metal	PCS
(APC)	Region(s): 5 State(s): WI, MN	Sewerage Systems	
07110009	Peruque-Piasa Region(s): 7, 5 State(s): MO, IL	Divalent Metal Primary Metal Industries	PCS
07120003	Chicago	Other	TRI
(APC)	Region(s): 5 State(s): IN, IL	Petroleum Refining	
07140101	Cahokia-Joachim	Divalent Metal	PCS
(APC)	Region(s): 7, 5 State(s): MO, IL	Sewerage Systems	
. ,	o () , , , , , , , , , ,	Other Industrial Organic Chemicals	TRI
08080206	Lower Calcasieu	Divalent Metal	PCS
(APC)	Region(s): 6 State(s): LA	Industrial Organic Chemicals	
08090100	Lower Mississippi-New Orleans	PAH	PCS
(APC)	Region(s): 6 State(s): LA	Industrial Organic Chemicals	
15060106	Lower Salt Region(s): 9 State(s): AZ	Divalent Metal Sewerage Systems	PCS
18050006	San Francisco Coastal South Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18070105	Los Angeles	Divalent Metal	PCS
(APC)	Region(s): 9 State(s): CA	Sewerage Systems	
18070106	San Gabriel Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
21010004	Southern Puerto Rico Region(s): 2 State(s): PR	Divalent Metal Public Utilities	PCS

Table B-4. Priority Group 4 Watersheds (Load Score range: 21-40)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
01060001	Presumpscot Region(s): 1 State(s): ME	Divalent Metal Sewerage Systems	PCS
01070004	Nashua Region(s): 1 State(s): MA, NH	Divalent Metal Sewerage Systems	PCS
01090001 (APC)	Charles Region(s): 1 State(s): MA	Divalent Metal Public Utilities	PCS
01090003	Blackstone Region(s): 1 State(s): RI, MA	Divalent Metal Sewerage Systems	PCS
01100003	Thames Region(s): 1 State(s): CT	Divalent Metal Public Utilities	PCS
01100004	Quinnipiac Region(s): 1 State(s): CT	Divalent Metal Metal Products and Finishing	PCS
01100005	Housatonic Region(s): 1, 2 State(s): MA, CT, NY	Divalent Metal Metal Products and Finishing	PCS
02020007	Rondout Region(s): 2 State(s): NJ, NY	Divalent Metal Sewerage Systems	PCS
02030102	Bronx Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
02040106	Lehigh Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries	PCS
02050103	Owego-Wappasening Region(s): 2, 3 State(s): NY, PA	Divalent Metal Sewerage Systems	PCS
02050105	Chemung Region(s): 2, 3 State(s): NY, PA	Divalent Metal Sewerage Systems	PCS
02050107	Upper Susquehanna-Lackawanna Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems	PCS
02050306	Lower Susquehanna Region(s): 3 State(s): MD, PA	Divalent Metal Metal Products and Finishing	PCS
03030002	Haw Region(s): 4 State(s): NC	Other Textile Products	TRI
03050107	Tyger Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems	PCS
03070103	Upper Ocmulgee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03080103 (APC)	Lower St. Johns Region(s): 4 State(s): FL	Divalent Metal Public Utilities	PCS

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03130001	Upper Chattahoochee Region(s): 4 State(s): GA	Pesticide Sewerage Systems	PCS
03130002 (APC)	Middle Chattahoochee-Lake Harding Region(s): 4 State(s): GA, AL	Divalent Metal Sewerage Systems	PCS
03150106	Middle Coosa Region(s): 4 State(s): AL	Divalent Metal Sewerage Systems	PCS
03150201	Upper Alabama Region(s): 4 State(s): AL	Divalent Metal Sewerage Systems	PCS
03160205 (APC)	Mobile Bay Region(s): 4 State(s): AL	Divalent Metal Sewerage Systems	PCS
04030101	Manitowoc-Sheboygan Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
04050004	Upper Grand Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04050006	Lower Grand Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04100009	Lower Maumee Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
04100011	Sandusky Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
04130001 (APC)	Oak Orchard-Twelvemile Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
04140101	Irondequoit-Ninemile Region(s): 2 State(s): NY	Divalent Metal Metal Products and Finishing	PCS
		Other Metal Products and Finishing	TRI
04140202	Oneida Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
04150301 (APC)	Upper St. Lawrence Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
05020005	Lower Monongahela Region(s): 3 State(s): PA, WV	Divalent Metal Primary Metal Industries	PCS
05030106	Upper Ohio-Wheeling Region(s): 3, 5 State(s): WV, OH, PA	Divalent Metal Public Utilities	PCS
05030201	Little Muskingum-Middle Island Region(s): 3, 5 State(s): WV, OH	Divalent Metal Plastic Materials and Synthetic	PCS s

Table B-4. (Continued)

05030204 Ha 05040002 M 05040004 M 05060002 La 05080001 U 05080003 W 05090103 La	pper Ohio-Shade Region(s): 3, 5 State(s): W\ ocking Region(s): 5 State(s): OH		PCS
05040002 M 05040004 M 05060002 La 05080001 U 05080003 W 05090103 Li	-		
05040004 M 05060002 La 05080001 U 05080003 W 05090103 Li		Divalent Metal Sewerage Systems	PCS
05060002 La 05080001 U 05080003 W 05090103 Li	lohican Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05080001 U 05080003 W 05090103 Li	luskingum Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05080003 W 05090103 Li	ower Scioto Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05090103 Li	pper Great Miami Region(s): 5 State(s): OH, I	Divalent Metal N Sewerage Systems	PCS
	/hitewater Region(s): 5 State(s): IN, O	Divalent Metal H Sewerage Systems	PCS
05090202 Li	ittle Scioto-Tygarts Region(s): 3, 4, 5 State(s): 1	Divalent Metal WV, KY, OH Sewerage Systems	PCS
	ittle Miami Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05100205 Lo	ower Kentucky Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems	PCS
05110003 M	liddle Green Region(s): 4 State(s): KY	Divalent Metal Public Utilities	PCS
05120101 U	l pper Wabash Region(s): 5 State(s): IN, O	Divalent Metal H Sewerage Systems	PCS
05120108 M	Niddle Wabash-Little Vermilio Region(s): 5 State(s): IN, IL		PCS
05120206 U	Ipper East Fork White Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems	PCS
05130202 L	ower Cumberland-Sycamore Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
05140102 S	alt Region(s): 4 State(s): KY	Divalent Metal Metal Products and Finishing	PCS
05140202 H	lighland-Pigeon Region(s): 4, 5 State(s): KY	Divalent Metal 7, IN Sewerage Systems	PCS
05140206 L	ower Ohio	Divalent Metal	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
06010102	South Fork Holston Region(s): 4, 3 State(s): TN, VA	Divalent Metal Sewerage Systems	PCS
06010104 (APC)	Holston Region(s): 4 State(s): TN	Divalent Metal Metal Mining	PCS
06010201 (APC)	Watts Bar Lake Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
06010207 (APC)	Lower Clinch Region(s): 4 State(s): TN	Divalent Metal National Security	PCS
06020001 (APC)	Middle Tennessee-Chickamauga Region(s): 4 State(s): GA, TN, AL	Divalent Metal Sewerage Systems	PCS
06030002	Wheeler Lake Region(s): 4 State(s): AL, TN	Divalent Metal Industrial Organic Chemicals	PCS
06030005 (APC)	Pickwick Lake Region(s): 4 State(s): TN, AL, MS	Divalent Metal Metal Products and Finishing	PCS
07020012	Lower Minnesota Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07080101 (APC)	Copperas-Duck Region(s): 5, 7 State(s): IL, IA	Divalent Metal Sewerage Systems	PCS
07090001	Upper Rock Region(s): 5 State(s): IL, WI	Divalent Metal Sewerage Systems	PCS
07090005	Lower Rock Region(s): 5 State(s): IL, WI	Divalent Metal Sewerage Systems	PCS
07120001	Kankakee Region(s): 5 State(s): IN, IL, MI	Divalent Metal Public Utilities	PCS
07120006 (APC)	Upper Fox Region(s): 5 State(s): WI, IL	Divalent Metal Sewerage Systems	PCS
07130001 (APC)	Lower Illinois-Senachwine Lake Region(s): 5 State(s): IL	Divalent Metal Sewerage Systems	PCS
08070201	Bayou Sara-Thompson Region(s): 6, 4 State(s): LA, MS	Divalent Metal Industrial Organic Chemicals	PCS
10190003	Middle South Platte-Cherry Creek Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
10230006	Big Papillion-Mosquito Region(s): 7 State(s): IA, NE	Divalent Metal Sewerage Systems	PCS
12020003	Lower Neches Region(s): 6 State(s): TX	Divalent Metal Industrial Organic Chemicals	PCS

•

Table B-4. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
12040204	West Galveston Bay Region(s): 6 State(s): TX	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
12070104	Lower Brazos Region(s): 6 State(s): TX	Other Industrial Inorganic Chemicals	TRI
12110202	South Corpus Christi Bay Region(s): 6 State(s): TX	Divalent Metal Primary Metal Industries	PCS
15050301	Upper Santa Cruz Region(s): 9 State(s): AZ	Divalent Metal Sewerage Systems	PCS
16020201	Utah Lake Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
16020203	Provo Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
17080001	Lower Columbia-Sandy Region(s): 10 State(s): WA, OR	Divalent Metal Sewerage Systems	PCS
17090003	Upper Willamette Region(s): 10 State(s): OR	Divalent Metal Sewerage Systems	PCS
17090007	Middle Willamette Region(s): 10 State(s): OR	Divalent Metal Sewerage Systems	PCS
17090012 (APC)	Lower Willamette Region(s): 10 State(s): OR	Divalent Metal Sewerage Systems	PCS
17110019 (APC)	Puget Sound Region(s): 10 State(s): WA	Divalent Metal Sewerage Systems	PCS
18050003 (APC)	Coyote Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18070103	Calleguas Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18070303	San Luis Rey-Escondido Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
19050002	Cook Inlet Region(s): 10 State(s): AK	Divalent Metal Sewerage Systems	PCS
20060000	Oahu Region(s): 9 State(s): HI	Other Sewerage Systems	PCS

i

· · ·

Table B-5. Priority Group 5 Watersheds (Load Score range: 1-20)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
01020001	West Branch Penobscot Region(s): 1 State(s): ME		Divalent Metal Paper and Allied Products	PCS
01020005	Lower Penobscot Region(s): 1 State(s): ME		Divalent Metal Paper and Allied Products Mercury Industrial Inorganic Chemicals	PCS TRI
01030003	Lower Kennebec Region(s): 1 State(s): ME	• • • • • •	Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
01040002	Lower Androscoggin Region(s): 1 State(s): ME,	NH	Divalent Metal Textile Products Other Paper and Allied Products	PCS TRI
01050002	Maine Coastal Region(s): 1 State(s): ME	•	Metal Sewerage Systems	PCS
01050003	St. George-Sheepscot Region(s): 1 State(s): ME		Divalent Metal Metal Products and Finishing	TRI
01060002	Saco Region(s): 1 State(s): ME,	NH	Metal Sewerage Systems	PCS
01060003	Piscataqua-Salmon Falls Region(s): 1 State(s): MA,	ME, NH	Divalent Metal National Security	PCS
01070001	Pemigewasset Region(s): 1 State(s): NH		Divalent Metal Metal Products and Finishing	TRI
01070002	MerrImack Region(s): 1 State(s): NH,	MA	Divalent Metal Other Chemical Products Other Textile Products	PCS TRI
01070005	Concord Region(s): 1 State(s): MA		Divalent Metal Sewerage Systems	PCS
01080104	Upper Connecticut-Mascoma Region(s): 1 State(s): NH,		Metal Sewerage Systems Other Other Chemical Products	PCS TRI
01080107	West Region(s): 1 State(s): VT		Divalent Metal Metal Products and Finishing	TRI

EPA Region(s) and State(s)	Dominant Industrial Class	Source
Middle Connecticut Region(s): 1 State(s): MA, NH, VT	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
Miller Region(s): 1 State(s): MA, NH	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
Deerfield Region(s): 1 State(s): MA, VT	Divalent Metal Sewerage Systems	PCS
Chicopee Region(s): 1 State(s): MA	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
Lower Connecticut Region(s): 1 State(s): MA, CT	Divalent Metal Public Utilities Divalent Metal Metal Products and Finishing	PCS TRI
Westfield Region(s): 1 State(s): MA, CT	Divalent Metal Sewerage Systems Divalent Metal Furniture and Fixtures	PCS TRI
Farmington Region(s): 1 State(s): CT, MA	Divalent Metal Sewerage Systems	PCS
Cape Cod Region(s): 1 State(s): MA, RI	PCB Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
Pawcatuck-Wood Region(s): 1 State(s): RI, CT	Metal Sewerage Systems	PCS
Quinebaug Region(s): 1 State(s): CT, MA, RI	Divalent Metal Metal Products and Finishing Metal Metal Products and Finishing	PCS TRI
Shetucket Region(s): 1 State(s): CT, MA	Divalent Metal Paper and Allied Products	PCS
	Region(s): 1 State(s): MA, NH, VT Miller Region(s): 1 State(s): MA, NH Deerfield Region(s): 1 State(s): MA, VT Chicopee Region(s): 1 State(s): MA Lower Connecticut Region(s): 1 State(s): MA, CT Westfield Region(s): 1 State(s): MA, CT Farmington Region(s): 1 State(s): CT, MA Cape Cod Region(s): 1 State(s): MA, RI Pawcatuck-Wood Region(s): 1 State(s): RI, CT Quinebaug Region(s): 1 State(s): CT, MA, RI Shetucket	Region(s): 1 State(s): MA, NH, VTSewerage Systems Divalent Metal Metal Products and FinishingMiller Region(s): 1 State(s): MA, NHDivalent Metal Sewerage SystemsDeerfield Region(s): 1 State(s): MA, VTDivalent Metal Sewerage SystemsChicope Region(s): 1 State(s): MADivalent Metal Sewerage SystemsLower Connecticut Region(s): 1 State(s): MA, CTDivalent Metal Sewerage SystemsLower Connecticut Region(s): 1 State(s): MA, CTDivalent Metal Public Utilities Divalent Metal Public UtilitiesWestfield Region(s): 1 State(s): MA, CTDivalent Metal Public Utilities Divalent Metal Metal Products and FinishingWestfield Region(s): 1 State(s): CT, MADivalent Metal Sewerage SystemsFarmington Region(s): 1 State(s): CT, MADivalent Metal Sewerage SystemsFarmington Region(s): 1 State(s): CT, MADivalent Metal Sewerage SystemsPawcatuck-Wood Region(s): 1 State(s): CT, MA, RIPCB Sewerage SystemsPawcatuck-Wood Region(s): 1 State(s): CT, MA, RIMetal Sewerage SystemsPawcatuck-Wood Region(s): 1 State(s): CT, MA, RIDivalent Metal Metal Products and Finishing Metal Metal Pro

Table B-5. (Continued)

.

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
01100006	Saugatuck Region(s): 1, 2 State(s): CT, NY	Metal Primary Metal Industries Divalent Metal Metal Products and Finishing	PCS TRI
02010001	Lake George Region(s): 1, 2 State(s): VT, NY	Divalent Metal Other Trade and Services	PCS
02010003	Winooski Region(s): 1 State(s): VT	Divalent Metal Metal Products and Finishing	PCS
02010006	Great Chazy-Saranac Region(s): 2 State(s): NY	Divalent Metal Sewerage Systems	PCS
02040103	Lackawaxen Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems	PCS
02040104	Middle Delaware-Mongaup-Brodhead Region(s): 2, 3 State(s): NJ, PA, NY	Divalent Metal Sewerage Systems	PCS
02040205	Brandywine-Christina Region(s): 2, 3 State(s): NJ, PA, DE, MD	Divalent Metal Primary Metal Industries Other Petroleum Refining	PCS TRI
02040207	Broadkill-Smyrna Region(s): 3 State(s): DE	Divalent Metal Sewerage Systems Other Plastic Materials and Synthetic	PCS TRI
02040301 (APC)	Mullica-Toms Region(s): 2 State(s): NJ	Divalent Metal Sewerage Systems	PCS
02040302	Great Egg Harbor Region(s): 2 State(s): NJ	Metal Sewerage Systems	PCS
02050101	Upper Susquehanna Region(s): 2, 3 State(s): NY, PA	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
02050102	Chenango Region(s): 2 State(s): NY	Divalent Metal Nonclassifiable Divalent Metal Metal Products and Finishing	PCS TRI
02050106	Upper Susquehanna-Tunkhannock Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries Metal Primary Metal Industries	PCS TRI

.

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
02050202	Sinnemahoning Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries	TRI
02050204	Bald Eagle Region(s): 3 State(s): PA	Divalent Metal Paper and Allied Products Divalent Metal Primary Metal Industries	PCS TRI
02050205	Pine Region(s): 3 State(s): PA	Other Sewerage Systems	PCS
02050206	Lower West Branch Susquehanna Region(s): 3 State(s): PA	Divalent Metal Public Utilities	PCS
02050301	Lower Susquehanna-Penns Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems	PCS
02050302	Upper Juniata Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
02050304	Lower Juniata Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries Other Rubber and Plastics Products	PCS TRI
02050305	Lower Susquehanna-Swatara Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
02060002	Chester-Sassafras Region(s): 3 State(s): PA, DE, MD	Mercury Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
02060004	Severn Region(s): 3 State(s): MD	Divalent Metal Sewerage Systems	PCS
02060006	Patuxent Region(s): 3 State(s): MD	Divalent Metal Sewerage Systems	PCS
02060007	Blackwater-Wicomico Region(s): 3 State(s): MD, DE	Other Metal Products and Finishing	TRI
02060010	Chincoteague Region(s): 3 State(s): MD, VA, DE	Divalent Metal Public Utilities	PCS

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(5)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
02070002	North Branch Potomac Region(s): 3 State(s): PA,	WV. MD	Metal Sewerage Systems	PCS
		· · · · · · · · · · · · · · · · · · ·	Other Paper and Allied Products	TRI
02070004 (APC)	Conococheague-Opequon Region(s): 3 State(s): WV	, VA, MD, PA	Divalent Metal Sewerage Systems	PCS
02070005	South Fork Shenandoah Region(s): 3 State(s): VA	· • • • •	Mercury Plastic Materials and Synthetic Other Pharmaceuticals	PCS s TRI
02070006	North Fork Shenandoah Region(s): 3 State(s): VA,	: WV	Metal Textile Products Divalent Metal	PCS TRI
02070008	Middle Potomac-Catoctin		Primary Metal Industries Divalent Metal	PCS
	Region(s): 3 State(s): MD	, VA, DC	Primary Metal Industries Divalent Metal Metal Products and Finishing	TRI
02070009	Monocacy Region(s): 3 State(s): MD	PA	Metal Sewerage Systems	PCS
02070010	Middle Potomac-Anacostia-C Region(s): 3 State(s): DC,	•	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
02070011	Lower Potomac Region(s): 3 State(s): MD	VA	Divalent Metal Public Utilities	PCS
02080104	Lower Rappahannock Region(s): 3 State(s): VA		Divalent Metal Sewerage Systems	PCS
02080106	Pamunkey Region(s): 3 State(s): VA		Other Paper and Allied Products	TRI
02080107	York Region(s): 3 State(s): VA	· ·	Mercury Public Utilities	PCS
02080201	Upper James Region(s): 3 State(s): VA,	wv	PCB Rubber and Plastics Products Other Paper and Allied Products	PCS TRI

11

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)		Data Source
02080202	Maury Region(s): 3 State(s): VA	Sewerage Systems	PCS TRI
02080203	Middle James-Buffalo Region(s): 3 State(s): VA	Metal Products and Finishing	PCS TRI
02080204	Rivanna Region(s): 3 State(s): VA	Metal F Metal Products and Finishing	PCS
02080205	Middle James-Willis Region(s): 3 State(s): VA	Other T Other Chemical Products	RI
02080207	Appomattox Region(s): 3 State(s): VA	Other T Pharmaceuticals	RI
02080208	Hampton Roads Region(s): 3 State(s): VA	Divalent Metal P National Security	PCS
03010101	Upper Roanoke Region(s): 3 State(s): VA	Textile Products	PCS TRI
03010102	Middle Roanoke Region(s): 4, 3 State(s): NC, VA	Textile Products	PCS TRI
03010103	Upper Dan Region(s): 4, 3 State(s): NC, VA	Other T Stone, Clay, and Glass Products	RI
03010104	Lower Dan Region(s): 3, 4 State(s): VA, NC	Metal T Textile Products	RI
03010107	Lower Roanoke Region(s): 4 State(s): NC	Other T Textile Products	RI
03010201	Nottoway Region(s): 3, 4 State(s): VA, NC	Other T Industrial Organic Chemicals	'RI
03020101	Upper Tar Region(s): 4 State(s): NC	Divalent Metal T Metal Products and Finishing	RI
03020201	Upper Neuse Region(s): 4 State(s): NC	Divalent Metal T Metal Products and Finishing	RI
03030003	Deep Region(s): 4 State(s): NC	Other T Other Chemical Products	RI

.

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03030004	Upper Cape Fear Region(s): 4 State(s): NC	Divalent Metal Metal Products and Finishing	TRI
03030005	Lower Cape Fear Region(s): 4 State(s): NC	Mercury Industrial Inorganic Chemicals	TRI
03030006	Black Region(s): 4 State(s): NC	Divalent Metal Metal Products and Finishing	TRI
03030007	Northeast Cape Fear Region(s): 4 State(s): NC	Divalent Metal Industrial Inorganic Chemicals	TRI
03040101	Upper Yadkin Region(s): 3, 4 State(s): VA, NC	Divalent Metal Metal Products and Finishing	TRI
03040103	Lower Yadkin Region(s): 4 State(s): NC	Other Other Chemical Products	TRI
03040105	Rocky Region(s): 4 State(s): NC, SC	Other Textile Products	TRI
03040201 (APC)	Lower Pee Dee Region(s): 4 State(s): NC, SC	Divalent Metal Sewerage Systems Other Textile Products	PCS TRI
03040202	Lynches Region(s): 4 State(s): SC, NC	Divalent Metal Textile Products Divalent Metal Metal Products and Finishing	PCS TRI
03040204	Little Pee Dee Region(s): 4 State(s): NC, SC	Divalent Metal Sewerage Systems	PCS
03040205	Black Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Other Textile Products	PCS TRI
03040206	Waccamaw Region(s): 4 State(s): NC, SC	Divalent Metal Sewerage Systems	PCS
03040207	Carolina Coastal-Sampit Region(s): 4 State(s): NC, SC	PAH Industrial Organic Chemicals Divalent Metal Primary Metal Industries	PCS TRI
03050101	Upper Catawba Region(s): 4 State(s): SC, NC	Other Textile Products	TRI
03050102	South Fork Catawba Region(s): 4 State(s): NC	Other Textile Products	TRI 🧠

Appendix B

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03050104	Wateree Region(s): 4 State(s): SC	Divalent Metal Plastic Materials and Synthetics Divalent Metal Industrial Organic Chemicals	PCS TRI
03050106	Lower Broad Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Metal Lumber and Wood Products	PCS TRI
03050108	Enoree Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
03050109	Saluda Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
03050110	Congaree Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Other Plastic Materials and Synthetics	PCS TRI
03050201	Cooper Region(s): 4 State(s): SC	Divalent Metal Industrial Organic Chemicals Metal Primary Metal Industries	PCS TRI
03050202	South Carolina Coastal Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Divalent Metal Textile Products	PCS TRI
03050203	North Fork Edisto Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems Other Industrial Organic Chemicals	PCS TRI
03050205	Edisto Region(s): 4 State(s): SC	Metal Public Utilities	PCS
03050206	Four Hole Swamp Region(s): 4 State(s): SC	Divalent Metal Metal Products and Finishing	TRI
03050207	Salkehatchie Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems	PCS

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03050208	Broad-St. Helena Region(s): 4 State(s): SC	Divalent Metal Industrial Organic Chemicals	PCS
03060101 (APC)	Seneca Region(s): 4 State(s): NC, SC	Divalent Metal Sewerage Systems	PCS
		Other Other Chemical Products	TRI
03060102	Tugaloo Region(s): 4 State(s): SC, GA, NC	Divalent Metal Textile Products	PCS
03060103	Upper Savannah Region(s): 4 State(s): GA, SC	Divalent Metal Sewerage Systems	PCS
		Other Textile Products	TRI
03060105	Little Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03060106 (APC)	Middle Savannah Region(s): 4 State(s): GA, SC	Divalent Metal Sewerage Systems	PCS
< - /		Other Textile Products	TRI
03060107	Stevens Region(s): 4 State(s): SC	Divalent Metal Sewerage Systems	PCS
03060108	Brier Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03060109	Lower Savannah Region(s): 4 State(s): SC, GA	Divalent Metal Sewerage Systems	PCS
		Other Paper and Allied Products	TRI
03060201	Upper Ogeechee Region(s): 4 State(s): GA	Metal Textile Products	PCS
03060202	Lower Ogeechee Region(s): 4 State(s): GA	Divalent Metal Textile Products	PCS
		Divalent Metal Primary Metal Industries	TRI
03060203	Canoochee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03060204	Ogeechee Coastal Region(s): 4 State(s): SC, GA	Divalent Metal Sewerage Systems	PCS
03070101	Upper Oconee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS

B-23

ţ

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03070102	Lower Oconee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems PAH Paper and Allied Products	PCS TRI
03070104	Lower Ocmulgee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03070105	Little Ocmulgee Region(s): 4 State(s): GA	Divalent Metal Primary Metal Industries	TRI
03070106	Altamaha Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
03070201	Satilla Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
03070203	Cumberland-St. Simons Region(s): 4 State(s): FL, GA	Pesticide Industrial Organic Chemicals Other Industrial Organic Chemicals	PCS TRI
03070204	St. Marys Region(s): 4 State(s): GA, FL	Metal Paper and Allied Products Other Paper and Allied Products	PCS TRI
03080101	Upper St. Johns Region(s): 4 State(s): FL	Divalent Metal Metal Products and Finishing	TRI
03080102	Oklawaha Region(s): 4 State(s): FL	Mercury Sewerage Systems	PCS
03080203	Vero Beach Region(s): 4 State(s): FL	Mercury Public Utilities	PCS
03090202	Everglades Region(s): 4 State(s): FL	Divalent Metal Public Utilities Other Textile Products	PCS TRI
03090204	Big Cypress Swamp Region(s): 4 State(s): FL	Metal Sewerage Systems	PCS
03100202	Manatee Region(s): 4 State(s): FL	Divalent Metal Public Utilities	PCS

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03100206	Tampa Bay Region(s): 4 State(s): FL	Divalent Metal Other Trade and Services	PCS
03100208	Withlacoochee Region(s): 4 State(s): FL	Divalent Metal Primary Metal Industries	TRI
03110201	Upper Suwannee Region(s): 4 State(s): FL, GA	Divalent Metal Public Utilities	PCS
03110202	Alapaha Region(s): 4 State(s): GA, FL	Divalent Metal Sewerage Systems Other Plastic Materials and Synthetic	PCS TRI s
03110203	Withlacoochee Region(s): 4 State(s): FL, GA	Divalent Metal Sewerage Systems	PCS
03120001	Apalachee Bay-St. Marks Region(s): 4 State(s): FL, GA	Divalent Metal Public Utilities	PCS
03120002	Upper Ochlockonee Region(s): 4 State(s): GA	Pesticide Sewerage Systems	PCS
03130003	Middle Chattahoochee-Walter F. George Res. Region(s): 4 State(s): GA, AL	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
03130004	Lower Chattahoochee Region(s): 4 State(s): AL, FL, GA	Divalent Metal Public Utilities	PCS
03130005	Upper Flint Region(s): 4 State(s): GA	Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
03130006	Middle Flint Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03130008	Lower Flint Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
		Other Pharmaceuticals	TRI
03130010	Spring Region(s): 4 State(s): GA	Other Sewerage Systems	PCS
03130012	Chipola Region(s): 4 State(s): AL, FL	Divalent Metal Public Utilities	PCS

1

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03140101	St. Andrew-St. Joseph Bays Region(s): 4 State(s): FL	Divalent Metal Sewerage Systems Other Industrial Organic Chemicals	PCS TRI
03140105	Pensacola Bay Region(s): 4 State(s): FL	Divalent Metal Public Utilities Other Plastic Materials and Synthetic	PCS TRI s
03140106	Perdido Region(s): 4 State(s): FL, AL	Divalent Metal Sewerage Systems	PCS
		Other Lumber and Wood Products	TRI
03140107 (APC)	Perdido Bay Region(s): 4 State(s): FL, AL	Mercury Sewerage Systems	PCS
03140201	Upper Choctawhatchee Region(s): 4 State(s): AL	Metal Sewerage Systems	PCS
03140301	Upper Conecuh Region(s): 4 State(s): AL	Metal Primary Metal Industries	TRI
03140304	Lower Conecuh Region(s): 4 State(s): AL, FL	Other Lumber and Wood Products Other Lumber and Wood Products	PCS TRI
03140305	Escambia Region(s): 4 State(s): FL, AL	Divalent Metal Industrial Organic Chemicals Divalent Metal Plastic Materials and Synthetic	PCS TRI
03150101	Conasauga Region(s): 4 State(s): GA, TN	Other Textile Products	TRI
03150102	Coosawattee Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems	PCS
03150103	Oostanaula Region(s): 4 State(s): GA	PCB Metal Products and Finishing Other Textile Products	PCS TRI
03150104	Etowah Region(s): 4 State(s): GA	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
æ

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03150105	Upper Coosa Region(s): 4 State(s): AL, GA	Divalent Metal Sewerage Systems	PCS
03150107	Lower Coosa Region(s): 4 State(s): AL	Divalent Metal Textile Products Divalent Metal	PCS TRI
03150108	Upper Tallapoosa Region(s): 4 State(s): GA, AL	Primary Metal Industries Divalent Metal Metal Products and Finishing	PCS
03150109	Middle Tallapoosa Region(s): 4 State(s): AL	Divalent Metal Sewerage Systems Other Textile Products	PCS TRI
03150202	Cahaba Region(s): 4 State(s): AL	Other Stone, Clay, and Glass Produc	TRI ts
03150204	Lower Alabama Region(s): 4 State(s): AL	Other Lumber and Wood Products	TRI '
03160101	Upper Tombigbee Region(s): 4 State(s): MS, AL	Divalent Metal Metal Products and Finishing PAH Industrial Inorganic Chemicals	PCS TRI
03160103	Buttahatchee Region(s): 4 State(s): AL, MS	Divalent Metal Sewerage Systems Metal Metal Products and Finishing	PCS TRI
03160104	Tibbee Region(s): 4 State(s): MS	Divalent Metal Metal Products and Finishing	PCS
03160105	Luxapallila Region(s): 4 State(s): AL, MS	Divalent Metal Metal Products and Finishing	TRI
03160106	Middle Tombigbee-Lubbub Region(s): 4 State(s): MS, AL	Divalent Metal Paper and Allied Products	PCS
03160107	Sipsey Region(s): 4 State(s): AL	Metal Sewerage Systems	PCS
03160108	Noxubee Region(s): 4 State(s): MS, AL	Divalent Metal Primary Metal Industries	TRI
03160109	Mulberry Region(s): 4 State(s): AL	Other Other Chemical Products	TRI

÷

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
03160112	Upper Black Warrior Region(s): 4 State(s): AL	PAH Primary Metal Industries Other Petroleum Refining	PCS TRI
03160113	Lower Black Warrior Region(s): 4 State(s): AL	Mercury Sewerage Systems	PCS
03160201	Middle Tombigbee-Chickasaw Region(s): 4 State(s): AL, MS	Other Paper and Allied Products	TRI
03160203	Lower Tambigbee Region(s): 4 State(s): AL	Divalent Metal Industrial Organic Chemicals Other Paper and Allied Products	PCS TRI
03170002	Upper Chickasawhay Region(s): 4 State(s): MS, AL	Divalent Metal Textile Products	PCS
03170004	Upper Leaf Region(s): 4 State(s): MS	Divalent Metal Public Utilities Other Industrial Organic Chemicals	PCS TRI
03170005	Lower Leaf Region(s): 4 State(s): MS	Other Plastic Materials and Synthetics	TRI
03170006	Pascagoula Region(s): 4 State(s): MS	Metal Other Chemical Products	PCS
03170007	Black Region(s): 4 State(s): MS	Other Lumber and Wood Products	TRI
03170008	Escatawpa Region(s): 4 State(s): MS, AL	Other Paper and Allied Products	TRI
03170009	Mississippi Coastal Region(s): 6, 4 State(s): LA, AL, MS	Divalent Metal Industrial Inorganic Chemicals PAH Plastic Materials and Synthetics	PCS TRI
03180003	Middle Pearl-Silver Region(s): 4 State(s): MS	Divalent Metal Paper and Allied Products Other Paper and Allied Products	PCS TRI
04010102	Beaver-Lester Region(s): 5 State(s): MN, WI	Divalent Metal Sewerage Systems	PCS

National Sediment Contaminant Point Source Inventory

I

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
04010201	St. Louis Region(s): 5 State(s): WI, MN	Divalent Metal Metal Mining Other Paper and Allied Products	PCS TRI
04010301	Beartrap-Nemadji Region(s): 5 State(s): MN, WI	Divalent Metal Sewerage Systems	PCS
04020101	Black-Presque Isle Region(s): 5 State(s): MI, WI	Divalent Metal Metal Mining	PCS
04020102	Ontonagon Region(s): 5 State(s): MI, WI	Divalent Metal Paper and Allied Products	PCS
04020103	Keweenaw Peninsula Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04020105	Dead-Kelsey Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04020201	Betsy-Chocolay Region(s): 5 State(s): MI	Divalent Metal Paper and Allied Products	PCS
04030102 (APC)	Door-Kewaunee Region(s): 5 State(s): WI	Mercury Sewerage Systems Other Metal Products and Finishing	PCS TRI
04030105	Peshtigo Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04030108 (APC)	Menominee Region(s): 5 State(s): MI, WI	Divalent Metal Sewerage Systems	PCS
04030109	Cedar-Ford Region(s): 5 State(s): MI	Divalent Metal Metal Products and Finishing	TRI
04030110	Escanaba Region(s): 5 State(s): MI	Divalent Metal Coal Mining	PCS
04030201	Upper Fox Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
04030202	Wolf Region(s): 5 State(s): WI	Divalent Metal Primary Metal Industries	PCS
04030203	Lake Winnebago Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI

÷

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
04040003 (APC)	Milwaukee Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04050002	Black-Macatawa Region(s): 5 State(s): Ml	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04050003	Kalamazoo Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
04050005	Maple Region(s): 5 State(s): MI	Other Petroleum Refining	PCS
04060101	Pere Marquette-White Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Other Industrial Organic Chemicals	PCS TRI
04060102	Muskegon Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
04060103 (APC)	Manistee Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04060105	Boardman-Charlevoix Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04060106	Manistique Region(s): 5 State(s): Ml	Divalent Metal Paper and Allied Products	PCS
04070001	St. Marys Region(s): 5 State(s): Ml	Divalent Metal Sewerage Systems	PCS
04070002	Carp-Pine Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems	PCS
04070004	Cheboygan Region(s): 5 State(s): Ml	Other Sewerage Systems	PCS
04070006	Thunder Bay Region(s): 5 State(s): MI	Divalent Metal Lumber and Wood Products Other Lumber and Wood Products	PCS TRI

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
04080201	Tittabawassee Region(s): 5 State(s): MI	Other Plastic Materials and Synthetic Other Other Chemical Products	PCS >s TRI
04080202	Pine Region(s): 5 State(s): MI	Metal Petroleum Refining Divalent Metal Metal Products and Finishing	PCS · TRI
04080203	Shiawassee Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04080204	Flint Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04080206	Saginaw Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04090001	St. Clair Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
04090002 (APC)	Lake St. Clair Region(s): 5 State(s): MI	Divalent Metal Primary Metal Industries	PCS
04090003	Clinton Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04090005	Huron Region(s): 5 State(s): MI	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
04100001 (APC)	Ottawa-Stony Region(s): 5 State(s): OH, MI	Metal Public Utilities Other Other Chemical Products	PCS TRI
04100002 (APC)	Raisin Region(s): 5 State(s): MI, OH	Divalent Metal Sewerage Systems	PCS

÷

7

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)		Dominant Chemical Class/ Dominant Industrial Class	Data Source
04100003	St. Joseph Region(s): 5 State(s): MI, OH,	IN	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
04100004	St. Marys Region(s): 5 State(s): IN, OH		Divalent Metal Sewerage Systems Divalent Metal Food and Kindred Products	PCS TRI
04100005	Upper Maumee Region(s): 5 State(s): IN, OH		Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04100006	Tiffin Region(s): 5 State(s): MI, OH		Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04100007	Auglaize Region(s): 5 State(s): OH, IN		Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04100008	Blanchard Region(s): 5 State(s): OH		Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
04100010 (APC)	Cedar-Portage Region(s): 5 State(s): MI, OH		Divalent Metal Sewerage Systems Other Petroleum Refining	PCS TRI
04100012 (APC)	Huron-Vermilion Region(s): 5 State(s): OH		Divalent Metal Sewerage Systems	PCS
04110004	Grand Region(s): 5 State(s): OH		Divalent Metal Sewerage Systems Other Plastic Materials and Synthetics	PCS TRI
04120101 (APC)	Chautauqua-Conneaut Region(s): 2, 3, 5 State(s): NY	, PA, OH	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04120102	Cattaraugus Region(s): 2 State(s): NY		Divalent Metal Public Utilities	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s))	Dominant Chemical Class/ Dominant Industrial Class	Data Source
04120103 (APC)	Buffalo-Eighteenmile Region(s): 2 State(s): NY		Divalent Metal Nonclassifiable Divalent Metal Metal Products and Finishing	PCS TRI
04120200	Lake Erie Region(s): 5, 2, 3 State(s): 1	MI, NY, OH, PA	Divalent Metal Sewerage Systems	PCS
04130003	Lower Genesee Region(s): 2 State(s): NY	·	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
04140102	Salmon-Sandy Region(s): 2 State(s): NY		Divalent Metal Public Utilities	PCS
04140203	Oswego Region(s): 2 State(s): NY		Divalent Metal Sewerage Systems	PCS
04150101	Black Region(s): 2 State(s): NY		Divalent Metal Paper and Allied Products	PCS
04150200	Lake Ontario Region(s): 2 State(s): NY		Divalent Metal Sewerage Systems	PCS
04150302	Oswegatchie Region(s): 2 State(s): NY		Divalent Metal Metal Mining	PCS
04150303	Indian Region(s): 2 State(s): NY		Divalent Metal Nonmetallic Mineral Mining	PCS
04150304	Grass Region(s): 2 State(s): NY		Divalent Metal Primary Metal Industries Divalent Metal Primary Metal Industries	PCS TRI
04150305	Raquette Region(s): 2 State(s): NY		Divalent Metal Paper and Allied Products Divalent Metal Primary Metal Industries	PCS TRI
04150307	English-Salmon Region(s): 2 State(s): NY		Divalent Metal Sewerage Systems	PCS
05010001	Upper Allegheny Region(s): 3, 2 State(s): PA	, NY	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI

ļ

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05010002	Conewango Region(s): 2, 3 State(s): NY, PA	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
05010003	Middle Allegheny-Tionesta Region(s): 3 State(s): PA	Metal Petroleum Refining Other Petroleum and Coal Products	PCS TRI
05010004	French Region(s): 3, 2 State(s): PA, NY	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
05010005	Clarion Region(s): 3 State(s): PA	Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
05010006	Middle Allegheny-Redbank Region(s): 3 State(s): PA	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
05010007	Conemaugh Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries Divalent Metal Primary Metal Industries	PCS TRI
05010008	Kiskiminetas Region(s): 3 State(s): PA	Divalent Metal Primary Metal Industries Divalent Metal Primary Metal Industries	PCS TRI
05010009	Lower Allegheny Region(s): 3 State(s): PA	Divalent Metal Public Utilities Other Petroleum Refining	PCS TRI
05020001	Tygart Valley Region(s): 3 State(s): WV	Divalent Metal Sewerage Systems	PCS
05020002	West Fork Region(s): 3 State(s): WV	Divalent Metal Sewerage Systems	PCS
05020003	Upper Monongahela Region(s): 3 State(s): WV, PA	PAH Industrial Organic Chemicals Divalent Metal Metal Products and Finishing	PCS TRI

National Sediment Contaminant Point Source Inventory.

Table B-5. (Continued)

İ

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05020006	Youghiogheny Region(s): 3 State(s): MD, PA, WV	Divalent Metal Metal Products and Finishing	PCS
05030102 (APC)	Shenango Region(s): 5, 3 State(s): OH, PA	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
05030104	Beaver Region(s): 3 State(s): PA	Divalent Metal Public Utilities	PCS
05030105	Connoquenessing Region(s): 3 State(s): PA	Divalent Metal Metal Products and Finishing Divalent Metal Primary Metal Industries	PCS TRI
05040003	Walhonding Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05040005	Wills Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS
05040006	Licking Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
05050001	Upper New Region(s): 4, 3 State(s): NC, VA	Divalent Metal Industrial Inorganic Chemicals	PCS
05050002	Middle New Region(s): 3 State(s): WV, VA	Divalent Metal Plastic Materials and Synthetic	PCS s
05050003	Greenbrier Region(s): 3 State(s): WV	Metal Leather and Leather Products	PCS
05050004	Lower New Region(s): 3 State(s): WV	Divalent Metal Sewerage Systems	PCS
05050006	Upper Kanawha Region(s): 3 State(s): WV	Other Industrial Organic Chemicals Other Industrial Organic Chemicals	PCS TRI
05050008	Lower Kanawha Region(s): 3 State(s): WV	Pesticide Industrial Inorganic Chemicals Pesticide Pesticides	PCS TRI
05060003	Paint Region(s): 5 State(s): OH	Divalent Metal Sewerage Systems	PCS

5.] 1

I

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05070203	Lower Levisa Region(s): 4 State(s): KY	Divalent Metal Metal Products and Finishing	PCS
05070204	Big Sandy Region(s): 4, 3 State(s): KY, WV	Divalent Metal Petroleum Refining Other	PCS TRI
05090104	Little Sandy Region(s): 4 State(s): KY	Petroleum Refining Divalent Metal Primary Metal Industries	TRI
05090201	Ohio Brush-Whiteoak Region(s): 4, 5 State(s): KY, OH	Divalent Metal Public Utilities	PCS
05100101	Licking Region(s): 4 State(s): KY	PCB Public Utilities Divalent Metal Primary Metal Industries	PCS TRI
05100102	South Fork Licking Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems	PCS
05110001	Upper Green Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems Divalent Metal Stone, Clay, and Glass Produc	PCS TRI ts
05110002	Barren Region(s): 4 State(s): KY, TN	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
05110004	Rough Region(s): 4 State(s): KY	Divalent Metal Other Trade and Services	PCS
05110005	Lower Green Region(s): 4 State(s): KY	Divalent Metal Public Utilities Other Metal Products and Finishing	PCS TRI
05110006	Pond Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems	PCS
05120103	Mississinewa Region(s): 5 State(s): IN, OH	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
)5120105	Middle Wabash-Deer Region(s): 5 State(s): IN	Other Furniture and Fixtures	TRI

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05120106	Tippecanoe Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems Other	PCS TRI
05120107	Wildcat	Printing and Publishing Divalent Metal	PCS
00120101	Region(s): 5 State(s): IN	Sewerage Systems Other Metal Products and Finishing	TRI
05120109 (APC)	Vermilion Region(s): 5 State(s): IL, IN	Metal Sewerage Systems Other Industrial Organic Chemicals	PCS TRI
05120110	Sugar Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
05120111 (APC)	Middle Wabash-Busseron Region(s): 5 State(s): IN, IL	Divalent Metal Sewerage Systems PAH Industrial Organic Chemicals	PCS TRI
05120112	Embarras Region(s): 5 State(s): IL	Divalent Metal Sewerage Systems Metal Petroleum Refining	PCS TRI
05120113	Lower Wabash Region(s): 5 State(s): IL, IN	Divalent Metal Sewerage Systems	PCS
05120114	Little Wabash Region(s): 5 State(s): IL	Mercury Sewerage Systems	PCS
05120202	Lower White Region(s): 5 State(s): IN	PCB Metal Products and Finishing	PCS
05120204	Driftwood Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems	PCS
05120205	Flatrock-Haw Region(s): 5 State(s): IN	Divalent Metal Primary Metal Industries	TRI
05120207	Muscatatuck Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05120208	Lower East Fork White Region(s): 5 State(s): IN	Divalent Metal National Security Divalent Metal Metal Products and Finishing	PCS TRI
05120209	Patoka Region(s): 5 State(s): IN	Divalent Metal Sewerage Systems Other Rubber and Plastics Products	PCS TRI
05130101	Upper Cumberland Region(s): 4 State(s): TN, KY	Divalent Metal Sewerage Systems Metal Leather and Leather Products	PCS TRI
05130102	Rockcastle Region(s): 4 State(s): KY	Other Other Trade and Services	PCS
05130103	Upper Cumberland-Lake Cumberland Region(s): 4 State(s): KY, TN	d Divalent Metal Sewerage Systems Other Petroleum Refining	PCS TRI
05130106	Upper Cumberland-Cordell Hull Rese Region(s): 4 State(s): TN	ervoir Divalent Metal Primary Metal Industries	PCS
05130107	Collins Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
05130201	Lower Cumberland-Old Hickory Lake Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
05130203	Stones Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
05130204	Harpeth Region(s): 4 State(s): TN	Divalent Metal Metal Products and Finishing	TRI
05130205	Lower Cumberland Region(s): 4 State(s): TN, KY	Divalent Metal Primary Metal Industries Other Metal Products and Finishing	PCS TRI
05130206	Red Region(s): 4 State(s): TN, KY	Divalent Metal Sewerage Systems	PCS

National Sediment Contaminant Point Source Inventory

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
05140103	Rolling Fork Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems	PCS
05140104	Blue-Sinking Region(s): 4, 5 State(s): KY, IN	Divalent Metal Industrial Organic Chemicals Divalent Metal Metal Products and Finishing	PCS TRI
05140203	Lower Ohio-Bay Region(s): 4, 5 State(s): KY, IL	Divalent Metal Sewerage Systems	PCS
05140205	Tradewater Region(s): 4 State(s): KY	Divalent Metal Sewerage Systems	PCS
06010103	Watauga Region(s): 4 State(s): NC, TN	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
06010105	Upper French Broad Region(s): 4 State(s): NC, TN	Divalent Metal Metal Products and Finishing	TRI
06010106	Pigeon Region(s): 4 State(s): TN, NC	Divalent Metal Paper and Allied Products Other Paper and Allied Products	PCS TRI
06010107	Lower French Broad Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
06010108	Nolichucky Region(s): 4 State(s): TN, NC	Divalent Metal Plastic Materials and Synthetics Divalent Metal Primary Metal Industries	PCS TRI
06010202	Upper Little Tennessee Region(s): 4 State(s): GA, NC	Divalent Metal Textile Products	PCS
06010204	Lower Little Tennessee Region(s): 4 State(s): NC, TN	Divalent Metal Primary Metal Industries Divalent Metal Primary Metal Industries	PCS TRI
06010205	Upper Clinch Region(s): 4, 3 State(s): TN, VA	Divalent Metal Public Utilities	PCS
06010208	Emory Region(s): 4 State(s): TN	Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI

ł

.

ł

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
06020002 (APC)	Hiwassee Region(s): 4 State(s): GA, NC, TN	Divalent Metal Sewerage Systems Mercury Industrial Inorganic Chemicals	PCS TRI
06020003	Ocoee Region(s): 4 State(s): GA, TN, NC	Divalent Metal Industrial Inorganic Chemicals	PCS
06030001 (APC)	Guntersville Lake Region(s): 4 State(s): TN, AL, GA	Divalent Metal Sewerage Systems	PCS
06030003	Upper Elk Region(s): 4 State(s): TN, AL	Divalent Metal Sewerage Systems	PCS
06030004	Lower Elk Region(s): 4 State(s): AL, TN	Metal Sewerage Systems Metal Metal Products and Finishing	PCS TRI
06030006	Bear Region(s): 4 State(s): AL, MS	Metal Sewerage Systems Other Rubber and Plastics Products	PCS TRI
06040001 (APC)	Lower Tennessee-Beech Region(s): 4 State(s): TN, MS	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
06040002	Upper Duck Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
06040003	Lower Duck Region(s): 4 State(s): TN	Divalent Metal Metal Products and Finishing	PCS
06040004	Buffalo Region(s): 4 State(s): TN	Divalent Metal Metal Products and Finishing	TRI
06040005 (APC)	Kentucky Lake Region(s): 4 State(s): KY, TN	Metal Public Utilities Divalent Metal Metal Products and Finishing	PCS TRI
07010103	Prairie-Willow Region(s): 5 State(s): MN	Divalent Metal Public Utilities	PCS
07010104	Elk-Nokasippi Region(s): 5 State(s): MN	Divalent Metal Metal Products and Finishing	TRI

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
07010108	Long Prairie Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07010202	Sauk Region(s): 5 State(s): MN	Divalent Metal Metal Products and Finishing	TRI
07010203	Clearwater-Elk Region(s): 5 State(s): MN	PAH Other Trade and Services	PCS
07010205	South Fork Crow Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
		Other Metal Products and Finishing	TRI
07010207	Rum Region(s): 5 State(s): MN	Divalent Metal Metal Products and Finishing	PCS
07020004	Hawk-Yellow Medicine Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07020007	Middle Minnesota Region(s): 5 State(s): MN	Metal Sewerage Systems	PCS
		Other Metal Products and Finishing	TRI
07020009	Blue Earth Region(s): 5, 7 State(s): MN, IA	Divalent Metal Sewerage Systems	PCS
07020010	Watonwan Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07020011	Le Sueur Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07030005	Lower St. Croix Region(s): 5 State(s): MN, WI	Mercury Sewerage Systems	PCS
		Other Lumber and Wood Products	TRI
07040001 (APC)	Rush-Vermillion Region(s): 5 State(s): WI, MN	Metal Leather and Leather Products	PCS
(/ " C)		Other Leather and Leather Products	TRI
07040002	Cannon Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
07040003 (APC)	Buffalo-Whitewater Region(s): 5 State(s): WI, MN	Divalent Metal Sewerage Systems	PCS
07040004	Zumbro Region(s): 5 State(s): MN	Divalent Metal Sewerage Systems	PCS
	3		

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
07040005	Trempealeau Region(s): 5 State(s): WI	Metal Sewerage Systems	PCS
07040006	La Crosse-Pine Region(s): 5 State(s): WI, MN	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
07040007	Black Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
07050003	South Fork Flambeau Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
07050005	Lower Chippewa Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
07050007	Red Cedar Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems	PCS
07060001	Coon-Yellow Region(s): 7, 5 State(s): IA, MN, WI	Divalent Metal Sewerage Systems Other Stone, Clay, and Glass Product	PCS TRI
07060003	Grant-Little Maquoketa Region(s): 5, 7 State(s): WI, IA	Divalent Metal Sewerage Systems	PCS
07060005	Apple-Plum Region(s): 7, 5 State(s): IA, WI, IL	Metal Sewerage Systems	PCS
07070001	Upper Wisconsin Region(s): 5 State(s): WI, MI	Divalent Metal Paper and Allied Products Divalent Metal Metal Products and Finishing	PCS TRI
07070002	Lake Dubay Region(s): 5 State(s): WI	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
07070003 (APC)	Castle Rock Region(s): 5 State(s): WI	Divalent Metal Paper and Allied Products Other Paper and Allied Products	PCS TRI
07070004	Baraboo Region(s): 5 State(s): WI	Divalent Metal Plastic Materials and Synthetics	PCS
07070005	Lower Wisconsin Region(s): 5 State(s): WI	Divalent Metal Metal Products and Finishing	TRI

National Sediment Contaminant Point Source Inventory

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
07080104	Flint-Henderson Region(s): 7, 5 State(s): IA, IL	Metal Sewerage Systems	PCS
		Divalent Metal Metal Products and Finishing	TRI
07080105	South Skunk Region(s): 7 State(s): IA	Divalent Metal Metal Products and Finishing	PCS
07080201	Upper Cedar Region(s): 7, 5 State(s): IA, MN	Metal Pharmaceuticals	PCS
		Other Industrial Organic Chemicals	TRI
07080202	Shell Rock Region(s): 5, 7 State(s): MN, IA	Divalent Metal Sewerage Systems	PCS
		Divalent Metal Metal Products and Finishing	TRI
07080203	Winnebago Region(s): 7, 5 State(s): IA, MN	Divalent Metal Sewerage Systems	PCS
07080205	Middle Cedar Region(s): 7 State(s): IA	Divalent Metal Sewerage Systems	PCS
· ·		Divalent Metal Metal Products and Finishing	TRI
07080206	Lower Cedar Region(s): 7 State(s): IA	Other Metal Products and Finishing	TRI
07080208	Middle lowa Region(s): 7 State(s): IA	Divalent Metal Metal Products and Finishing	PCS
		Other Metal Products and Finishing	TRI
07080209	Lower lowa Region(s): 7 State(s): IA	Mercury Sewerage Systems	PCS
07090003	Pecatonica Region(s): 5 State(s): WI, IL	Divalent Metal Sewerage Systems	PCS
07090007	Green Region(s): 5 State(s): IL	Mercury Sewerage Systems	PCS
07100003	East Fork Des Moines Region(s): 7, 5 State(s): IA, MN	Divalent Metal Sewerage Systems	PCS
07100005	Boone Region(s): 7 State(s): IA	Metal Sewerage Systems	PCS
07100007	South Raccoon Region(s): 7 State(s): IA	Divalent Metal Sewerage Systems	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
07100008	Lake Red Rock Region(s): 7 State(s): IA	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
07100009	Lower Des Moines Region(s): 7 State(s): MO, IA	Metal Sewerage Systems	PCS
07110004	The Sny Region(s): 7, 5 State(s): MO, IL	Other Pesticides	TRI
07110006	South Fork Salt Region(s): 7 State(s): MO	Other Primary Metal Industries	TRI
07120002	Iroquois Region(s): 5 State(s): IL, IN	Divalent Metal Metal Products and Finishing Divalent Metal Primary Metal Industries	PCS TRI
07120005	Upper Illinois Region(s): 5 State(s): IL	Metal Sewerage Systems	PCS
07120007	Lower Fox Region(s): 5 State(s): IL	Mercury Rubber and Plastics Products Divalent Metal Metal Products and Finishing	PCS TRI
07130002	Vermilion Region(s): 5 State(s): IL	Other Metal Products and Finishing	TRI
07130003	Lower Illinois-Lake Chautauqua Region(s): 5 State(s): IL	Divalent Metal Metal Products and Finishing Pesticide Pesticides	PCS TRI
07130005	Spoon Region(s): 5 State(s): IL	Divalent Metal Lumber and Wood Products Other Rubber and Plastics Products	PCS TRI
07130006	Upper Sangamon Region(s): 5 State(s): IL	Mercury Sewerage Systems Divalent Metal Food and Kindred Products	PCS TRI
07130007	South Fork Sangamon Region(s): 5 State(s): IL	Divalent Metal Public Utilities	PCS

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
07130009	Salt Region(s): 5 State(s): IL	Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
07130010	La Moine Region(s): 5 State(s): IL	Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
07130011	Lower Illinois Region(s): 5 State(s): IL	Divalent Metal Public Utilities Divalent Metal Food and Kindred Products	PCS TRI
07130012	Macoupin Region(s): 5 State(s): IL	Metal Sewerage Systems	PCS
07140102	Meramec Region(s): 7 State(s): MO	Divalent Metal Metal Mining	PCS
07140106 (APC)	Big Muddy Region(s): 5 State(s): IL	Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
07140107	Whitewater Region(s): 7 State(s): MO	Divalent Metal Metal Products and Finishing	TRI
07140201 (APC)	Upper Kaskaskia Region(s): 5 State(s): IL	Metal Sewerage Systems Divalent Metal Food and Kindred Products	PCS TRI
07140202 (APC)	Middle Kaskaskia Region(s): 5 State(s): IL	Divalent Metal Sewerage Systems	PCS
07140203	Shoal Region(s): 5 State(s): IL	Metal Sewerage Systems	PCS
07140204	Lower Kaskaskia Region(s): 5 State(s): IL	Divalent Metal Sewerage Systems	PCS
08010100 (APC)	Lower Mississippi-Memphis Region(s): 6, 4, 7 State(s): AR, MS	Pesticide	PCS TRI
08010202	Obion Region(s): 4 State(s): KY, TN	Divalent Metal Rubber and Plastics Products	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
08010203	South Fork Obion Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
08010204	North Fork Forked Deer Region(s): 4 State(s): TN	Divalent Metal Sewerage Systems	PCS
08010205	South Fork Forked Deer Region(s): 4 State(s): TN	Metal Rubber and Plastics Products Other Stone, Clay, and Glass Product	PCS TRI s
08010207	Upper Hatchie Region(s): 4 State(s): TN, MS	Divalent Metal Metal Products and Finishing	TRI
08010208	Lower Hatchie Region(s): 4 State(s): TN, MS	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
08010209	Loosahatchie Region(s): 4 State(s): TN	PAH Industrial Inorganic Chemicals	TRI
08010210	Wolf Region(s): 4 State(s): TN, MS	Pesticide Industrial Organic Chemicals	TRI
08010211	Horn Lake-Nonconnah Region(s): 4 State(s): TN, MS	Divalent Metal Public Utilities Other Petroleum Refining	PCS TRI
08020100	Lower Mississippi-Helena Region(s): 6, 4 State(s): AR, Ma	Other S Industrial Organic Chemicals	TRI
08020202	Upper St. Francis Region(s): 7 State(s): MO	Divalent Metal Primary Metal Industries	TRI
08020203	Lower St. Francis Region(s): 7, 6 State(s): MO, A	Divalent Metal R Furniture and Fixtures Divalent Metal Printing and Publishing	PCS TRI
08020204	Little River Ditches Region(s): 6, 7 State(s): AR, M	Divalent Metal	PCS TRI
08020205	L'Anguille Region(s): 6 State(s): AR	Divalent Metal Metal Products and Finishing Divalent Metal Primary Metal Industries	PCS TRI

.

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
08020303	Lower White Region(s): 6 State(s): AR	Divalent Metal Metal Products and Finishing	PCS
08020402	Bayou Meto Region(s): 6 State(s): AR	Pesticide Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
08030201	Little Tallahatchie Region(s): 4 State(s): MS	Divalent Metal Metal Products and Finishing	PCS
08030204	Coldwater Region(s): 4 State(s): MS, 1	Divalent Metal FIN Furniture and Fixtures	TRI
08030205	Yalobusha Region(s): 4 State(s): MS	Metal Metal Products and Finishing	PCS
08030206	Upper Yazoo Region(s): 4 State(s): MS	Metal Other Chemical Products	PCS
08030207	Big Sunflower Region(s): 4 State(s): MS	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
08030208	Lower Yazoo Region(s): 4, 6 State(s): MS	5, LA Divalent Metal Paper and Allied Products Other Paper and Allied Products	PCS TRI
08030209 (APC)	Deer-Steele Region(s): 4, 6 State(s): MS	Metal 6, LA Pesticides Other Pesticides	PCS TRI
08040102	Upper Ouachita Region(s): 6 State(s): AR	Divalent Metal Public Utilities	PCS
08040202	Lower Ouachita-Bayou De Lou Region(s): 6 State(s): LA, A		PCS TRI
08040203	Upper Saline Region(s): 6 State(s): AR	Divalent Metal Metal Products and Finishing	TRI
08040206	Bayou D'Arbonne Region(s): 6 State(s): AR, L	Divalent Metal	PCS
08040207 (APC)	Lower Ouachita Region(s): 6 State(s): LA	Other Paper and Allied Products	TRI

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
08040301	Lower Red Region(s): 6 State(s): LA	Other Lumber and Wood Products	TRI
08040304	Little Region(s): 6 State(s): LA	Mercury Sewerage Systems Other Lumber and Wood Products	PCS TRI
08050001	Boeuf Region(s): 6 State(s): AR, LA	Divalent Metal Sewerage Systems Other Other Chemical Products	PCS TRI
08060100	Lower Mississippi-Natchez Region(s): 4, 6 State(s): MS, LA	Other Paper and Allied Products	TRI
08060201	Upper Big Black Region(s): 4 State(s): MS	Divalent Metal Sewerage Systems	PCS
08070202	Amite Region(s): 6, 4 State(s): LA, MS	Metal Industrial Organic Chemicals	TRI
08070203	Tickfaw Region(s): 6, 4 State(s): LA, MS	Divalent Metal Pharmaceuticals	PCS
08070204	Lake Maurepas Region(s): 6 State(s): LA	Mercury Public Utilities Other Industrial Organic Chemicals	PCS TRI
08070300	Lower Grand Region(s): 6 State(s): LA	Divalent Metal Public Utilities	PCS
08080102	Bayou Teche Region(s): 6 State(s): LA	Divalent Metal Industrial Inorganic Chemicals	PCS
08080103	Vermilion Region(s): 6 State(s): LA	Other Industrial Organic Chemicals	TRI .
08080201	Mermentau Headwaters Region(s): 6 State(s): LA	Divalent Metal Sewerage Systems	PCS
08080205	West Fork Calcasieu Region(s): 6 State(s): LA	Divalent Metal Pharmaceuticals	PCS
08090201	Liberty Bayou-Tchefuncta Region(s): 6 State(s): LA	Divalent Metal Sewerage Systems	PCS
08090202	Lake Pontchartrain Region(s): 6 State(s): LA	PAH Plastic Materials and Synthetic	PCS s

ŀ

,

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
08090203	Eastern Louisiana Coastal Region(s): 4, 6 State(s): MS, LA	Metal Sewerage Systems Divalent Metal	PCS TRI
08090301	East Central Louisiana Coastal Region(s): 6 State(s): LA	Petroleum Refining Divalent Metal Other Chemical Products	PCS
08090302	West Central Louisiana Coastal Region(s): 6 State(s): LA	Divalent Metal Stone, Clay, and Glass Produc	TRI cts
09020104	Upper Red Region(s): 5, 8 State(s): MN, ND	Other Other Trade and Services Metal Lumber and Wood Products	PCS TRI
09030004	Upper Rainy Region(s): 5 State(s): MN	Other Paper and Allied Products	TRI
10120110	Rapid Region(s): 8 State(s): SD	Metal Sewerage Systems	PCS
10120201	Upper Belle Fourche Region(s): 8 State(s): WY, SD	Other Metal Products and Finishing	TRI
10120202	Lower Belle Fourche Region(s): 8 State(s): SD, MT, WY	Divalent Metal Metal Mining	PCS
10120203	Redwater Region(s): 8 State(s): SD, WY	Metal Metal Mining	PCS
10130101	Painted Woods-Square Butte Region(s): 8 State(s): ND	Divalent Metal Public Utilities	PCS
10130102	Upper Lake Oahe Region(s): 8 State(s): ND, SD	Divalent Metal Sewerage Systems	PCS
10130203	Lower Heart Region(s): 8 State(s): ND	Metal Petroleum Refining	PCS
10140101	Fort Randall Reservoir Region(s): 8 State(s): SD	Divalent Metal Sewerage Systems	PCS
10150004	Middle Niobrara Region(s): 7, 8 State(s): NE, SD	Divalent Metal Sewerage Systems	PCS
10170102	Vermillion Region(s): 8 State(s): SD	Divalent Metal Sewerage Systems	PCS

i

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
10170203	Lower Big Sioux Region(s): 5, 7, 8 State(s): MN, IA,	Metal SD Other Trade and Services Divalent Metal Metal Products and Finishing	PCS TRI
10180007	Middle North Platte-Casper Region(s): 8 State(s): WY	Divalent Metal Public Utilities	PCS
10180009	Middle North Platte-Scotts Bluff Region(s): 8, 7 State(s): WY, NE	Divalent Metal Sewerage Systems	PCS
10180014	Lower North Platte Region(s): 7 State(s): NE	Divalent Metal Other Trade and Services	PCS
10190001	South Platte Headwaters Region(s): 8 State(s): CO	Divalent Metal Metal Mining	PCS
10190002	Upper South Platte Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
10190004	Clear Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems Divalent Metal Food and Kindred Products	PCS TRI
10190005	St. Vrain Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
10190006	Big Thompson Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
10190007	Cache La Poudre Region(s): 8 State(s): CO, WY	Divalent Metal Sewerage Systems	PCS
10190009	Crow Region(s): 8 State(s): CO, WY	Divalent Metal Sewerage Systems	PCS
10190012	Middle South Platte-Sterling Region(s): 8, 7 State(s): CO, NE	Divalent Metal Sewerage Systems	PCS
10190016	Lower Lodgepole Region(s): 7, 8 State(s): NE, CO, W	Divalent Metal /Y Sewerage Systems	PCS
10200101	Middle Platte-Buffalo Region(s): 7 State(s): NE	Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
10200102	Wood Region(s): 7 State(s): NE	Divalent Metal Sewerage Systems	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
10200103	Middle Platte-Prairie Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing	PCS
10200201	Lower Platte-Shell Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing	PCS
10200202	Lower Platte Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing Divalent Metal Metal Products and Finishing	PCS TRI
10200203	Salt Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing Divalent Metal Food and Kindred Products	PCS TRI
10210007	Lower North Loup Region(s): 7 State(s): NE	Divalent Metal Sewerage Systems	PCS
10210009	Loup Region(s): 7 State(s): NE	Divalent Metal	PCS
10220001	Upper Elkhorn Region(s): 7 State(s): NE	Divalent Metal Sewerage Systems	PCS
10220002	North Fork Elkhorn Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing	PCS
10220003	Lower Elkhorn Region(s): 7 State(s): NE	Other Other Trade and Services	PCS
10220004	Logan Region(s): 7 State(s): NE	Divalent Metal Sewerage Systems	PCS
10230001	Blackbird-Soldier Region(s): 7 State(s): IA, NE	Divalent Metal Sewerage Systems	PCS
10240001	Keg-Weeping Water Region(s): 7 State(s): NE, IA, MC	Divalent Metal Metal Products and Finishing	PCS
10240003	East Nishnabotna Region(s): 7 State(s): IA	Divalent Metal Sewerage Systems	PCS
0240005	Tarkio-Wolf Region(s): 7 State(s): KS, NE, IA	Divalent Metal , MO Primary Metal Industries	PCS
0240009	West Nodaway Region(s): 7 State(s): IA	Divalent Metal Sewerage Systems	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
10240011	Independence-Sugar Region(s): 7 State(s): KS, MO	Divalent Metal Sewerage Systems Other Stone, Clay, and Glass Produc	PCS TRI ts
10250004	Upper Republican Region(s): 7, 8 State(s): NE, CO, KS	Divalent Metal Sewerage Systems	PCS
10250016	Middle Republican Region(s): 7 State(s): KS, NE	Divalent Metal Sewerage Systems	PCS
10260008	Lower Smoky Hill Region(s): 7 State(s): KS	Divalent Metal Sewerage Systems	PCS
10270102	Middle Kansas Region(s): 7 State(s): KS	Divalent Metal Sewerage Systems	PCS
10270104 (APC)	Lower Kansas Region(s): 7 State(s): MO, KS	Metal National Security	PCS
10270202	Middle Big Blue Region(s): 7 State(s): NE	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
10270203	West Fork Big Blue Region(s): 7 State(s): NE	Divalent Metal Metal Products and Finishing	PCS
10270206	Upper Little Blue Region(s): 7 State(s): NE, KS	Divalent Metal Metal Products and Finishing	TRI
10290106	Sac Region(s): 7 State(s): MO	Divalent Metal Metal Products and Finishing	TRI
10290108	South Grand Region(s): 7 State(s): MO, KS	Divalent Metal Metal Products and Finishing	TRI
10300101	Lower Missouri-Crooked Region(s): 7 State(s): KS, MO	Divalent Metal Other Trade and Services Divalent Metal Metal Products and Finishing	PCS TRI
10300102	Lower Missouri-Moreau Region(s): 7 State(s): MO	Divalent Metal Metal Products and Finishing	TRI
10300104	Blackwater Region(s): 7 State(s): MO	Divalent Metal Metal Products and Finishing	TRI
10300200	Lower Missouri Region(s): 7 State(s): MO	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
11010002	James Region(s): 7 State(s): MO	Divalent Metal Metal Products and Finishing	TRI
11010004	Middle White Region(s): 6 State(s): AR	Divalent Metal Industrial Organic Chemicals	PCS
11010013	Upper White-Village Region(s): 6 State(s): AR	Divalent Metal Primary Metal Industries	TRI
11010014	Little Red Region(s): 6 State(s): AR	Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
11020001	Arkansas Headwaters Region(s): 8 State(s): CO	Divalent Metal Metal Mining	PCS
11020002	Upper Arkansas Region(s): 8 State(s): CO	Divalent Metal Primary Metal Industries	PCS
11020003	Fountain Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
11020009	Upper Arkansas-John Martin Re Region(s): 8, 7 State(s): CO,		PCS
11030010	Gar-Peace Region(s): 7 State(s): KS	Divalent Metal National Security	PCS
11030013	Middle Arkansas-Slate Region(s): 7 State(s): KS	Other Petroleum Refining	TRI
11030017	Upper Walnut River Region(s): 7 State(s): KS	Metal Petroleum Refining	PCS
		Other Petroleum Refining	TRI
11030018	Lower Walnut River Region(s): 7 State(s): KS	Divalent Metal Metal Products and Finishing	TRI
11050002	Lower Cimarron-Skeleton Region(s): 6 State(s): OK	Metal Sewerage Systems	PCS
11050003	Lower Cimarron Region(s): 6 State(s): OK	Divalent Metal Primary Metal Industries	TRI
11060001	Kaw Lake Region(s): 7, 6 State(s): KS, 0	Metal OK Petroleum Refining	PCS
11060004	Lower Salt Fork Arkansas Region(s): 6, 7 State(s): OK, k	Other KS Petroleum Refining	TRI

i

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
11070104	Elk Region(s): 7 State(s): KS	Other Metal Products and Finishing	TRI
11070105	Lower Verdigris Region(s): 6 State(s): OK	Divalent Metal Other Chemical Products	PCS
11070107	Bird Region(s): 6 State(s): OK	Mercury Sewerage Systems	PCS
11070204	Upper Neosho Region(s): 7 State(s): KS	Divalent Metal Metal Products and Finishing	TRI
11070207 (APC)	Spring Region(s): 6, 7 State(s): OK, MO, KS	Divalent Metal Primary Metal Industries	TRI
11070209 (APC)	Lower Neosho Region(s): 6 State(s): OK, AR	Pesticide Sewerage Systems	PCS
11090106	Middle Canadian-Spring Region(s): 6 State(s): TX	Other Petroleum Refining	TRI
11090201	Lower Canadian-Deer Region(s): 6 State(s): OK, TX	Metal Sewerage Systems	PCS
11090203	Little Region(s): 6 State(s): OK	Divalent Metal Metal Products and Finishing	TRI
11100302	Lower North Canadian Region(s): 6 State(s): OK	Pesticide Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
11100303	Deep Fork Region(s): 6 State(s): OK	Metal Sewerage Systems	PCS
11110101	Polecat-Snake	PCB	PCS
	Region(s): 6 State(s): OK	Sewerage Systems Metal Petroleum Refining	TRI
11110103	Illinois	Divalent Metal	PCS
	Region(s): 6 State(s): OK, AR	Sewerage Systems Divalent Metal Metal Products and Finishing	TRI
11110104	Robert S. Kerr Reservoir Region(s): 6 State(s): AR, OK	Divalent Metal Primary Metal Industries	PCS
11110105	Poteau Region(s): 6 State(s): AR, OK	Divalent Metal Public Utilities	PCS

ł

i

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
11110201	Frog-Mulberry Region(s): 6 State(s): AR	Divalent Metal	PCS
11110202	Dardanelle Reservoir Region(s): 6 State(s): AR	Divalent Metal Public Utilities	PCS
11110207	Lower Arkansas-Maumelle Region(s): 6 State(s): AR	Mercury Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
11120103	Upper Prairie Dog Town Fork red Region(s): 6 State(s): TX	Other Stone, Clay, and Glass Produc	TRI ts
11130202	Cache Region(s): 6 State(s): OK	Divalent Metal Sewerage Systems	PCS
11130206	Wichita Region(s): 6 State(s): TX	Divalent Metal Metal Products and Finishing	TRI
11130208	Northern Beaver Region(s): 6 State(s): OK	Divalent Metal Sewerage Systems	PCS
11130303	Middle Washita Region(s): 6 State(s): OK	Mercury Sewerage Systems	PCS
11140101	Bois D'Arc-Island Region(s): 6 State(s): TX, OK	Other Paper and Allied Products	TRI
11140107	Upper Little Region(s): 6 State(s): OK	Divalent Metal Sewerage Systems	PCS
11140108	Mountain Fork Region(s): 6 State(s): AR, OK	Other Lumber and Wood Products	PCS
11140109	Lower Little Region(s): 6 State(s): AR, OK	Other Lumber and Wood Products	TRI
11140203	Loggy Bayou Region(s): 6 State(s): LA, AR	Divalent Metal Metal Products and Finishing	PCS
11140204	Red Chute Region(s): 6 State(s): LA	Divalent Metal Primary Metal Industries	TRI
11140205	Bodcau Bayou Region(s): 6 State(s): AR, LA	Divalent Metal Public Utilities	PCS
11140206	Bayou Pierre Region(s): 6 State(s): LA	Other Petroleum Refining	TRI

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
11140302	Lower Sulphur Region(s): 6 State(s): AR, TX	Divalent Metal Metal Products and Finishing Other Paper and Allied Products	PCS TRI
11140304	Cross Bayou Region(s): 6 State(s): AR, TX, LA	Divalent Metal Sewerage Systems	PCS
11140305	Lake O'The Pines Region(s): 6 State(s): TX	Divalent Metal Primary Metal Industries	PCS
11140307	Little Cypress Region(s): 6 State(s): TX	Pesticide Other Trade and Services	PCS
12010002	Middle Sabine Region(s): 6 State(s): TX, LA	Divalent Metal Industrial Organic Chemicals Divalent Metal Metal Products and Finishing	PCS TRI
12010005	Lower Sabine Region(s): 6 State(s): LA, TX	Divalent Metal Industrial Organic Chemicals Other Paper and Allied Products	PCS TRI
12020001	Upper Neches Region(s): 6 State(s): TX	Divalent Metal Petroleum Refining Other Petroleum Refining	PCS TRI
12020002	Middle Neches Region(s): 6 State(s): TX	Metal Sewerage Systems	PCS
12020004	Upper Angelina Region(s): 6 State(s): TX	Metal Sewerage Systems	PCS
12020005	Lower Angelina Region(s): 6 State(s): TX	Other Paper and Allied Products	TRI
12030102	Lower West Fork Trinity Region(s): 6 State(s): TX	Divalent Metal Industrial Organic Chemicals	TRI
12030103	Elm Fork Trinity Region(s): 6 State(s): TX	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI
12030105	Upper Trinity Region(s): 6 State(s): TX	Other Metal Products and Finishing	TRI

National Sediment Contaminant Point Source Inventory

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
12030106	East Fork Trinity Region(s): 6 State(s): TX	Metal Sewerage Systems Other Other Chemical Products	PCS TRI
12030107	Cedar Region(s): 6 State(s): TX	Metal Sewerage Systems	PCS
12030203	Lower Trinity Region(s): 6 State(s): TX	Mercury Sewerage Systems	PCS
12040101	West Fork San Jacinto Region(s): 6 State(s): TX	PAH Industrial Organic Chemicals Metal Lumber and Wood Products	PCS TRI
12040102	Spring Region(s): 6 State(s): TX	Metal Sewerage Systems	PCS
12040201	Sabine Lake Region(s): 6 State(s): LA, TX	Pesticide Sewerage Systems Other Petroleum Refining	PCS TRI
12040203	North Galveston Bay Region(s): 6 State(s): TX	PAH Other Trade and Services Other Petroleum Refining	PCS TRI
12040205	Austin-Oyster Region(s): 6 State(s): TX	Divalent Metal Industrial Inorganic Chemicals	PCS
12050001	Yellow House Draw Region(s): 6 State(s): TX, NM	Divalent Metal Metal Products and Finishing	TRI
12050003	North Fork Double Mountain For Region(s): 6 State(s): TX	k brazos Other Metal Products and Finishing	TRI
12060102	Upper Clear Fork Brazos Region(s): 6 State(s): TX	Other Petroleum Refining	TRI
12070101	Lower Brazos-Little Brazos Region(s): 6 State(s): TX	Metal Sewerage Systems	PCS
12070204	Little Region(s): 6 State(s): TX	Divalent Metal Furniture and Fixtures	TRI
12080002	Colorado Headwaters Region(s): 6 State(s): TX	Mercury Sewerage Systems	PCS
12080003	Monument-Seminole Draws Region(s): 6 State(s): NM, TX	Other Other Chemical Products	TRI

ł

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
12090205	Austin-Travis Lakes Region(s): 6 State(s): TX	Other Pharmaceuticals	TRI
12090302	Lower Colorado Region(s): 6 State(s): TX	Divalent Metal Industrial Organic Chemicals	PCS
12090402	East Matagorda Bay Region(s): 6 State(s): TX	Metal Petroleum Refining Other Petroleum Refining	PCS TRI
12100204	Lower Guadalupe Region(s): 6 State(s): TX	Divalent Metal Plastic Materials and Synthetic	PCS
12100302	Medina Region(s): 6 State(s): TX	Divalent Metal Metal Products and Finishing	PCS
12100303	Lower San Antonio Region(s): 6 State(s): TX	Other Petroleum and Coal Products	TRI
12100401	Central Matagorda Bay Region(s): 6 State(s): TX	Divalent Metal Sewerage Systems	PCS
12100402	West Matagorda Bay Region(s): 6 State(s): TX	Divalent Metal Industrial Organic Chemicals Divalent Metal Plastic Materials and Synthetic	PCS TRI
12110201	North Corpus Christi Bay Region(s): 6 State(s): TX	Divalent Metal Industrial Organic Chemicals Other Industrial Organic Chemicals	PCS TRI
12110204	San Fernando Region(s): 6 State(s): TX	Pesticide Sewerage Systems	PCS
12110208	South Laguna Madre Region(s): 6 State(s): TX	Divalent Metal Sewerage Systems	PCS
13020101	Upper Rio Grande Region(s): 6, 8 State(s): NM, CO	Metal Metal Mining	PCS
13020203	Rio Grande-Albuquerque Region(s): 6 State(s): NM	Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
13040100	Rio Grande-Fort Quitman Region(s): 6 State(s): TX	Other Petroleum Refining	TRI
14010002	Blue Region(s): 8 State(s): CO	Divalent Metal Metal Mining	PCS

ę.

B-58

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
14010003	Eagle Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
14010004	Roaring Fork Region(s): 8 State(s): CO	Divalent Metal Sewerage Systems	PCS
14010005	Colorado Headwaters-Plateau Region(s): 8 State(s): UT, CO	Divalent Metal Sewerage Systems	PCS
14030002	Upper Dolores Region(s): 8 State(s): CO, UT	Divalent Metal Metal Mining	PCS
14030003	San Miguel Region(s): 8 State(s): CO	Divalent Metal Metal Mining	PCS
14050001	Upper Yampa Region(s): 8 State(s): CO	Mercury Sewerage Systems	PCS
14060003	Duchesne Region(s): 8 State(s): UT	Other Petroleum Refining	TRI
14060007	Price Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
14080104	Animas Region(s): 6, 8 State(s): NM, CO	Divalent Metai Metal Mining	PCS
15010015	Las Vegas Wash Region(s): 9 State(s): NV	Divalent Metal Primary Metal Industries	PCS
15020015	Canyon Diablo Region(s): 9 State(s): AZ	Divalent Metal Sewerage Systems	PCS
15050100	Middle Gila Region(s): 9 State(s): AZ	Divalent Metal Metal Mining Divalent Metal Metal Products and Finishing	PCS TRI
15060103	Upper Salt Region(s): 9 State(s): AZ	Metal Sewerage Systems	PCS
15060105	Tonto Region(s): 9 State(s): AZ	Divalent Metal Sewerage Systems	PCS
15070101	Lower Gila-Painted Rock Reservoir Region(s): 9 State(s): AZ	Divalent Metal Sewerage Systems	PCS
15070102	Agua Fria Region(s): 9 State(s): AZ	Divalent Metal National Security	PCS
16020101	Upper Weber Region(s): 8 State(s): UT, WY	Divalent Metal Sewerage Systems	PCS

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
16020102	Lower Weber Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems Divalent Metal Primary Metal Industries	PCS TRI
16020202	Spanish Fork Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
16020304	Rush-Tooele Valleys Region(s): 8 State(s): UT	Metal Sewerage Systems	PCS
16020310	Great Salt Lake Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
16030004	San Pitch Region(s): 8 State(s): UT	Divalent Metal Sewerage Systems	PCS
16030006	Escalante Desert Region(s): 9, 8 State(s): NV, U	Divalent Metal T Sewerage Systems	PCS
17010214	Pend Oreille Lake Region(s): 10 State(s): ID, WA	Other Lumber and Wood Products	TRI
17010302	South Fork Coeur D'Alene Region(s): 10 State(s): ID	Divalent Metal Metal Mining	PCS
17010305	Upper Spokane Region(s): 10 State(s): WA, ID	Divalent Metal Primary Metal Industries	PCS
17010307	Lower Spokane Region(s): 10 State(s): WA	Mercury Sewerage Systems	PCS
17010308	Little Spokane Region(s): 10 State(s): ID, WA	Divalent Metal Primary Metal Industries	TRI
17040204	Teton Region(s): 10, 8 State(s): ID, W	Divalent Metal /Y Sewerage Systems	PCS
17050103	Middle Snake-Succor Region(s): 10 State(s): ID, OR	Pesticide Pesticides	TRI
17050114	Lower Boise Region(s): 10 State(s): ID	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
17060103	Lower Snake-Asotin Region(s): 10 State(s): WA, ID,	Divalent Metal OR Metal Products and Finishing	TRI
17060201	Upper Salmon Region(s): 10 State(s): ID	Divalent Metal Metal Mining	PCS

Cataloging <u>Unit</u>	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
17060306	Clearwater Region(s): 10 State(s): ID, WA	Divalent Metal Sewerage Systems	PCS
17070101	Middle Columbia-Lake Wallula Region(s): 10 State(s): WA, OR	Other Paper and Allied Products	TRI
17070105	Middle Columbia-Hood Region(s): 10 State(s): OR, WA	PAH Primary Metal Industries	PCS
17080003	Lower Columbia-Clatskanie Region(s): 10 State(s): WA, OR	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
17090008	Yamhill Region(s): 10 State(s): OR	Metal Sewerage Systems Other Lumber and Wood Products	PCS TRI
17090009	Molalla-Pudding Region(s): 10 State(s): OR	Metal Sewerage Systems	PCS
17090010	Tualatin Region(s): 10 State(s): OR	Divalent Metal Sewerage Systems Divalent Metal Metal Products and Finishing	PCS TRI
17090011	Clackamas Region(s): 10 State(s): OR	Metal Primary Metal Industries	TRI
17100207	Siltcoos Region(s): 10 State(s): OR	Divalent Metal Paper and Allied Products	PCS
17100308	Middle Rogue Region(s): 10 State(s): OR	Divalent Metal Metal Products and Finishing	TRI
17110002 (APC)	Strait Of Georgia Region(s): 10 State(s): WA	Mercury Paper and Allied Products Divalent Metal Petroleum Refining	PCS TRI
17110011	Snohomish Region(s): 10 State(s): WA	Metal Sewerage Systems	PCS
17110012	Lake Washington Region(s): 10 State(s): WA	Divalent Metal Metal Products and Finishing	TRI
17110013 (APC)	Duwamish Region(s): 10 State(s): WA	Divalent Metal Sewerage Systems Other Metal Products and Finishing	PCS TRI

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
17110014 (APC)	Puyallup Region(s): 10 State(s): WA	Divalent Metal Sewerage Systems Other Paper and Allied Products	PCS TRI
17110020	Dungeness-Elwha Region(s): 10 State(s): WA	Other Paper and Allied Products	TRI
18010101	Smith Region(s): 9, 10 State(s): CA, OR	Divalent Metal Sewerage Systems	PCS
18010102	Mad-Redwood Region(s): 9 State(s): CA	Other Paper and Allied Products	TRI
18020103	Sacramento-Lower Thomes Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18020106	Lower Feather Region(s): 9 State(s): CA	Other Sewerage Systems Metal Lumber and Wood Products	PCS TRI
18020109	Lower Sacramento Region(s): 9 State(s): CA	Other Plastic Materials and Synthetics	TRI
18020111	Lower American Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18030012 (APC)	Tulare-Buena Vista Lakes Region(s): 9 State(s): CA	Metal Sewerage Systems	PCS
18040001	Middle San Joaquin-Lower Chowchil Region(s): 9 State(s): CA	lla Metal Sewerage Systems	PCS
18040003	San Joaquin Delta Region(s): 9 State(s): CA	Divalent Metal Industrial Organic Chemicals Divalent Metal Metal Products and Finishing	PCS TRI
18060002	Pajaro Region(s): 9 State(s): CA	Divalent Metal Metal Products and Finishing	TRI
18060010	Santa Ynez Region(s): 9 State(s): CA	Metal Sewerage Systems	PCS
18060011	Alisal-Elkhorn Sloughs Region(s): 9 State(s): CA	Divalent Metal Public Utilities	PCS
18060012	Carmel Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
National Sediment Contaminant Point Source Inventory

Table B-5. (Continued)

Cataloging Unit	Watershed Name/ EPA Region(s) and State(s)	Dominant Chemical Class/ Dominant Industrial Class	Data Source
18060013	Santa Barbara Coastal Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems	PCS
18070101	Ventura Region(s): 9 State(s): CA	Mercury Sewerage Systems	PCS
18070102	Santa Clara Region(s): 9 State(s): CA	Divalent Metal Sewerage Systems Other Plastic Materials and Synthetic	PCS TRI cs
18070201 (APC)	Seal Beach Region(s): 9 State(s): CA	Divalent Metal Public Utilities	PCS
18070202	San Jacinto Region(s): 9 State(s): CA	Other Sewerage Systems	PCS
18070204 (APC)	Newport Bay Region(s): 9 State(s): CA	Divalent Metal Metal Products and Finishing	TRI
18070301 (APC)	Aliso-San Onofre Region(s): 9 State(s): CA	Metal Sewerage Systems	PCS
18070304 (APC)	San Diego Region(s): 9 State(s): CA	Divalent Metal Metal Products and Finishing	TRI
18080003	Honey-Eagle Lakes Region(s): 9 State(s): NV, CA	Divalent Metal Sewerage Systems	PCS
18090102	Crowley Lake Region(s): 9 State(s): CA, NV	Divalent Metal Metal Mining	PCS
18100200	Salton Sea Region(s): 9 State(s): CA	Pesticide Sewerage Systems	PCS
19020001	Kotzebue Sound Region(s): 10 State(s): AK	Divalent Metal Metal Mining	PCS
19060000	Southeast Alaska Region(s): 10 State(s): AK	Divalent Metal Sewerage Systems	PCS
		Other Paper and Allied Products	TRI
21010002	Cibuco-Guajataca Region(s): 2 State(s): PR	Divalent Metal Sewerage Systems	PCS
		Metal Metal Products and Finishing	TRI
21010003	Culebrinas-Guanajibo Region(s): 2 State(s): PR	Divalent Metal Food and Kindred Products	PCS

-1

÷

,

Cataloging Watershed Name/ Dominant Chemical Class/ Data EPA Region(s) and State(s) Dominant Industrial Class Unit Source St. John-St. Thomas. U.S. Virgin Islands 21020000 Metal PCS Region(s): 2 State(s): VI Industrial Organic Chemicals Other TRÍ **Petroleum Refining**

National Sediment Contaminant Point Source Inventory

C-1

Appendix C Detailed Analyses of Industrial Categories

C-2

greater than of				
Industrial Category/ Chemical Name	Number of Facilities	Raw Load (Ib/yr)	Adjusted Load	Load Score
Maraland Maraland Duralanata				
Food and Kindred Products Dichloroethane, 1,2-	· 1	1,804	3.2E+01	2
Lead	1	875	2.0E+01	2
Nickel	14	1,909	1.9E+02	16
Furniture and Fixtures	1			
Nickel	7	439	4.3E+01	6
Toluene	9	942	2.4E+00	1
Xylenes	11	725	1.2E+02	12
ndustrial Inorganic Chemicals	i.			
Acrylonitrile	. 3	382	1.8E+01	3
Anthracene	2	172	9.5E+01	4
Antimony	2	2,385	6.0E+01	2
Benzene	6	1,082	1.4E+01	2
Chlorobenzene	5	2,922	5.8E+01	3
Chromium	3	364	5.1E+00	2
Dichlorobenzene, 1,2-	3	1,129	9.7E+01	5
Dichlorobenzene, 1,3-	1	117	2.2E + 00	1
Dichlorobenzene, 1,4-	1	1,080	9.0E+01	. 2
Dichloroethane, 1,2-	6	4,244	7.6E+01	9
Dichloropropane, 1,2-	2	940	2.1E+02	5
Hexachlorobenzene	2	390	1.3E+03	6
Hexachlorobutadiene	3	1,174	2.2E+02	5 2
Hexachloroethane	1	290	1.7E+01	29
Mercury	12	268	1.9E+03 4.2E+01	29 6
Naphthalene	7.	3,035 592	5.7E+01	6
Nickel Silver	1	85	1.2E + 02	3
Tetrachloroethane, 1,1,2,2-	3	2,927	8.8E+02	7
Tetrachloroethene	5	8,306	5.4E+02	10
Tetrachloromethane	7	937	1.2E+02	6
Trichloroethane, 1,1,1-	3	58	7.5E+00	2
Trichloroethane, 1,1,2-	5	680	1.4E+02	7
Trichloroethene	3	2,925	5.0E+01	2
Trichloromethane	11	20,092	2.4E+01	3
Xylenes	2	271	4.3E+01	3 2
Zinc	2	313	3.8E+00	1
Industrial Organic Chemicals				
Acrylonitrile	11	33,140	1.6E+03	11
Anthracene	7	138	7.6E+01	6
Antimony	1	2,089	5.2E+01	2
Benzene	47	2,268	2.9E+01	4

Table C-1.Load Scores from TRI by Industrial Category and Chemical (for Load Scores
greater than 0)

ł

C-3

			· .	
Industrial Category/	Number of	Raw Load	Adjusted	Load
Chemical Name	Facilities	(lb/yr)	Load	Score
Biphenyl	9	72,524	1.9E+02	-
Bis(2-ethylhexyl) phthalate	6	648	1.7E+02	7 2
Chlordane	1	28	1.4E + 04	
Chlorobenzene	15	901	1.42 ± 04 $1.8E \pm 01$	5 8
Chromium	3	915	1.3E+01	8 2
Copper	8	5,474		10
Cresol, m-	7	2,820	1.0E+02 3.9E+01	
Cresol, o-	3	10,235		4
Cresol, p-	8	217,405	3.6E+01	2 2
Cresols	10	575	1.4E+01	2
Dichlorobenzene, 1,2-	6	957	8.1E+00	
Dichlorobenzene, 1,4-	3	259	8.2E+01	8
Dichloroethane, 1,2-	11		2.1E+01	4
Dichloropropane, 1,2-	2	1,023 72	1.8E+01	5
Diethyl phthalate	2	64	1.6E+01	3
Dimethyl phthalate	6	29,903	4.5E+00	1
Dimethylphenol, 2,4-	1	29,903	5.1E+02 1.6E+00	6
Heptachlor	1	13		1
Hexachlorobenzene	1	80	7.3E+01	2 3
Hexachlorobutadiene	1	30	2.7E+02 5.7E+00	3 1
Naphthalene	16	1,286	1.8E+01	3
Nickel	8	9,161	8.9E+01	3 14
Phenol	62	359,287	4.0E+02	21
Silver	1	62	4.02+02 8.7E+01	2
Tetrachloroethene	10	599	3.9E+01	2 7
Tetrachloromethane	10	668	8.7E+01	9
Toluene	74	51,751	1.3E+02	12
Trichloroethane, 1,1,1-	4	41	5.3E+02	1
Trichloroethane, 1,1,2-	5	449	9.0E+01	5
Trichloromethane	14	2,745	3.3E+00	1
Xylene, o-	11	3,594	5.4E+02	10
Xylenes	53	59,284	9.5E+03	56
		00,204	0.01 + 00	50
Leather and Leather Products				
Chromium	10	3,009	4.2E+01	8
Xylenes	2	263	4.2E+01	4
Lumber and Wood Products				
Arsenic	22	1,455	1.0E+02	12
Chromium	20	1,781	2.5E+01	6
Copper	20	1,201	2.3E+01	4
Pentachlorophenol	22	2,813	2.2E+03	38
Phenol	4	3,288	3.6E+00	1
Xylenes	4	21	3.3E+00	2
Matal Products and Finishing	'		• ••	

Metal Products and Finishing

Industrial Category/	Number of			LUOU
Chemical Name	Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
	Tacintico	(10/91/	2000	
Acrylonitrile	1	250	1.2E+01	2
Antimony	21	1,436	3.6E+01	5
Arsenic	2	79	5.6E+00	1
Bis(2-ethylhexyl) phthalate	8	1,363	3.7E+01	6
Cadmium	17	568	3.0E+02	15
Chromium	376	21,284	3.0E+02	38
Copper	694	41,748	7.9E+02	241
Cresol, m-	1	220	3.1E+00	1
Cresols	1	800	1.1E+01	2
Di-n-butyl phthalate	2	3,488	1.9E+01	
Dichloroethane, 1,2-	2	450	8.1E+00	2
Dichloromethane	43	26,702	6.4E+00	2
Dichloropropane, 1,2-	1	3,500	7.7E+02	2 2 3 9
Diethyl phthalate	5	60,500	4.3E+03	9
Dimethyl phthalate	3	131	2.2E + 00	2
Lead	171	7,531	1.7E+02	43
Mercury	2	3	1.8E+01	2
Naphthalene	1	255	3.6E+00	1
Nickel	462	23,005	2.2E+03	242
Silver	14	142	2.0E+02	12
Tetrachloroethene	33	997	6.5E+01	13
Toluene	80	27,477	6.9E+01	7
Trichlorobenzene, 1,2,4-	1	353	1.5E+00	1
Trichloroethane, 1,1,1-	115	10,690	1.4E+03	39
Trichloroethane, 1,1,2-	1	1,300	2.6E+02	3
Trichloroethene	90	6,633	1.1E+02	26
	1	200	3.2E+01	2
Xylene, p-	95	12,155	1.9E+03	68
Xylenes	59	25,009	3.0E+02	16
Zinc		20,000	0102 1 02	
Nonclassifiable		25	1.3E+01	2
Anthracene	1		5.1E+00	1
Benzene	1	394		1
Copper	3	253 1	4.8E+00	1
Silver	1	•	1.8E+00	2
Xylenes	. 1	63	1.0E+01	Z
Other Chemical Products				
Acrylonitrile	4	142	6.7E+00	1
Antimony	1	63	1.6E+00	1
Biphenyl	12	1,647	4.3E+00	1
Bis(2-ethylhexyl) phthalate	2	. 88	2.4E+00	1
Chromium	4	169	2.4E + 00	1
Copper	6	192	3.6E+00	1
Copper		768	4.2E+00	1

ndustrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
		*		
Dichlorobenzene, 1,2-	. 3	129	1.1E+01	
Dichlorobenzene, 1,4-	2	833	6.9E+01	
Dichloroethane, 1,2-	3	733	1.3E+01	2 2 2 1 4
Diethyl phthalate	21	770	5.5E+01	14
Dimethyl phthalate	• 3	66	1.1E + 00	1
Dimethylphenol, 2,4-	· 1	63	1.3E+00	
Naphthalene	19	1,105	1.5E + 01	2
Nickel	7	163	1.6E+01	4
Tetrachloroethene	14	272	1.8E+01	2
Toluene	59	9,507	2.4E + 01	4
Trichlorobenzene, 1,2,4-	4	893	3.7E+00	2
Trichloroethane, 1,1,1-	45	7,598	9.9E+02	26
Trichloroethene	4	66	1.1E+00	1
Xylenes	70	20,364	3.3E+03	75
ther Trade and Services	l l	·		
Copper	2	68	1.3E+00	Í
Nickel	2	68	6.5E+00	
Xylene, m-	· 1	33	5.2E+00	1
Xylene, o-	1	16	2.3E + 00	1
Xylene, p-	1	33	5.2E + 00	1
aper and Allied Products			0.22100	•
Biphenyl	2	600	4.05.00	
Butyl benzyl phthalate	23	680	1.8E+00	1
Copper	3	1,846	2.8E+00	1
Diethyl phthalate	1	64 128	1.2E+00	1
Naphthalene	4		9.1E+00	1
Phenoi	53	2,933	4.1E+01	4
Toluene	16	102,227	1.1E+02	16
Trichloroethane, 1,1,1-	2	4,815	1.2E+01	5
Trichloroethene		68	8.8E+00	1
Trichloromethane	1	158	2.7E+00	1
Xylenes	98	519,845	6.2E+02	81
•	15	1,781	2.9E+02	18
esticides				
Arsenic	: 1	63	4.4E + 00	1
BHC, gamma- \ Lindane	2	2	3.2E+02	5
Copper	1	100	1.9E+00	1
Dichloroethane, 1,2-	3	394	7.1E+00	2
Hexachlorobenzene	2	69	2.3E+02	5
Methoxychlor	1	5	2.9E+02	3
Naphthalene	4	374	5.2E+00	1
Pentachlorophenol	. 1	11	8.7E+00	1
Tetrachloromethane	2	15	2.0E+00	1
Toluene	5	1,146	2.9E+00	1

.

. .

National Sediment Contaminant Point Source Inventory

Table C-1. (Continued)

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (Ib/yr)	Adjusted Load	Load Score
	1			
Xylene, m-	1	17	2.7E+00	1
Xylene, o-	2	258	3.9E+01	3
Xylenes	6	277	4.4E+01	- 5
Petroleum and Coal Products				
Toluene	8	18,322	4.6E+01	4
Xylene, m-	1	9	1.4E + 00	- 1
Xylenes	• 4	137	2.2E+01	4
Petroleum Refining	-			
Anthracene	5	147	8.1E+01	6
Arsenic	2	68	4.8E+00	. 1
Benzene	106	71,266	9.3E+02	65
Chromium	10	4,737	6.6E+01	9
Copper	8 3	447	8.5E+00	1
Cresols	11	12,308	1.7E+02	11
Dichloropropane, 1,2-	· 1	211	4.6E+01	2
Dimethylphenol, 2,4-	2	1,363	2.7E+01	3
Lead	2	299	6.9E+00	2
Naphthalene	40	10,252	1.4E+02	. 19
Nickel	7	5,775	5.6E+02	14
Phenol	54	313,317	3.4E+02	27
Tetrachloromethane	· 4	170	2.2E+01	5
Toluene	101	101,336	2.5E + 02	33
Trichloroethane, 1,1,1-	10	540	7.0E+01	11
Xylene, m-	7	9,178	1.5E+03	15
Xylene, o-	8	2,646	4.0E+02	15
Xylene, p-	· · · · 7	8,443	1.4E+03	15
Xylenes	89	74,029	1.2E+04	137
Pharmaceuticals				
Benzene	1	18,750	2.4E+02	3
Bis(2-ethylhexyl) phthalate	2	135	3.6E+00	2
Chlorobenzene	2	1,641	3.3E+01	3
Dichlorobenzene, 1,2-	2	7,626	6.6E+02	6
Dichlorobenzene, 1,3-	1	375	7.1E+00	1
Dichloroethane, 1,2-	4	1,381	2.5E+01	5
Dichloromethane	45	237,342	5.7E+01	9
Diethyl phthalate	· 1	2,834	2.0E+02	3
Dimethyl phthalate	· 1	290	4.9E+00	1
Ethylbenzene	3	4,146	1.2E+00	1
Nickel	1	5,600	5.4E + 02	3
Phenol	3	2,523	2.8E+00	1
Tetrachloroethane, 1,1,2,2-	1	38	1.1E + 01	2
Toluene	38	131,816	3.3E + 02	20
Trichloroethene	1	63	1.1E + 00	1

ł

C-7

,

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
Trichloromethane	10	58,289	7.0E+01	5
Xylene, m-	1	1,900	3.0E+02	3
Xylenes	9	16,318	2.6E+03	16
Plastic Materials and Synthetics	1.			
Acrylonitrile	25	19,634	9.2E+02	20
Anthracene	1	250	1.4E+02	3
Antimony	1	250	6.3E+00	, 0 1
Benzene	8	601	7.8E+00	2
Biphenyl	12	2,249	5.8E+00	1
Bis(2-ethylhexyl) phthalate	3	382	1.0E+01	. 1
Cadmium	1	59	3.1E+01	2
Chlorobenzene	4	92	1.8E+00	1
Chromium	2	204	2.9E+00	1
Copper	4	1,690	3.2E+01	5
Dichlorobenzene, 1,2-	1	29	2.5E + 00	1
Dichloroethane, 1,2-	2	243	4.4E+00	1
Dichloropropane, 1,2-	2	90	2.0E+01	3
Diethyl phthalate	1	63	4.5E + 00	1
Dimethyl phthalate	3	732	1.2E+01	2
Naphthalene	12	402	5.6E + 00	1
Nickel	4	780	7.6E+01	.7
Phenol	27	150,761	1.7E+02	10
Tetrachloroethene	1	26	1.7E+00	1
Tetrachloromethane	3	82	1.1E+01	2
Toluene	44	19,144	4.8E+01	5
Trichloroethane, 1,1,1-	4	4,851	6.3E+02	6
Xylene, o-	5	229	3.4E+01	5
Xylenes	35	1,644	2.6E+02	27
Primary Metal Industries				
Anthracene	1	9	5.0E+00	1
Antimony	20	6,479	1.6E+02	11
Arsenic	13	66	4.7E+00	1
Benzene	11	1,305	1.7E+01	5
Cadmium	11	324	1.7E+02	1.0
Chromium	141	10,695	1.5E + 02	29
Copper	310	27,911	5.3E+02	112
Cresols	5	573	8.0E+02	2
Lead	118	21,956	5.0E+02	58
Naphthalene	14	2,538	3.6E+01	·7
Nickel	147	15,016	1.5E+03	98
Phenol	40	124,478	1.4E+02	16
Polychlorinated biphenyls	1	66	1.9E+04	5
Silver	13	512	7.2E+02	14
	10	J 1Z	1.2C+UZ	14

,

÷

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (Ib/yr)	Adjusted Load	Load Score
Tetrachloroethene	2	541	3.5E+01	2
Trichloroethane, 1,1,1-	12	1,846	2.4E+02	5
Trichloroethene	4	6,776	1.2E+02	3
Xylenes	6	652	1.0E+02	· 7
Zinc	55	66,313	8.0E+02	30
Printing and Publishing	i s			
Copper	17	327	6.2E+00	4
Toluene	26	2,847	7.1E+00	2
Xylenes	10	115	1.8E+01	· 2
Rubber and Plastics Products				
Bis(2-ethylhexyl) phthalate	28	3,609	9.7E+01	14
Di-n-butyl phthalate	4	1,382	7.6E+00	1
Diethyl phthalate	2	11,508	8.2E+02	3
Dimethyl phthalate	2	1,978	3.4E+01	3
Toluene	16	3,823	9.6E+00	3
Trichloroethane, 1,1,1-	3	70	9.0E+00	1
Xylenes	6	63	1.0E+01	2
Zinc	3	449	5.4E + 00	2
Stone, Clay, and Glass Products				
Bis(2-ethylhexyl) phthalate	2	265	7.2E+00	2
Copper	7	283	5.4E+00	1
Lead	13	104	2.4E + 00	1
Nickel	4	102	9.9E+00	、 2 、 4
Phenol	21	18,931	2.1E+01	
Xylenes	4	1,205	1.9E+02	6
Zinc	. 2	183	2.2E+00	1
Textile Products				
Antimony	2	5,161	1.3E+02	4
Biphenyl	22	125,681	3.3E+02	28
Bis(2-ethylhexyl) phthalate	2	1,327	3.6E+01	2
Copper	3	950	1.8E+01	3
Lead	2	751	1.7E + 01	2
Naphthalene	2	15,006	2.1E + 02	3
Nickel	1	323	3.1E+01	2
Tetrachloroethene	9	27,152	1.8E+03	21
Trichlorobenzene, 1,2,4-	14	42,232	1.8E+02	14
Trichloroethane, 1,1,1-	1	250	3.3E+01	2
Xylenes	5	27,058	4.3E+03	15

1

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted	Load Score
Coal Mining				
Cadmium	1	5	2.4E+00	1
Mercury	2	< 0.5	2.8E+00	1
Nickel	1	401	3.9E+01	2
Silver	2	4	6.0E+00	1
Zinc	2	150	1.8E+00	1
Construction				
Xylenes	1	31	5.0E+00	1
-		•	· · · ·	
Food and Kindred Products	5	31	1.6E+01	2
Cadmium	14	191	2.7E+00	1
Chromium	14	4,751	9.0E+01	7
Copper	1	6,993	1.7E+00	. 1
Dichloromethane	9	578	1.3E+01	2
Lead	9 4	9	6.2E+01	Ē
Mercury Nickel	3	1,757	1.7E+02	Ę
Silver	3	3	4.7E+00	. 1
Tetrachloroethene	1	21	1.3E+00	1
Trichloroethene	2	2,011	3.4E+01	2
Trichloromethane	3	10,244	1.2E+01	
Zinc	38	13,731	1.6E+02	17
Furniture and Fixtures	-			
Cadmium	3	5	2.8E+00	1
Chromium	3	127	1.8E+00	1
Copper	7	168	3.2E+00	2
Nickel	6	486	4.7E+01	3
Silver	1	21	2.9E+01	1
Industrial Inorganic Chemicals				
Acenaphthene	1	59	2.9E+00	4
Acenaphthylene	1	105	1.3E+01	2
Anthracene	1	47	2.6E+01	
Antimony	3	933	2.3E+01	:
Arsenic	14	2,176	1.5E+02	-
Benzo(a)anthracene	1	12	1.3E+02	:
Benzo(a)pyrene	1	3	1.1E+02	
Benzo(b)fluoranthene	1	4	1.9E+01	2
Benzo(k)fluoranthene	1	2	8.0E+00	
Cadmium	15	341	1.8E+02	Ş
Chromium	38	21,080	3.0E+02	20
Chrysene	. 1	9	9.5E+00	
Copper	56	113,341	2.2E + 03	20

×.,

Table C-2.Load Scores from PCS by Industrial Category and Chemical (for Load Scores
greater than 0)

1

C-11

,

Industrial Category/	Number of	Raw Load	Adjusted	Load
Chemical Name	Facilities	(lb/yr)	Load	Score
	I			00016
Dichloroethane, 1,2-	4	787	1.4E+01	2
Dichloromethane	. 4	18,041	4.3E+00	.1
Fluoranthene	[!] 1	28	3.3E+00	: 1
Fluorene	1	105	1.3E+01	2
Hexachlorobenzene	3	8	2.7E+01	3
Lead	33	1,914	4.4E+01	11
Mercury	21	763	5.3E+03	43
Methoxychlor	1	99	5.7E+03	4
Nickel	42	11,516	1.1E + 03	51
Phenanthrene	1 .	72	1.1E+01	_2
Polychlorinated biphenyls	1 🖓	< 0.5	6.8E+01	2
Pyrene	1	81	1.1E+02	3
Silver	6	9	1.3E+01	2
Tetrachloroethene	4	28	1.8E+00	1
Tetrachloromethane	4	2,150	2.8E+02	6
Trichloroethane, 1,1,1-	4	72	9.3E+00	1
Trichloromethane	10	39,034	4.7E+01	2
Zinc	61	127,119	1.5E + 03	43
ndustrial Organic Chemicals	i .			-0
Acenaphthene	12	168	0.05.00	-
Acenaphthylene	10		8.2E+00	3 4
Acrylonitrile	13	151 786	1.8E+01	4
Anthracene	11	145	3.7E+01	6
Antimony	8	175,245	8.0E+01	10
Arsenic	5	278	4.4E+03	11
Benzene	:33	3,670	2.0E+01	4
Benzo(a)anthracene	12	175	4.8E+01 1.9E+03	3
Benzo(a)pyrene	12	143	6.0E + 03	21
Benzo(b)fluoranthene	12	187		27
Benzo(k)fluoranthene	12	147	9.0E + 02 6.9E + 02	21
Bis(2-ethylhexyl) phthalate	26	7,84	2.1E + 02	16
Cadmium	6	312		7
Chlorobenzene	21	733	1.6E+02 1.5E+01	5
Chromium	52	4,988		3
Chrysene	12	4,988	7.0E+01	17
Copper	74	44,151	1.5E+02	9
Diazinon \ Spectracide	1		8.4E+02	57
Dichlorobenzene, 1,2-	18	6	5.6E+03	4
Dichlorobenzene, 1,4-	15	1,027 274	8.8E+01	10
Dichlorobenzenes	10		2.3E+01	6
Dichloroethane, 1,2-	32	81	7.2E+00	1
Dichloropropane, 1,2-	17	4,786	8.6E+01	12
Diethyl phthalate	13	915	2.0E+02	15
Dimethylphenol, 2,4-	12	163	1.2E+01	3
	12	204	4.1E+00	1

ndustrial Category/	Number of	Raw Load	Adjusted	Load
Chemical Name	Facilities	(lb/yr)	Load	Score
Fluoranthene	12	153	1.8E+01	4
Fluorene	12	153	1.8E+01	3
Hexachlorobenzene	16	191	6.5E+02	20
Hexachlorobutadiene	13	314	6.0E+01	6
Hexachloroethane	14	176	1.0E+01	3
Lead	41	9,546	2.2E+02	20
Mercury	15	66	4.6E+02	20
Naphthalene	18	264	3.7E+00	1
Nickel	49	19,682	1.9E+03	67
Pentachlorophenol		1	1.0E+00	1
Phenanthrene	15	163	2.5E+01	5
Phenol	33	2,544	2.8E+00	1
Polychlorinated biphenyls	1	< 0.5	4.8E+00	1
•	13	152	2.1E+02	11
Pyrene	. 8	38	5.4E+01	6
Silver	2	235	7.0E+01	3
Tetrachloroethane, 1,1,2,2-	24	90,654	5.9E+03	12
Tetrachloroethene	24	172,606	2.2E+03	17
Tetrachloromethane	24	80	3.7E+04	7
Toxaphene	2	4,444	1.3E+02	. 3
Tribromomethane	20	4,444 9,666	1.3E + 02 1.3E + 03	12
Trichloroethane, 1,1,1-	20	9,000 367	7.3E+03	14
_ Trichloroethane, 1,1,2-	20	464	7.9E+01	2
Trichloroethene	55	390,662	4.7E+02	7
Trichloromethane	88	584,485	7.0E+02	, 87
Zinc	. 00	304,400	7.02+03	07
eather and Leather Products		F 404	7 75 . 01	ε
Chromium	9	5,484	7.7E+01	1
Lead	4	86	2.0E+00	. 1
umber and Wood Products	4			
Acenaphthene	2	421	2.1E+01	- 2
Arsenic	7	108	7.7E+00	1
Cadmium	1	8	4.3E+00	1
Copper	8	172	3.3E+00	1
Dimethylphenol, 2,4-	, 1	287	5.7E+00	1
Fluorene	1	18	2.2E + 00	1
Pentachlorophenol	8	959	7.6E+02	4
Zinc	7	5,439	6.5E + 01	3
Vietal Mining	l			
Antimony	3	509	1.3E+01	2
Arsenic	18	1,161	8.2E+01	10
Cadmium	41	990	5.2E+02	31
Copper	51	10,885	2.1E+02	18
Lead	40	6,609	1.5E+02	17

Appendix C

ndustrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
	i i			
Mercury	24	23	1.6E+02	13
Nickel	8	412	4.0E+01	, f
Silver	12	36	5.0E+01	• (
Zinc	57	289,600	3.5E+03	52
Netal Products and Finishing	ł			
Antimony	9	24,174	6.0E+02	: E
Arsenic	19	3,911	2.8E+02	12
Benzene	9	2,773	3.6E+01	
Bis(2-ethylhexyl) phthalate	6	80	2.2E+00	· 1
Cadmium	124	968	5.0E+02	34
Chromium	218	214,819	3.0E+02	34 40
Copper	306	276,786	5.3E+03	86
Dichloropropane, 1,2-	.1	2,190	4.8E+02	30
Lead	187	35,222	4.82+02 8.1E+02	
Mercury	15	50,222	3.3E+01	. 38
Nickel	212	41,971	4.1E+03	5
Phenol	7	1,465		150
Polychlorinated biphenyls	8	1,028	1.6E+00	1
PCB-1016	1	< 0.5	3.0E+05	21
PCB-1221	1	< 0.5	7.9E+01	2
PCB-1232	1	< 0.5	7.9E+01	2
PCB-1242	2	<0.5 3	7.9E+01	2
PCB-1248	2	8	7.6E+02	5
PCB-1254	1	<0.5	2.4E+03	6
PCB-1260	1	< 0.5	7.9E+01	
Silver	87		7.9E+01	2
Tetrachloroethene	. 18	9,607	1.3E+04	62
Tetrachloromethane	1	949	6.2E+01	7
Toluene		24	3.1E+00	1
Trichloroethane, 1,1,1-	17	2,708	6.8E+00	1
Trichloroethene	23	318	4.1E+01	5
Xylenes	52	13,803	2.3E + 02	1,1
Zinc	: 8	3,584	5.7E+02	5
	.330	1063404	1.3E+04	127
According to the security				
Arsenic	.7	3,021	2.1E+02	8
Cadmium	14	290	1.5E+02	1,3 7
Chromium	11	5,760	8.1E+01	7
Copper	20	5,551	1.1E+02	1.1
DDT	1	<0.5	1.0E+01	2
Lead	19	3,284	7.6E+01	10
Mercury	9	97	6.8E+02	9
Nickei	12	490	4.8E+01	11
Pentachlorophenol	1	s 10	7.6E+00	1

ndustrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
	1	202	5.9E+04	- 5
Polychlorinated biphenyls	, 1 1	31	4.3E+01	8
Silver	3	625	1.1E+01	2
Trichloroethene Zinc	19	118,295	1.4E+03	17
Nonclassifiable				
Antimony	3	59	1.5E+00	1
Arsenic	12	186	1.3E+01	3
Benzene	63	1,368	1.8E+01	4
Cadmium	24	253	1.3E+02	10
Chromium	27	425	5.9E+00	· 2
Copper	50	1,694	3.2E+01	. 7
Hexachlorobutadiene	1	15	2.8E+00	1
Lead	65	2,970	6.8E+01	7
Mercury	13	5	3.2E+01	4
Nickel	23	614	6.0E+01	8
Polychlorinated biphenyls	· · 1	1	2.9E+02	3
Silver	10	27	3.7E+01	6
Toluene	33	8,203	2.1E+01	. 2
Trichloroethene	34	11,986	2.0E+02	.8
Xylenes	28	216	3.5E+01	5
Zinc	61	21,495	2.6E+02	16
Nonmetallic Mineral Mining				
Arsenic	2	29	2.0E+00	ຸ 1
Cadmium	3	191	9.9E+01	5
Copper	3	431	8.2E+00	2
Lead	3	267	6.1E+00	2
Mercury	5	137	9.6E+02	3
Nickel	1	26	2.5E + 00	1
Xylenes	1	14	2.3E+00	1
Zinc	7	3,311	4.0E+01	4
Oil and Gas Extraction	· 1	16	1.6E+00	1
Nickel		10	1.02+00	
Other Chemical Products	2	331	8.3E+00	1
Arsenic	7	514	3.6E+01	5
Benzene	3	710	9.2E+00	1
Cadmium	13	980	5.1E+02	11
Chromium	12	808	1.1E+01	4
Copper	22	960	1.8E+01	8
Dichloropropane, 1,2-	1	57	1.3E+01	2
DDT	1	1	2.0E+02	3
Lead	20	1,314	3.0E+01	. 4

,

,

.

Table C-2. (Continued)

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load
Unemical Name	raciitues	(10/91)	Load	Score
Mercury	8	6	4.5E+01	Ę
Nickel	9	3,134	3.0E+01	
Silver	4	88	1.2E+02	ļ
Tetrachloroethene	^{1.} 2	260	1.7E+02	
Toluene	9	1,250	3.1E+00	. d
Trichloroethene	3	175	3.0E+00	
Xylenes	2	8	1.2E + 00	
Zinc	35	20,321	2.4E+02	20
Other Trade and Services		207021	2.46 02	2
Anthracene	' 4	2	1 65 . 00	۲.
Arsenic	4	3	1.6E+00	1
Benzene		89	6.3E+00	
Benzo(a)anthracene	234	58,579	7.6E+02	1,1
Benzo(a)pyrene	2	1	6.3E+00	1
Benzo(b)fluoranthene	2	1	2.3E+01	2
	2	1	3.9E+00	12
Benzo(k)fluoranthene	2	1	3.5E+00	.1
Cadmium Chromium	30	6,669	3.5E+03	11
	30	786	1.1E+01	Э
Copper Diborne (a blanthrase)	70	1,878	3.6E+01	g
Dibenzo(a,h)anthracene Dieldrin	1	< 0.5	2.0E+01	2
	2	< 0.5	1.1E + 02	4
Endosulfan, alpha-	2	1	3.9E+01	2
Hexachlorobenzene	2	1	2.0E+00	1
Indeno(1,2,3-cd)pyrene	1	< 0.5	1.1E+00	1
Lead	184	2,954	6.8E+01	10
Mercury	14	4	2.8E+01	5
Nickel	24	288	2.8E+01	8
Pentachlorophenol Behableringtod hiskogal	2	9	6.9E + 00	·
Polychlorinated biphenyls	4	14	4.0E+03	9
Pyrene	4	18	2.5E + 01	3
PCB-1016	1	< 0.5	3.8E+00	1
PCB-1221	1	<0.5	5.8E + 00	1
PCB-1232	1	<0.5	3.8E+00	1
PCB-1242	; 1	< 0.5	3.8E+00	1
PCB-1248	1	< 0.5	3.8E+00	1
PCB-1254	1	<0.5	3.8E+00	1
PCB-1260	1	<0.5	2.9E+00	1
Silver	15	107	1.5E+02	8
Toluene	183	8,023	2.0E+01	4
Trichloroethane, 1,1,1-	. 12	21	2.7E + 00	1
Xylenes	173	3,220	5.2E + 02	36
Zinc	98	15,363	1.8E+02	22
aper and Allied Products				

5.÷

ł٠

National Sediment Contaminant Point Source Inventory

-

Table C-2. (Continued)

ndustrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score	
Antimony	2	65	1.6E+00	1	
Arsenic	4	199	1.4E+01	2	
Bis(2-ethylhexyl) phthalate	2	158	4.3E+00	1	
Cadmium	11	232	1.2E+02	9	
Chromium	10	1,432	2.0E+01	4	
Copper	50	11,322	2.2E+02	35	
Dichloropropane, 1,2-	1	5	1.0E+00	1	
Lead	22	953	2.2E+01	5	
Mercury	6	132	9.2E+02	6	
Nickel	7	70	6.8E+00	4	
Pentachlorophenol	2	2	1.3E+00	1	
Polychlorinated biphenyls	1	< 0.5	1.3E+02	3	
PCB-1242	2	<0.5	1.0E+01	2	
Silver	5	30	4.2E+01	. 5	
		3,095	7.7E+00	1	
Toluene Trichloromethane	15	7,047	8.5E+00	1	
	65	491,774	5.9E+00	66	
Zinc	00	431,774	0.9L + 00	00	
Pesticides					
Arsenic	4	86	6.1E+00	2	
Chromium	5	652	9.1E+00	2	
Copper	4	737	1.4E+01	2	
DCPA/Dacthal	1	286	2.6E+00	1	
Mercury	1	8	5.7E+01	2	
Nickel	, 3	479	4.7E+01	5	
Zinc	9	9,491	1.1E+02	9	
Petroleum and Coal Products					
Toluene	3	4,997	1.2E+01	2	
Xylenes	2	9,528	1.5E+03	4	
Petroleum Refining					
Arsenic	16	4,459	3.2E+02	17	
Benzene	19	2,011	2.6E+01	4	
Bis(2-ethylhexyl) phthalate	2	77	2.1E+00	1	
	10	75	3.9E+01	10	
Cadmium	92	15,045	2.1E+02	41	
Chromium	22	6,979	1.3E+02	7	
Copper	22	1,537	3.5E+01	5	
Lead			1.0E+02	16	
Mercury	12	15		2	
Naphthalene	2	4,299	6.0E+01		
Nickel	13	2,806	2.7E+02	18	
Silver	7	20	2.8E+01	5	
Toluene	11	3,014	7.5E+00	1	
Trichloroethane, 1,1,2-	1	5	1.0E + 00	1	
Trichloroethene	1	1,457	2.5E+01	2	

C-17

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (Ib/yr)	Adjusted Load	Load Score	
Xylenes	12	169	2.7E+01	4	
Zinc	34	604,273	7.3E+03	34	
Pharmaceuticals	•	001,270	7.02100	54	
Arsenic				*	
Benzene	5	1,179	8.4E+01	2	
Cadmium	· 1	273	3.5E+00	1	
Copper	5	10	5.0E+00	1	
Dichloromethane	19	606	1.2E+01	3	
Lead	8	28,385	6.8E+00	1	
Mercury	8	4,904	1.1E+02	3	
Nickel	8	1	9.3E+00	: 4	
Silver	4	475	4,6E+01	4	
Toluene	3	1	2.0E+00	1	
Trichloroethane, 1,1,2-	2	29,927	7.5E+01	2	
Trichloromethane	1 8	98	2.0E+01	2	
Zinc	27	4,336	5.2E+00	1	
	21	33,673	4.0E+02	11	
lastic Materials and Synthetics					
Acenaphthene	. 5	65	3.2E+00	1	
Acenaphthylene	5	74	8.9E+00	3	
Acrylonitrile	14	678	3.2E+01	4	
Anthracene	5	65	3.6E+01	6	
Antimony	6	454	1.1E+01	4	
Arsenic	12	243	1.7E+01	.i 5	
Benzene	15	428	5.6E+00	1	
Benzo(a)anthracene	6	91	1.0E+03	15	
Benzo(a)pyrene	6	77	3.2E+03	18	
Benzo(b)fluoranthene	6	85	4.1E + 02	12	
Benzo(k)fluoranthene	6	75	3.5E + 02	12	
Bis(2-ethylhexyl) phthalate	22	2,977	8.0E+01	, 9	
Cadmium	6	148	7.7E+01	6	
Chromium	38	5,889	8.2E+01	13	
Chrysene	6	75	7.5E+01	9	
Copper	48	14,056	2.7E+02	24	
Dichlorobenzene, 1,2-	9	236	2.0E+01	5	
Dichlorobenzene, 1,4-	9	105	8.7E+00	4	
Dichloroethane, 1,2-	11	303	5.5E+00	· 1	
Dichloromethane	20	9,838	2.4E + 00	` 1	
Dichloropropane, 1,2-	7	341	7.5E+01	. 5	
Diethyl phthalate	6	73	5.2E+00	· 2	
Fluoranthene	6	63	7.5E+00	3	
Fluorene	6	61	7.4E+00	2	
Hexachlorobenzene	7	73	2.5E+02	13	
Hexachlorobutadiene	6	70	1.3E+01	5	

i L

Ţ

National Sediment Contaminant Point Source Inventory

٠

. .

Table C-2. (Continued)

۱

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Loa Load Sco		
llaurachtaracthar		142	8.4E+00	2	
Hexachloroethane	6				
Lead	24	868	2.0E+01	5	
Mercury	7	6	4.2E+01	9	
Nickel	19	9,642	9.4E+02	21	
Pentachlorophenol	' 1	24	1.9E+01	2	
Phenanthrene	6	88	1.3E+01	3	
Polychlorinated biphenyls	1	3	8.3E+02	3	
Pyrene	6	68	9.6E + 01	9	
Silver	3	38	5.3E+01	3	
Tetrachloroethene	8	139	9.0E+00	5	
Tetrachloromethane	9	66	8.6E+00	4	
Toluene	23	16,582	4.1E+01	5	
Trichloroethane, 1,1,1-	÷ 9	153	2.0E+01	6	
Trichloroethane, 1,1,2-	8	125	2.5E+01	5	
Xylenes	6	1,916	3.1E+02	7	
Zinc	69	187,467	2.2E+03	55	
rimary Metal Industries					
Anthracene	2	23	1.3E+01	· 2	
Antimony	16	588	1.5E+01	4	
Arsenic	22	210	1.5E+01	5	
Benzo(a)anthracene	2	7	7.6E+01	2	
Benzo(a)pyrene	23	196	8.2E+03	50	
Benzo(b)fluoranthene	2	8	4.1E+01	2	
Bis(2-ethylhexyl) phthalate	4	1,894	5.1E+01	3	
Cadmium	50	1,003	5.2E+02	32	
Chromium	91	12,579	1.8E+02	27	
Chrysene	2	6	6.1E+00	1	
Copper	133	63,414	1.2E+03	57	
Fluoranthene	4	63	7.6E+00	2	
Fluorene	2	9	1.1E+00	. 1	
Lead	144	29,201	6.7E+02	55	
	8	439	3.1E+03	7	
Mercury ·	; 15	230	3.2E+00	1	
Naphthalene		13,925	3.2E+00 1.4E+03	81	
Nickel	81			5	
Phenanthrene	4	25,929	3.9E+03		
Polychlorinated biphenyls	6	7	2.0E+03	13	
Pyrene	2	23	3.2E+01	2	
PCB-1242	1	< 0.5	1.1E+00	1	
PCB-1248	1	< 0.5	5.4E+00	1	
PCB-1260	1	< 0.5	1.4E+00	1	
Silver	18	59	8.2E+01	11	
Tetrachloroethene	· 8	314	2.0E+01	4	
Zinc	197	312,772	3.8E+03	143	

. 1

1

Appendix C

i

Table C-2. (Continued)

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score
	! 		······································	
Printing and Publishing	i			
Chromium	2	104	1.4E+00	1
Copper	. 3	426	8.1E+00	2
Lead	2	46	1.1E+00	1
Silver	3	50	7.0E + 01	: 3
Zinc	3	208	2.5E+00	1
Public Utilities				
Antimony	⊾ 11	1,458	3.6E+01	6
Arsenic	89	41,356	2.9E+03	77
Cadmium	62	9,389	2.9E+03	46
Chromium	96	11,924	1.7E+02	23
Copper	351	645,527	1.2E+04	1.98
Lead	204	61,056	1.4E+03	72
Mercury	42	9,980	7.0E+04	45
Nickel	98	75,896	7.4E+03	
Pentachlorophenol	. 1	3	2.6E+00	1
Polychlorinated biphenyls	14	16	4.5E+03	.21
PCB-1254	1	< 0.5	5.1E+01	2
Silver	26	3,081	4.3E+03	22
Tetrachloroethene	10	42	2.7E+00	1
Tetrachloromethane	2	15,857	2.1E+03	4
Trichloromethane	7	1,993	2.4E + 00	1
Xylenes	29	101	1.6E+01	3
Zinc	309	1445177	1.7E+04	203
Rubber and Plastics Products				:
Antimony	. 1	4,363	1.1E+02	3
Arsenic	3	32	2.3E+00	1
Cadmium	5	18	9.5E+00	1
Copper	17	1,320	2.5E+01	3
Dichloromethane	3	89,604	2.2E+01	2
Lead	11	255	5.9E+00	1
Mercury	3	4,167	2.9E+04	6
Nickel	4	29	2.8E+00	1
Polychlorinated biphenyls	2	10	2.8E+03	4
Pyrene	1	1	1.1E+00	1
PCB-1242	1 ՝	1	1.8E+02	3
PCB-1248	. 1	<0.5	2.6E+01	2
Silver	1	8	1.1E+01	2
Zinc	. 28	18,044	2.2E+02	11
Sewerage Systems				i ;
Acenaphthene	, 11	57	2.8E+00	4
Acenaphthylene	10	57	2.8E+00 6.6E+00	1
	10	55	0.00+00	3

. .

.

lustrial Category/ Chemical Name	Number of Facilities	Raw Load (Ib/yr)	Adjusted Load	Load Score	
	1				
Acrylonitrile	12	320	1.5E + 01	4	
Aldrin	12	2	7.3E+02	18	
Anthracene	9	56	3.1E+01	6	
Antimony	66	47,292	1.2E+03	49	
Arsenic	225	443,928	3.2E + 04	186	
Benzene	20	18,571	2.4E+02		
Benzo(a)anthracene	11	62	6.9E+02	19	
Benzo(a)pyrene	10	58	2.4E+03	23	
Benzo(b)fluoranthene	11	138	6.6E+02	1.	
Benzo(ghi)perylene	10	64	5.1E + 01	8	
Benzo(k)fluoranthene	i. 10	58	2.7E+02	14	
Bis(2-ethylhexyl) phthalate	95	35,839	9.7E+02	5	
Bromophenyl phenyl ether, 4-	10 [°]	57	4.4E+00		
BHC, alpha-	9	30	7.9E+03	1:	
BHC, beta-	8	, 2	4.5E+02	1	
BHC, delta-	8	1	1.4E+01		
BHC, gamma- \ Lindane	30	140	2.9E+04	6	
Cadmium	716	167,046	8.7E+04	67	
Chlordane	17	57	2.9E+04	4	
Chlorobenzene	13	412	8.2E+00		
Chromium	619	218,172	3.1E+03	26	
Chrysene	10	57	5.7E+01		
Copper	1393	1568237	3.0E+04	98	
Di-n-butyl phthalate	34	1,715	9.4E+00		
Dibenzo(a,h)anthracene	10	58	1.3E+04	3	
Dibromochloromethane	32	10,298	2.2E+02	1:	
Dichlorobenzene, 1,2-	12	197	1.7E+01		
Dichlorobenzene, 1,4-	21	1,110	9.2E+01		
Dichlorobenzenes	2	142	1.3E+01		
Dichloroethane, 1,2-	19	2,701	4.9E+01	1	
Dichloropropane, 1,2-	10	32	7.0E+00		
Dieldrin	10	377	6.0E+05	2	
Diethyl phthalate	19	4,138	2.9E+02	1	
DDD	10	70	1.8E+04	1:	
DDE	10	1,145	3.9E+05	11	
DDT	11	390	8.2E+04	2	
Endosulfan mixed isomers	10	5	1.7E+01	:	
Endosulfan, alpha-	9	2	5.8E+01		
Endosulfan, beta-	8	2	1.3E+01		
Endrin	18	867	8.1E+02	(
Fluoranthene	11	60	7.2E+00	:	
Fluorene	11	75	9.0E+00		
Heptachlor	13	56	3.2E+02	-	
Heptachlor epoxide	9	2	6.3E+02	12	

ŝ

Industrial Category/ Chemical Name	Number of Facilities	Raw Load (lb/yr)	Adjusted Load	Load Score	
Hexachlorobenzene	11	54	1.8E+02	11	
Hexachlorobutadiene	10	· 55	1.0E+02		
Hexachloroethane	10	58	3.4E + 00	· · · · 1	
Indeno(1,2,3-cd)pyrene	10	61	8.0E + 02	20	
Lead	940	486,751	1.1E+04	429	
Mercury	531	12,730	8.9E+04	609	
Naphthalene	11	279	3.9E+00	1	
Nickel	690	830,784	8.1E+04	855	
Nitrosodiphenylamine, N-	11	2,329	1.0E+03		
Pentachlorophenol	16	387	3.1E+02	16	
Phenanthrene	12	103	1.5E+01		
Phenol	25	5,247	5.8E+00	1	
Polychlorinated biphenyls	21	330	9.6E+04	61	
Pyrene	13	107	1.5E+02	12	
PCB-1016	9	3	7.4E+02	18	
PCB-1221	8	3	8.8E+02	15	
PCB-1232	8	2	6.3E+02	15	
PCB-1242	8	2	6.3E+02	15	
PCB-1248	8	2	6.3E+02	15	
PCB-1254	8	2	6.3E+02	15	
PCB-1260	8	2	6.3E+02	15	
Silver	446	522,139	7.3E+05	742	
Tetrachloroethane, 1,1,2,2-	11	379	1.1E+02	7	
Tetrachloroethene	59	24,566	1.6E+03	55	
Tetrachloromethane	15	162	2.1E+01	5	
Toluene	58	76,290	1.9E+02	11	
Toxaphene	12	16	7.4E+02	22	
Tribromomethane	16	167	5.0E+00	1	
Trichloroethane, 1,1,1-	33	1,816	2.4E+02	18	
Trichloroethane, 1,1,2-	11	100	2.0E+01	; 5	
Trichloroethene	28	2,418	4.1E+01	6	
Trichloromethane	154	547,417	6.6E+02	31	
Xylenes	7	24	3.8E+00	1	
Zinc	1415	4576125	5.5E + 04	1349	
tone, Clay, and Glass Products					
Arsenic	3	354	2.5E + 01	2	
Cadmium	3	3	1.3E+00	1	
Chromium	10	200	2.8E+00	1	
Copper	13	177	3.4E+00	1	
Lead	13	4,114	9.5E+01	3	
Silver	2	39	5.4E+01	2	
Zinc	17	926	1.1E+01	3	
extile Products	•				

٠.

5

lustrial Category/		nber of	Raw Load	Adjusted	Load	
Chemical Name		Facilities (lb/yr)		Load	Score	
Arsenic	1	3	641	4.6E+01		
Bis(2-ethylhexyl) phthalate		[°] 1	47	1.3E+00	•	
Cadmium	1 e	3	13	6.6E+00		
Chromium		52	5,391	7.5E+01	11	
Copper	t.	16	350,047	6.7E+03	10	
Lead		10	334	7.7E+00	2	
Mercury	1	1	<0.5	1.9E+00	•	
Nickel	1	3	33	3.2E+00	:	
Silver	:	2	1	2.1E + 00		
Trichloroethene	1	2	88	1.5E+00		
Zinc		20	251,331	3.0E+03	18	

.